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Abstract— This paper proposes a planning management
framework dedicated to dynamic systems. It deals with inten-
tional BDI agents in aim to maximize the satisfaction of their
intentions taking into account the spatio-temporal context.

The search for the optimal solution is based on an original
and formal structure called Contextual Planning System (CPS).
The CPS handles the satisfaction of concurrent plans associated
with intentions. It looks for efficient guidance to improve the
satisfaction of the agent’s intentions with respect to its current
context.

Our paper goes on to show how to take advantage of context-
aware information representing spatio-temporal data related to
the past-experience of action plan executions. Our objective is
to improve the CPS mechanism by the use of reinforcement
learning strategy. A prototype tool associated with automatic
generation of experiences validates our approach on a signifi-
cant number of experiences.

Keywords-Ambient agent; BDI; contextual guidance; past-
experiences.

I. INTRODUCTION

For the design of complex systems, Multi-Agent System
(MAS) approaches offer interesting frameworks, since their
agents are designed to be intelligent, proactive and autono-
mous [5]. In particular, BDI models offer a good alternative
for reactive systems whenever planning is required.

Indeed, the work of [4] has shown how autonomous
BDI agents [13] can evolve and move within a dynamic
environment, based on an agent centric approach that com-
bines planning and context-awareness. In that approach,
the environment is open and dynamic. Agents may enter
and leave, and as they move, their location may change at
runtime [11], [12].

This paper introduces a planning management framework.
Our approach relies on the following assumptions:

• The BDI-agent evolves in a dynamic environment. It is
sensitive to the context and her changes; i.e. it is aware
of the changes of the context.

• The BDI-agent is rational: it is goal-driven, i.e. the
agent will pursue its goals; and it behaves according its
strategy, i.e. the agent will try to satisfy the maximum
of her concurrent intentions according to its strategy.

• The BDI-agent weighs the intentions with respect to its
strategy.

Under the previous assumptions,it is necessary to increase
the agent reactiveness to the continuous changes of its
context. In order to endow the BDI-agent with a such
reactive behavior we developed an approach in 4 phases
detailed in the following sections.

Section II develops the planning process including a brief
description of AgLOTOS specification language. It consists
of building the Plan of an agent (P ) from the current
intentions it aims to satisfy (in a concurrent way). A plan
called Intention Plan (P̂i) is associated with each intention.
The intention plan is composed of Elementary Plans (P )
corresponding to different ways (alternative plans) to achieve
an intention.

Section III discusses the construction of the Contextual
Planning Structure (CPS), given a contextual state of the
agent. The agent may interleave the execution of its actions
when they belong to intention plans (P̂i) with the same
weight. The CPS is then the projection of all possible
executions corresponding to the actions of P . The CPS takes
into account the possible interleavings (i.e. interleavings that
respect the weights of intentions and the current context).
Intuitively speaking, each path of the CPS is a trace of a
possible execution of P .

Section IV improves the CPS with learning: unlike most
existing approaches [14], [2], we will not learn plans. Indeed,
we are interested with a finer granularity, i.e. we will learn
actions in order to qualify them (with success or failure)
and to combine these actions in order to reactively build
robust plans in a dynamic context. To improve the CPS
we will reason on situated actions as a pair (a, `) where
’`’ is the location where the action ’a’ occurs. Various
contextual indicators could be associated with (a, `) such as:
the outcome of the action (failure or success), the starting
time (when the action begins) and the duration (the time
spent for the action achievement). In addition, the agent,
according to its rationality, may have various strategies for
the optimization of its intentions’ achievement. For instance,
the agent may consider the new learning information instead
the older ones, or may concentrate on the data around a



specific time value. The agent strategy S is given as an input
to the optimization algorithm.

In Section V, the optimization algorithm is conceived to
guide the agent. Two coefficients have been first considered
to evaluate a situated action (a, `). The first coefficient is the
expected performance ’EP ’ which computes an evaluation
of the achievement of (a, `). It is an average of the obtained
outcomes through some selected past-experiences. The sec-
ond coefficient is the expected duration ’ED’ of the situated
action (a, `) computed from several past-experiences. The
CPS is enriched with these two coefficients EP and ED
associated with its edges. The advantage of the edge qual-
ification is that the agent can choose a robust trace, or can
avoid risky traces, etc. A trace qualification is deduced from
the propagation of ED and EP through the CPS, based
on a normalized accumulation. The guidance algorithm
provides the agent with a set of maximum traces that respect
the agent strategy. Moreover, the preferences of the agent
between ”race” and ”secure” performances are considered.
For instance, taking a speedy car could be interesting but
can be risked w.r.t. the wish of the agent to safely arrive to
some destination. To be progressive, these preferences are
expressed by the agent as a balance proportion B, e.g. 30%
for race and 70% for secure.

Section VI discusses our approach with regard to the state
of the art and Section VII concludes this paper.

II. AGENT PLAN SPECIFICATION
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Figure 1. Agent planning structure

As usual in BDI models, the mental process represents
the reasoning mechanism, based on the beliefs (B), desires
(D), and intentions (I), the instances of which define the BDI
states of the agent. Triggered by the perceived events, the
mental process manages/updates the B, D and I structures.

As illustrated in Figure 1, the mental process can call the
planning process to produce a plan, namely the agent plan
(P ). Unlike other approaches, in our framework the plans
corresponding to each intentions, namely intention plans
(P̂i) are achieved concurrently, according to a weighting
in order to privilege some intentions over others. This
allows the mental process to solve conflicting situations,
by ordering the intentions plans. However, when intentions
are not conflicting, the same weight enables concurrent
achievement of the intention plans in an interleaved way.

Moreover, each intention plan has alternative plans to be
tried, called Elementary plans (P ), obtained from a library
of plans (LibP). This allows us to consider different ways
to achieve the associated intention. Further, we assume that
the LibP library is indexed by the set of all the possible
intentions for the agent, yielding the elementary plans that
achieve some intention.

Let us now detail the highlights of the AgLOTOS-
based specifications for plans, previously presented in [4].
AgLOTOS inherits from the LOTOS language [3] so offers
different ways to express the concurrency of actions in plans.
It takes into account the AmI aspects i.e. mobility and
communication.

Agent plan level: The set of intention plans can be
globally handled by using the concurrent ||| or sequential
� AgLOTOS composition between intention plans, leading
to the specification of an agent plan. Let P be the set of
names qualifying the possible agent plans with P ∈ P and
P̂ be the set of names used to identify the possible intention
plans with P̂ ∈ P̂ , such that P is any agent plan defined
by:

P ::= P̂ | P ||| P | P � P

Intention plan level: An intention plan can be expressed
by alternative elementary plans, such that each one can be
launched to solve the corresponding intention. This is cap-
tured in AgLOTOS by using the composition operator ♦ to
express the possibility to have alternative plans for executing
intention. In particular, an intention is satisfied if and only if
at least one of the associated elementary plans is successfully
achieved. Formally, we define an intention plan P̂ as:

P̂ ::= P | P̂ ♦ P̂

Elementary plan level: Elementary plans are described by
AgLOTOS expressions, referring to a finite set of observable
actions. Any AgLOTOS expression is associated with con-
textual information relating to the (current) BDI state of an
agent. For that, let Θ be a finite set of space locations where
an agent can move and Λ be the set of agents with which
he can communicate. Let O be the (finite) set of observable
actions which are viewed as instantiated predicates, ranging
over a, b, ... and let L be any subset of O. H ⊂ O is the set
of the so-called mobility and communication primitives. The
agent mobility is expressed by the primitive move(`) which
is used to handle the agent move to some location ` (` ∈ Θ).
The syntax of the communication primitives is defined by the
expression x!(ν) which specifies the transmission/sending to
the agent x (x ∈ Λ) of some message ν and the expression
x?(ν) means that the message ν is received from some agent
x.

Let Act = O ∪ {τ}, be the set of actions, where τ
is the internal action. The AgLOTOS language specifies
pairs for each elementary plan composed of an identifier
and an AgLOTOS expression to feature its plan behavior.



Consider that the set of elementary plan’s names is ranged
over by P1, P2, ... and that the set of all the possible be-
havior expressions is denoted E , ranged over by E1, E2, ....
The expressions are written by composing actions through
LOTOS operators. The syntax of an elementary plan P is
defined inductively as follows:

P ::= E
E ::= exit | stop

| a;E | E � E (a ∈ O)
| hide L in E

H ::= move(`) (H ⊂ O, ` ∈ Θ)
| x!(ν) | x?(ν) (x ∈ Λ)

� = { [ ],�, [>, |[L]|, ||, ||| }
The elementary expression stop specifies a plan behavior

without possible evolution and exit represents the successful
termination of some plan. In the syntax, the expression
hide L in E denotes a hiding of the actions of L that appear
in E. The set � represents the standard LOTOS operators:
E [ ]E specifies a non-deterministic choice, E � E a
sequential composition and E [> E the interruption. The
LOTOS parallel composition, denoted E |[L]|E, can model
both synchronous composition, E ||E if L = O, and
asynchronous composition, E |||E if L = ∅.

Building of Agent Plan from Intentions: In order to
account for any BDI state of the agent, we propose that
the agent can order the different elements of the set I of
intentions1 by using a weight function weight : I −→ N.
The ones having the same weight are composed by using
the concurrent parallel operator |||. In contrast, the intention
plans corresponding to distinct weights are ordered by using
the sequential operator �. For instance, let I = {i2g, i1e, i2m}
be the considered set of intentions, such that the superscript
information denotes a weight value, and let P̂g, P̂e, P̂m be
their corresponding intention plans, the constructed agent
plan could be viewed as: P = (P̂g|||P̂m)� P̂e.

III. CONTEXTUAL PLANNING SYSTEM

With respect to some agent plan P , we introduce a notion
of configuration, denoted [P ], referring to the planning state
of the agent in order to specify its plan evolution. We will
now define the contextual planning state of the agent, taking
into account the agent location and the outcomes of different
intention plans defined for the agent.

Definition 3.1: A contextual planning state is a tuple
(ps, `, T ), where ps is any planning state described by an
agent plan configuration [P ], ` corresponds to the possible
location for the agent in this state, and T is the subset of
intention plans who terminate successfully in this state.

The AgLOTOS operational semantics is used to specify
the contextual possible planning state changes for the agent.

1We assume that the BDI agent himself can solve conflicting situations
that could arise between intentions for some context, by means of a
scheduling process applied to the set of intentions.

In this paper, it is applied to produce a Contextual Planning
transition System, called CPS, from an initial contextual
planning state, e.g. (ps, `, ∅), meaning that the agent is
initially at location ` and ps is its planning state.

Definition 3.2: The Contextual Planning System (CPS) is
a labeled Kripke structure 〈S, s0, T r,L, T 〉 where:
• S is the set of contextual planning (CPS) states,
• s0 = (ps, `, ∅) ∈ S is the initial CPS state of the agent,
• Tr ⊆ S × Act × S is the set of transitions. The

transitions are denoted s
a−→ s′ s.t. s, s′ ∈ S and

a ∈ Act,
• L : S → Θ is the location labeling function,
• T : S → 2P̂ is the intention termination labeling

function which captures the intention plans that have
been completed.

A. Illustrative Example

Let us consider two agents Alice and Bob. The scenarios
of Alice and Bob are specified separately. It is assumed that
Bob and Alice may coordinate in order to achieve their
intentions, at their mental process levels. The actions in
plans are simply expressed using instantiated predicates, like
getc(`2) for the ’get copies’ action. Intention plans are com-
posed of elementary plans which are viewed as concurrent
processes, terminated by exit, a la LOTOS. For instance,
the set IB = {meeting(Alice, `1), getting copies(`2)} is
defined for Bob, containing two concurrent intentions of the
same weight.

The associated agent plan is: PB = (P̂g|||P̂m), where
P̂m and P̂g are two concurrent intention plans to be
achieved. The first one corresponds to the intention
meeting(Alice, `1) and the second to getting copies(`2).
For sake of simplicity, both intention plans only con-
tain one elementary plan each, without other alternatives.
Here, P̂m = move(`1);meet(Alice); exitm and P̂g =
getc(`2); confirm; exitg . The resulting agent plan expres-
sion for Bob is thus to act two concurrent processes:
(1) get the copies locally in `2 and confirm this to Alice
(Alice!(confirm)) and (2) move to `1 to meet Alice there.

An example of derivation from the initial planning state
is to perform the getc action. So, the planning state
change from [PB ]

getc−−→ [P ′B ], yields [P ′B ] = move(`1);
meet(Alice); exitm ||| confirm; exitg .

The Contextual Planning System of Bob, denoted CPSB ,
is illustrated in Figure 2. It is built from the initial CPS state,
s0 = ([PB ], `2, ∅), taking into account the current location
`2 of Bob.

B. Guidance for Intention Satisfaction

In a CPS, the transitions from any (source) state s a−→ s′

represent actions to be performed. Like in the STRIPS
description language [8], actions are modeled by instanti-
ated predicates defined with preconditions and effects. In
this paper, the preconditions concern only the contextual
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Figure 2. The CPSB corresponding to the plan PB

information attached to the source state. Let pre(a) be the
precondition of any action a, e.g. pre(a(`)) = ` = L(s).
For instance in Figure 2, the dashed edges represent the
disabled transitions from the states s ∈ {s2, s5, s8}, because
pre(getc(`2)) = `2 6= L(s).

In order to guide the agent, the planning process can
select an execution trace which maximizes the number of
intentions that can be satisfied. This can be captured over
the set Σ ⊆ 2Tr of all possible traces of the CPS. We
introduce the notion of maximum trace based on the mapping
end : Σ −→ 2P̂ , used to specify the set end(σ) of the
different terminated intention plans that occur in a trace
σ ∈ Σ. Let ΣMAX represent the set of maximum traces
of the CPS.

As a specific tree structure, Figure 5 represents the 10
maximum traces of CPSB . In this unfolded version of
Figure 2, the trace carried out by s0 → s2 → s5 → s9,
is not represented because it is not a maximum trace.

IV. LEARNING ACTIONS FROM PAST-EXPERIENCES

In order to improve the agent runtime performance, the
planning process, in relation to the execution process, can
capture the running of actions in a given context (current
location and current time). The use of the learned data in a
pertinent way allows us to build an enriched CPS structure,
called CPS with Learning (CPS-L for short). As a result,
the best possible strategic decisions are taken, driven by the
agent and its preferences.

A. Data acquisition

The performance of an action a is evaluated w.r.t. a
given context, however we focus on location. Each concrete
performance of a in some location is considered as an
(action) experience.

ℓ0

ℓ1

exp

a

1 2 k

exp = 〈outcome, start, duration〉

exp exp

Figure 3. Learned Contextual Experiences (LCE) of an action a

Definition 4.1: (Action experience) An experience
of an action a in a location ` is a tuple
〈outcome, start, duration〉, where
• outcome ∈ {−1, 1}, is the result of the run performing
a, respectively a failure or a success,

• start ∈ R+, is the start date for the run of a,
• duration ∈ R+, is the action duration which provides

that a was successfully terminated, undefined other-
wise.

The structure represented in Figure 3 is generically called
the Learned Contextual Experiences (LCE). Regarding to the
action a, LCEa shows different FIFO queues of experiences
of a, distinguishing the different locations where the action
was performed. The queue LCEa(`) is ordered by the start
date of the runs, so that the last recorded experience is at
the top of the queue.

More precisely, if an action a is performed in some
location ` with a certain experience exp, the agent may
push it s.t. LCEa(`) = LCEa(`) ∪ {exp}. Moreover,
k represents the effective size of LCEa(`). Regarding to
any experience exp of a queue LCEa(`), we denote by
index(exp) the position of exp in the queue. Further, the
three components of a past-experience exp are respectively
denoted exp.outcome, exp.start, exp.duration.

B. Data Relevance Strategies
The strategy information specified by the agent is given

by the following definition and described below.
Definition 4.2: The queues of LCE are parameterized by

the agent strategy S = 〈K, forget,M, C, filter〉 where,
• K is the maximum size of the queue,
• forget : 1..K → R+ is the forgetting function,

yielding a relevance weight for each experience,
• M ≤ K is the maximum number of filtered experi-

ences,
• C is a periodic classification, e.g. daily, weekly, monthly

or annual, applied in a modulo operation over the start
dates of the queue,

• filter defined over any queue is a time filtering func-
tion yielding a sub-queue according to M and C,

The Forgetting Strategy. For all the queues in LCEa, the
forgetting function associates a relevance weight for each
experience stored in the queue. As an interesting case illus-
trated in Table I, the forgetting function forget(index) =



Table I
LCE OF THE ACTION getc IN THE LOCATION `2

index 1 5 6 10 11 12 18 k

LCEgetc(`2) ... A B ... C D E ... F ...

filter6,daily(10)
Exp. outcome moddaily(start) duration index forget

A -1 8.29 - 5 0.20
B 1 9.50 3 6 0.16
C 1 9.05 2.10 10 0.10
D 1 10.78 3.40 11 0.09
E -1 10.05 - 12 0.08
F 1 11.05 5.12 18 0.05

1
index is used, yielding much more relevance for any expe-
rience in the queue than another one of greater index.

For instance, the experience C stored at the index 10 in
the queue LCEgetc(`2) has a forget value of forget(10) =
0.10, whereas the experience F stored at the index 18 has a
forget value of forget(18) = 0.05.

Observe that every queue LCEa(`) is bounded by K
elements. Beyond the forgetting of the extra (older) data, this
allows one to tackle the data explosion problem implied by
the consideration of many experiences over LCE. Indeed,
in case the queue is full, the adding of a new experience
causes the removing of the oldest one.

The Time Filtering Strategy. Regarding to any queue
LCEa(`), in order to operate the selection, both the start
dates of experiences and the current date value ’date’ are
evaluated through some classification period C. For this
purpose, we introduce the function mod : C × R+ → R+,
s.t. modC(date) corresponds to the start date modulo the
classification period C (we consider standardly that date
can be viewed as its textual form or like real timestamp
value). For instance, if date = ’Monday 10 February
2015, 10:00’, then t = moddaily(date) = 10 whereas
modweekly(date) =’Monday 10’. We filter the queue ex-
periences in order to only consider the ones which have the
smallest time interval (|t−modC(exp.start)|). The mapping
filterM,C(t) of LCEa(`) specifies that M experiences must
be selected. In case M is greater than the size k of the queue,
all the past-experiences of the queue are considered.

In Table I, the applied filtering is filter6,daily(10) = {A,
B, C, D, E, F} which means that LCEgetc(`2) is filtered on
the 6 closest experiences, w.r.t. t = moddaily(date) = 10.
As illustrated in Figure 4 for moddaily(t) over the start
dates of LCEgetc(`2), the modulo operation applied to
the queue graphically yields a spiral ribbon, the rings of
which correspond to the successive periods, e.g. days in our
example. Daily speaking, the start dates of the experiences
A, B and C occur before t, and the ones of D, E and F occur
after t.

In this example, we have taken the following instantiated
strategy: S1 = (20, 1

index , 6, daily, filter).

1
t = 10

k

A B

C D E

F

day

day − 1

day − 2

day − 3

Figure 4. The example of the queue LCEa(`)

C. Computing the Expected Performance and Expected Du-
ration for an action

For each non empty queue LCEa(`), the expected per-
formance EPa(`) ∈ [−1, 1] represents the performance of
a in some location `, based on M experiences filtered from
LCEa(`) s.t.:

EPa(`) =

filterM,C(t)∑
exp

exp.outcome ∗ forget(index(exp))

filterM,C(t)∑
exp

forget(index(exp))

When performing a in `, the closest EPa(`) is to ’1’,
the greater the chance for success, whereas the closest
EPa(`) from ’−1’, the greater the risk of failure. In the
case LCEa(`) = ∅ meaning that the running of a in `
has not been already explored, we choose EPa(`) = 0 in
order to privilege the exploration against every (bad) case
s.t. EPa(`) < 0.

Again for each non empty queue LCEa(`), the expected
duration value EDa(`) ∈ R+ corresponds to the effective
durations of the M filtered experiences, according to:

EDa(`) =

filterM,C(t)∑
exp

exp.duration ∗ forget(index(exp))

filterM,C(t)∑
exp

forget(index(exp))

Coming back to the frame example, from t = 10, we
obtain EPgetc(`2) = 0.19. Moreover, EDgetc(`2) = 3.16,
which in real time, this stands for 3h10mn. Observe that the
past-experience F has a weak impact on EDgetc(`2) despite
its important duration (5.12). In fact, the forgetting function
applied to its (important) 18 index, makes it negligible
compared to the other filtered past-experiences of lower
indexes.



V. SPATIO-TEMPORAL GUIDANCE FROM
PAST-EXPERIENCES

A. Contextual Planning System with Learning (CPS-L)

The structure CPS-L inherits from the maximum traces
ΣMAX of the CPS, augmented by the different values
EPa(`) and EDa(`) whatever the action a to run in `.

Definition 5.1: Let ΣMAX be the set of the maximum
traces of a CPS built from the set of intentions of the agent.
The Contextual Planning System with Learning CPS-L is a
tuple 〈CPS, EP, ED〉 where:
• CPS = 〈S, s0, T r,L, T 〉 s.t. ΣMAX ⊆ 2Tr is the set

of the maximum traces of the CPS.
• EP is a mapping from Tr to [−1, 1], s.t. from each tran-

sition tr = (s, a, s) ∈ ΣMAX , EP(tr) = EPa(L(s)),
• ED is a mapping from Tr to R+, s.t. from each tran-

sition tr = (s, a, s) ∈ ΣMAX , ED(tr) = EDa(L(s)).
From the CPS-L, it is straightforward to extend the

expected quality values to every maximum trace σ (σ ∈
ΣMAX ), in order to compare them, as follows:

QP (σ) =

σ∑
tr∈Tr

EP(tr)

|σ|

QD(σ) =

σ∑

tr∈Tr
ED(tr)

To compare the traces between them, we normalize all the
expected quality values to be in [−1, 1], s.t. ’−1’ represents
the worst case and ’1’ the best one. This is already done
for QP , moreover, to normalize QD, we consider the
extreme values QDmin = min(QD(σ) | σ ∈ ΣMAX) and
QDmax = max(QD(σ) | σ ∈ ΣMAX). We obtain the
normalized quality of duration, as follows:

NQD(σ) = 1−
(
QD(σ)−QDmin

QDmax −QDmin
∗ 2

)

In Figure 5, the edges of two maximum traces are aug-
mented by the two values EP and ED, as in the CPS-L
structure. For instance, the values EPgetc = 0.19 and
EDgetc = 3.16 are attached to the transition (s0, getc, s1)
computed from the values of LCEa(`), specified in Table I,
are attached to the transition (s0, getc, s1).

As shown in Figure 6, the traces the quality of which
enters the right-upper part of the figure are the best ones,
and the ones entering the left-lower part are the worse ones.
The other traces having a single high value either for QP
or NQD enter the two other parts of the figure.

B. Optimal Traces of CPS-L

We now consider that in addition to intentions I and
strategy S, the mental process can specify a preferred
balance denoted B between the two qualities for traces,
performance and normalized duration. It helps characterizing
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Figure 5. Maximum traces and CPS-LB for the plan PB
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Figure 6. Balance between the QP (σ) and the NQD(σ) of a trace σ

the optimal (maximum) trace to be selected, namely σopt.
The balance is expressed as a proportion to be applied to
the QP and NQD values, in order to obtain a comparable
global quality value QB(σ) belonging to [−1, 1] for all
maximum traces (σ ∈ ΣMAX ). Of course, the trace σopt of
the maximum quality is returned by the planning process.

QB(σ) = BP ∗QP (σ) + BD ∗NQD(σ)

Table II
COMPUTED QUALITY VALUES OF σ1 AND σ2 MAXIMUM TRACES

ΣMAX QP QD NQD QB1 QB2

σ1 0.42 9.74 −0.63 −0.31 0.10
σ2 -0.04 8.54 0.27 0.17 0.05

Table II highlights the qualities of two maximum traces
σ1 and σ2 of Figure 5, knowing that over all maximum



traces, we obtain QDmin = 7.58 and QDmax = 10.23.
Moreover, the balance B1 specified by the mental process,
is the pair (B1P = 0.30, B1D = 0.70). Since QB1(σ2) is
greater than QB1(σ1), the maximum trace σ2 can be offered
to the execution process as the optimal maximum trace. In
contrast for B2 (B2P = 0.70, B2D = 0.30), σ2 is the one
that can be offered (QB2(σ1) > QB2(σ0)). The algorithm 1
is a synthesis of all our approach.

Algorithm 1 Spatio-Temporal Guidance process
1: Require:
I: set of weighted intentions;
S : relevance strategy ;
B : balance proportions ;
LCE: Learned Contextual Experiences;

2: Build P from I
3: Construct the CPS from P ;
4: Extract ΣMAX from the CPS;
5: Enrich the CPS-L from the CPS and LCE;
6: Order ΣMAX from the CPS-L;
7: Offer σopt among the ones of ΣMAX ;

VI. DISCUSSION AND RELATED WORKS

Learning and planning

Learning aims to improve the behavior of intelligent
agents thanks to the experimental-based information. It has
been involved at various levels of the agents. Learning was
first investigated at the mental level of BDI agents either to
improve the BDI deliberation from some learned knowledge
e.g. [9] or to produce a new plan with respect to some
objective e.g. [7].

Learning was also used to reinforce the selection of
plans among different possible alternatives. In particular, a
decision tree was introduced by [6] to represent the different
contexts in which the agent behaves. Indeed, the behavior of
the agent is learned from the successes and failures of the
executions of the agent’s plans. The idea to take advantage
from the past execution experiences was adapted in [1]
bringing out an on-line technique, based on a hierarchical
goal-plan structure, in order to make the selection of some
alternative according to the failures of the previous ones.

The work proposed in [10] addresses plan selections.
Closer to our approach, it proposes to evaluate the con-
tribution of each plan in terms of utility and preferences
seen as parameters for optimization. In our approach the
utilities are given by the agent and are similar to the concept
of softgoal and the preferences discussed in [10]. They
correspond, in our approach, to a multi-objective strategy
based on the proportions of performances and temporal
filtering information, together used for the selection of some

maximum traces. Let us notice that our traces depend of real
experiments instead of pre-established probabilities.

For the two last approaches [10], [15], the validation
of the proposed techniques requires a huge number of
experiences since they are based on probabilities. In this
paper, unlike the former proposals, our approach is driven by
the maximization of intentions’ satisfaction, in order to guide
the agent through the set of paths implied by the concurrency
of actions.

The learned CPS can be viewed as reinforcement learning
for the selection of elementary plans but based on the
successes and failures of the executed actions. Actually, the
selection of a path implies the selection of some alternative
for each intention plan. The queues recording the past-
experiences of actions are bounded in order to tackle the
combinatorial complexity introduced by their management.
This approach is compatible with the idea of forgetting
useless history.

Regarding the relevance strategies, our technique is
aligned with earlier propositions like the Q-learning algo-
rithm. The last one learns a quality value for each action
taking into account that the known values become depre-
cated as the time progresses, under a function like ε = 1/t.
In our context, the applied forgetting function (1/x) allows
us to privilege the most recent past-experiences according
to a logical recording time.

Finally, our plans are built dynamically by reasoning on
situated actions and their context (duration, start, locality,
etc.) which is valuable for dynamic environment and con-
texts.

VII. CONCLUSION

This paper proposes an original approach to deal with
BDI agent planning in a dynamic context. The framework is
based on AgLOTOS algebraic language which is suitable to
specify an agent plan as a set of concurrent processes, helped
by a plan library describing elementary plans. The semantics
of AgLOTOS allows to build, as structure, a Contextual
Planning System (CPS), for any BDI state of the agent. From
the current set of intentions, all the possible evolutions of a
plan can be evaluated through the CPS.

The CPS structure has been enriched with contextual
and spatio-temporal information related to past-experiences
of the agent. Improved with learning, our CPS allows to
learn situated actions in order to qualify them with relevant
attributes (success or failure, durations, starting time, etc.)
and to combine these actions in order to reactively build
robust plans in a dynamic context.

Consequently, our approach provides a built-in look-ahead
mechanism to contextually guide the agent in his future
executions. This guidance, thanks to learning from past
experiences, optimizes the number of satisfied intentions



while respecting the agent strategies based on his utilities
and preferences.

This work has been applied in the context of ambient
intelligence where the concepts of ”location” and ”context”
are the key stone of such systems. As future work, we plan
to tackle the problem of the verification of formal properties
of this planning system which based on formal specification
language and techniques. We plan also to extend our exper-
iment to the context of a major project called ”SMART” in
which we develop the ” SMART CAMPUS ” Framework.
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