Ahmed-Chawki Chawki Chaouche
email: ahmed.chaouche@lip6.fr

Amal El

Jean-Michel Ilié
email: jean-michel.ilie@lip6.fr

Djamel Eddine Saïdouni
email: saidouni@misc-umc.org

Fallah Seghrouchni

Spatio-Temporal Guidance for Ambient Agents

Keywords: Ambient agent, BDI, contextual guidance, pastexperiences

come

I. INTRODUCTION

For the design of complex systems, Multi-Agent System (MAS) approaches offer interesting frameworks, since their agents are designed to be intelligent, proactive and autonomous [START_REF] Doyle | Rationality and its roles in reasoning[END_REF]. In particular, BDI models offer a good alternative for reactive systems whenever planning is required.

Indeed, the work of [START_REF] Chaouche | A Higher-order Agent Model with Contextual Management for Ambient Systems[END_REF] has shown how autonomous BDI agents [START_REF] Rao | An abstract architecture for rational agents[END_REF] can evolve and move within a dynamic environment, based on an agent centric approach that combines planning and context-awareness. In that approach, the environment is open and dynamic. Agents may enter and leave, and as they move, their location may change at runtime [START_REF] Olaru | A context-aware multi-agent system as a middleware for ambient intelligence[END_REF], [START_REF] Preuveneers | A survey of software engineering best practices for the development of smart applications in ambient intelligence[END_REF].

This paper introduces a planning management framework. Our approach relies on the following assumptions:

• The BDI-agent evolves in a dynamic environment. It is sensitive to the context and her changes; i.e. it is aware of the changes of the context.

• The BDI-agent is rational: it is goal-driven, i.e. the agent will pursue its goals; and it behaves according its strategy, i.e. the agent will try to satisfy the maximum of her concurrent intentions according to its strategy.

• The BDI-agent weighs the intentions with respect to its strategy. Under the previous assumptions,it is necessary to increase the agent reactiveness to the continuous changes of its context. In order to endow the BDI-agent with a such reactive behavior we developed an approach in 4 phases detailed in the following sections.

Section II develops the planning process including a brief description of AgLOTOS specification language. It consists of building the Plan of an agent (P) from the current intentions it aims to satisfy (in a concurrent way). A plan called Intention Plan (P i) is associated with each intention. The intention plan is composed of Elementary Plans (P) corresponding to different ways (alternative plans) to achieve an intention.

Section III discusses the construction of the Contextual Planning Structure (CPS), given a contextual state of the agent. The agent may interleave the execution of its actions when they belong to intention plans (P i) with the same weight. The CPS is then the projection of all possible executions corresponding to the actions of P . The CPS takes into account the possible interleavings (i.e. interleavings that respect the weights of intentions and the current context). Intuitively speaking, each path of the CPS is a trace of a possible execution of P .

Section IV improves the CPS with learning: unlike most existing approaches [START_REF] Singh | Integrating learning into a BDI agent for environments with changing dynamics[END_REF], [START_REF] Bourgne | Learning better together[END_REF], we will not learn plans. Indeed, we are interested with a finer granularity, i.e. we will learn actions in order to qualify them (with success or failure) and to combine these actions in order to reactively build robust plans in a dynamic context. To improve the CPS we will reason on situated actions as a pair (a,) where ' ' is the location where the action 'a' occurs. Various contextual indicators could be associated with (a,) such as: the outcome of the action (failure or success), the starting time (when the action begins) and the duration (the time spent for the action achievement). In addition, the agent, according to its rationality, may have various strategies for the optimization of its intentions' achievement. For instance, the agent may consider the new learning information instead the older ones, or may concentrate on the data around a specific time value. The agent strategy S is given as an input to the optimization algorithm.

In Section V, the optimization algorithm is conceived to guide the agent. Two coefficients have been first considered to evaluate a situated action (a,). The first coefficient is the expected performance 'EP ' which computes an evaluation of the achievement of (a,). It is an average of the obtained outcomes through some selected past-experiences. The second coefficient is the expected duration 'ED' of the situated action (a,) computed from several past-experiences. The CPS is enriched with these two coefficients EP and ED associated with its edges. The advantage of the edge qualification is that the agent can choose a robust trace, or can avoid risky traces, etc. A trace qualification is deduced from the propagation of ED and EP through the CPS, based on a normalized accumulation. The guidance algorithm provides the agent with a set of maximum traces that respect the agent strategy. Moreover, the preferences of the agent between "race" and "secure" performances are considered. For instance, taking a speedy car could be interesting but can be risked w.r.t. the wish of the agent to safely arrive to some destination. To be progressive, these preferences are expressed by the agent as a balance proportion B, e.g. 30% for race and 70% for secure.

Section VI discusses our approach with regard to the state of the art and Section VII concludes this paper. As usual in BDI models, the mental process represents the reasoning mechanism, based on the beliefs (B), desires (D), and intentions (I), the instances of which define the BDI states of the agent. Triggered by the perceived events, the mental process manages/updates the B, D and I structures.

II. AGENT PLAN SPECIFICATION

As illustrated in Figure 1, the mental process can call the planning process to produce a plan, namely the agent plan (P). Unlike other approaches, in our framework the plans corresponding to each intentions, namely intention plans (P i) are achieved concurrently, according to a weighting in order to privilege some intentions over others. This allows the mental process to solve conflicting situations, by ordering the intentions plans. However, when intentions are not conflicting, the same weight enables concurrent achievement of the intention plans in an interleaved way.

Moreover, each intention plan has alternative plans to be tried, called Elementary plans (P), obtained from a library of plans (LibP). This allows us to consider different ways to achieve the associated intention. Further, we assume that the LibP library is indexed by the set of all the possible intentions for the agent, yielding the elementary plans that achieve some intention.

Let us now detail the highlights of the AgLOTOSbased specifications for plans, previously presented in [START_REF] Chaouche | A Higher-order Agent Model with Contextual Management for Ambient Systems[END_REF]. AgLOTOS inherits from the LOTOS language [START_REF] Brinksma | ISO 8807, LOTOS -A Formal Description Technique Based on the Temporal Ordering of Observational Behaviour[END_REF] so offers different ways to express the concurrency of actions in plans. It takes into account the AmI aspects i.e. mobility and communication.

Agent plan level: The set of intention plans can be globally handled by using the concurrent ||| or sequential AgLOTOS composition between intention plans, leading to the specification of an agent plan. Let P be the set of names qualifying the possible agent plans with P ∈ P and P be the set of names used to identify the possible intention plans with P ∈ P, such that P is any agent plan defined by: P ::= P | P ||| P | P P Intention plan level: An intention plan can be expressed by alternative elementary plans, such that each one can be launched to solve the corresponding intention. This is captured in AgLOTOS by using the composition operator ♦ to express the possibility to have alternative plans for executing intention. In particular, an intention is satisfied if and only if at least one of the associated elementary plans is successfully achieved. Formally, we define an intention plan P as: P ::= P | P ♦ P Elementary plan level: Elementary plans are described by AgLOTOS expressions, referring to a finite set of observable actions. Any AgLOTOS expression is associated with contextual information relating to the (current) BDI state of an agent. For that, let Θ be a finite set of space locations where an agent can move and Λ be the set of agents with which he can communicate. Let O be the (finite) set of observable actions which are viewed as instantiated predicates, ranging over a, b, ... and let L be any subset of O. H ⊂ O is the set of the so-called mobility and communication primitives. The agent mobility is expressed by the primitive move() which is used to handle the agent move to some location (∈ Θ). The syntax of the communication primitives is defined by the expression x!(ν) which specifies the transmission/sending to the agent x (x ∈ Λ) of some message ν and the expression x?(ν) means that the message ν is received from some agent x.

Let Act = O ∪ {τ }, be the set of actions, where τ is the internal action. The AgLOTOS language specifies pairs for each elementary plan composed of an identifier and an AgLOTOS expression to feature its plan behavior.

Consider that the set of elementary plan's names is ranged over by P 1 , P 2 , ... and that the set of all the possible behavior expressions is denoted E, ranged over by E 1 , E 2 , The expressions are written by composing actions through LOTOS operators. The syntax of an elementary plan P is defined inductively as follows:

P ::= E E ::= exit | stop | a; E | E E (a ∈ O) | hide L in E H ::= move() (H ⊂ O, ∈ Θ) | x!(ν) | x?(ν) (x ∈ Λ) = { [], , [>, |[L]|, ||, ||| }
The elementary expression stop specifies a plan behavior without possible evolution and exit represents the successful termination of some plan. In the syntax, the expression hide L in E denotes a hiding of the actions of L that appear in E. The set represents the standard LOTOS operators:

E [] E specifies a non-deterministic choice, E E a sequential composition and E [> E the interruption. The LOTOS parallel composition, denoted E |[L]| E, can model both synchronous composition, E || E if L = O, and asynchronous composition, E ||| E if L = ∅.
Building of Agent Plan from Intentions: In order to account for any BDI state of the agent, we propose that the agent can order the different elements of the set I of intentions1 by using a weight function weight : I -→ N. The ones having the same weight are composed by using the concurrent parallel operator |||. In contrast, the intention plans corresponding to distinct weights are ordered by using the sequential operator . For instance, let I = {i 2 g , i 1 e , i 2 m } be the considered set of intentions, such that the superscript information denotes a weight value, and let P g , P e , P m be their corresponding intention plans, the constructed agent plan could be viewed as: P = (P g ||| P m) P e .

III. CONTEXTUAL PLANNING SYSTEM

With respect to some agent plan P , we introduce a notion of configuration, denoted [P], referring to the planning state of the agent in order to specify its plan evolution. We will now define the contextual planning state of the agent, taking into account the agent location and the outcomes of different intention plans defined for the agent.

Definition 3.1: A contextual planning state is a tuple (ps, , T), where ps is any planning state described by an agent plan configuration [P], corresponds to the possible location for the agent in this state, and T is the subset of intention plans who terminate successfully in this state.

The AgLOTOS operational semantics is used to specify the contextual possible planning state changes for the agent.

In this paper, it is applied to produce a Contextual Planning transition System, called CPS, from an initial contextual planning state, e.g. (ps, , ∅), meaning that the agent is initially at location and ps is its planning state.

Definition 3.2: The Contextual Planning System (CPS) is a labeled Kripke structure S, s 0 , T r, L, T where:

• S is the set of contextual planning (CPS) states,

• s 0 = (ps, , ∅) ∈ S is the initial CPS state of the agent, • T r ⊆ S × Act × S is the set of transitions. The transitions are denoted s a -→ s s.t. s, s ∈ S and a ∈ Act, • L : S → Θ is the location labeling function,

• T : S → 2 P is the intention termination labeling function which captures the intention plans that have been completed.

A. Illustrative Example

Let us consider two agents Alice and Bob. The scenarios of Alice and Bob are specified separately. It is assumed that Bob and Alice may coordinate in order to achieve their intentions, at their mental process levels. The actions in plans are simply expressed using instantiated predicates, like getc(2) for the 'get copies' action. Intention plans are composed of elementary plans which are viewed as concurrent processes, terminated by exit, a la LOTOS. For instance, the set I B = {meeting(Alice, 1), getting copies(2)} is defined for Bob, containing two concurrent intentions of the same weight.

The associated agent plan is: P B = (P g ||| P m), where P m and P g are two concurrent intention plans to be achieved. The first one corresponds to the intention meeting(Alice, 1) and the second to getting copies(2). For sake of simplicity, both intention plans only contain one elementary plan each, without other alternatives. Here, P m = move(1); meet(Alice); exit m and P g = getc(2); conf irm; exit g . The resulting agent plan expression for Bob is thus to act two concurrent processes:

(1) get the copies locally in 2 and confirm this to Alice (Alice!(conf irm)) and (2) move to 1 to meet Alice there.

An example of derivation from the initial planning state is to perform the getc action. So, the planning state change from

[P B] getc --→ [P B], yields [P B] = move(1); meet(Alice); exit m ||| conf irm; exit g .
The Contextual Planning System of Bob, denoted CP S B , is illustrated in Figure 2. It is built from the initial CPS state, s 0 = ([P B], 2 , ∅), taking into account the current location 2 of Bob.

B. Guidance for Intention Satisfaction

In a CPS, the transitions from any (source) state s a -→ s represent actions to be performed. Like in the STRIPS description language [START_REF] Meneguzzi | Incorporating planning into BDI agents[END_REF], actions are modeled by instantiated predicates defined with preconditions and effects. In this paper, the preconditions concern only the contextual For instance in Figure 2, the dashed edges represent the disabled transitions from the states s ∈ {s 2 , s 5 , s 8 }, because pre(getc(2)) = 2 = L(s).

ℓ 2 ℓ 2 ℓ 1 ℓ 1 ℓ 1 ℓ 1 ℓ 1 , { P m } , { P m } s 6 s 10 τg move s 13 s 15 ℓ 2 , { P g } ℓ 1 , { P g } ℓ 1 , { P g } ℓ 1 , { P g , P m } conf irm conf irm conf irm ℓ 1 , { P m } ℓ 1
In order to guide the agent, the planning process can select an execution trace which maximizes the number of intentions that can be satisfied. This can be captured over the set Σ ⊆ 2 T r of all possible traces of the CPS. We introduce the notion of maximum trace based on the mapping end : Σ -→ 2 P , used to specify the set end(σ) of the different terminated intention plans that occur in a trace σ ∈ Σ. Let Σ M AX represent the set of maximum traces of the CPS.

As a specific tree structure, Figure 5 represents the 10 maximum traces of CP S B . In this unfolded version of Figure 2, the trace carried out by s 0 → s 2 → s 5 → s 9 , is not represented because it is not a maximum trace.

IV. LEARNING ACTIONS FROM PAST-EXPERIENCES

In order to improve the agent runtime performance, the planning process, in relation to the execution process, can capture the running of actions in a given context (current location and current time). The use of the learned data in a pertinent way allows us to build an enriched CPS structure, called CPS with Learning (CPS-L for short). As a result, the best possible strategic decisions are taken, driven by the agent and its preferences.

A. Data acquisition

The performance of an action a is evaluated w.r.t. a given context, however we focus on location. Each concrete performance of a in some location is considered as an (action) experience. • outcome ∈ {-1, 1}, is the result of the run performing a, respectively a failure or a success, • start ∈ R + , is the start date for the run of a,

• duration ∈ R + , is the action duration which provides that a was successfully terminated, undefined otherwise. The structure represented in Figure 3 is generically called the Learned Contextual Experiences (LCE). Regarding to the action a, LCE a shows different FIFO queues of experiences of a, distinguishing the different locations where the action was performed. The queue LCE a () is ordered by the start date of the runs, so that the last recorded experience is at the top of the queue.

More precisely, if an action a is performed in some location with a certain experience exp, the agent may push it s.t. LCE a () = LCE a () ∪ {exp}. Moreover, k represents the effective size of LCE a (). Regarding to any experience exp of a queue LCE a (), we denote by index(exp) the position of exp in the queue. Further, the three components of a past-experience exp are respectively denoted exp.outcome, exp.start, exp.duration.

B. Data Relevance Strategies

The strategy information specified by the agent is given by the following definition and described below.

Definition 4.2: The queues of LCE are parameterized by the agent strategy S = K, f orget, M, C, f ilter where,

• K is the maximum size of the queue, • f orget : 1..K → R + is the forgetting function, yielding a relevance weight for each experience,

• M ≤ K is the maximum number of filtered experiences,

• C is a periodic classification, e.g. daily, weekly, monthly or annual, applied in a modulo operation over the start dates of the queue,

• f ilter defined over any queue is a time filtering function yielding a sub-queue according to M and C,

The Forgetting Strategy. For all the queues in LCE a , the forgetting function associates a relevance weight for each experience stored in the queue. As an interesting case illustrated in Table I For instance, the experience C stored at the index 10 in the queue LCE getc (2) has a forget value of f orget(10) = 0.10, whereas the experience F stored at the index 18 has a forget value of f orget(18) = 0.05.

Observe that every queue LCE a () is bounded by K elements. Beyond the forgetting of the extra (older) data, this allows one to tackle the data explosion problem implied by the consideration of many experiences over LCE. Indeed, in case the queue is full, the adding of a new experience causes the removing of the oldest one.

The Time Filtering Strategy. Regarding to any queue LCE a (), in order to operate the selection, both the start dates of experiences and the current date value 'date' are evaluated through some classification period C. For this purpose, we introduce the function mod : C × R + → R + , s.t. mod C (date) corresponds to the start date modulo the classification period C (we consider standardly that date can be viewed as its textual form or like real timestamp value). For instance, if date = 'Monday 10 February 2015, 10:00', then t = mod daily (date) = 10 whereas mod weekly (date) ='Monday 10'. We filter the queue experiences in order to only consider the ones which have the smallest time interval (|t-mod C (exp.start)|). The mapping f ilter M,C (t) of LCE a () specifies that M experiences must be selected. In case M is greater than the size k of the queue, all the past-experiences of the queue are considered.

In Table I, the applied filtering is f ilter 6,daily (10) = {A, B, C, D, E, F} which means that LCE getc (2) is filtered on the 6 closest experiences, w.r.t. t = mod daily (date) = 10. As illustrated in Figure 4 for mod daily (t) over the start dates of LCE getc (2), the modulo operation applied to the queue graphically yields a spiral ribbon, the rings of which correspond to the successive periods, e.g. days in our example. Daily speaking, the start dates of the experiences A, B and C occur before t, and the ones of D, E and F occur after t.

In this example, we have taken the following instantiated strategy: S 1 = (20, 1 index , 6, daily, f ilter).

EP a () = f ilter M,C (t) exp exp.outcome * f orget(index(exp)) f ilter M,C (t) exp f orget(index(exp))
When performing a in , the closest EP a () is to '1', the greater the chance for success, whereas the closest EP a () from '-1', the greater the risk of failure. In the case LCE a () = ∅ meaning that the running of a in has not been already explored, we choose EP a () = 0 in order to privilege the exploration against every (bad) case s.t. EP a () < 0.

Again for each non empty queue LCE a (), the expected duration value ED a () ∈ R + corresponds to the effective durations of the M filtered experiences, according to:

ED a () = f ilter M,C (t) exp exp.duration * f orget(index(exp)) f ilter M,C (t) exp f orget(index(exp))
Coming back to the frame example, from t = 10, we obtain EP getc (2) = 0.19. Moreover, ED getc (2) = 3.16, which in real time, this stands for 3h10mn. Observe that the past-experience F has a weak impact on ED getc (2) despite its important duration (5.12). In fact, the forgetting function applied to its (important) 18 index, makes it negligible compared to the other filtered past-experiences of lower indexes.

V. SPATIO-TEMPORAL GUIDANCE FROM PAST-EXPERIENCES

A. Contextual Planning System with Learning (CPS-L)

The structure CPS-L inherits from the maximum traces Σ M AX of the CPS, augmented by the different values EP a () and ED a () whatever the action a to run in .

Definition 5.1: Let Σ M AX be the set of the maximum traces of a CPS built from the set of intentions of the agent. The Contextual Planning System with Learning CPS-L is a tuple CP S, EP, ED where:

• CP S = S, s 0 , T r, L, T s.t. Σ M AX ⊆ 2 T r is the set
of the maximum traces of the CPS.

• EP is a mapping from T r to [-1, 1], s.t. from each transition tr = (s, a, s) ∈ Σ M AX , EP(tr) = EP a (L(s)),

• ED is a mapping from T r to R + , s.t. from each transition tr = (s, a, s) ∈ Σ M AX , ED(tr) = ED a (L(s)). From the CPS-L, it is straightforward to extend the expected quality values to every maximum trace σ (σ ∈ Σ M AX), in order to compare them, as follows:

QP (σ) = σ tr∈T r EP(tr) |σ| QD(σ) = σ tr∈T r

ED(tr)

To compare the traces between them, we normalize all the expected quality values to be in [-1, 1], s.t. '-1' represents the worst case and '1' the best one. This is already done for QP , moreover, to normalize QD, we consider the extreme values QD min = min(QD(σ) | σ ∈ Σ M AX) and QD max = max(QD(σ) | σ ∈ Σ M AX). We obtain the normalized quality of duration, as follows:

N QD(σ) = 1 - QD(σ) -QD min QD max -QD min * 2
In Figure 5, the edges of two maximum traces are augmented by the two values EP and ED, as in the CPS-L structure. For instance, the values EP getc = 0.19 and ED getc = 3.16 are attached to the transition (s 0 , getc, s 1) computed from the values of LCE a (), specified in Table I, are attached to the transition (s 0 , getc, s 1).

As shown in Figure 6, the traces the quality of which enters the right-upper part of the figure are the best ones, and the ones entering the left-lower part are the worse ones. The other traces having a single high value either for QP or N QD enter the two other parts of the figure.

B. Optimal Traces of CPS-L

We now consider that in addition to intentions I and strategy S, the mental process can specify a preferred balance denoted B between the two qualities for traces, performance and normalized duration. It the optimal (maximum) trace to be selected, namely σ opt . The balance is expressed as a proportion to be applied to the QP and N QD values, in order to obtain a comparable global quality value Q B (σ) belonging to [-1, 1] for all maximum traces (σ ∈ Σ M AX). Of course, the trace σ opt of the maximum quality is returned by the planning process. 5, knowing that over all maximum traces, we obtain QD min = 7.58 and QD max = 10.23. Moreover, the balance B1 specified by the mental process, is the pair (B1 P = 0.30, B1 D = 0.70). Since Q B1 (σ 2) is greater than Q B1 (σ 1), the maximum trace σ 2 can be offered to the execution process as the optimal maximum trace. In contrast for B2 (B2 P = 0.70, B2 D = 0.30), σ 2 is the one that can be offered (Q B2 (σ 1) > Q B2 (σ 0)). The algorithm 1 is a synthesis of all our approach.

Q B (σ) = B P * QP (σ) + B D * N QD(σ)

Learning and planning

Learning aims to improve the behavior of intelligent agents thanks to the experimental-based information. It has been involved at various levels of the agents. Learning was first investigated at the mental level of BDI agents either to improve the BDI deliberation from some learned knowledge e.g. [START_REF] Merke | Karlsruhe brainstormersa reinforcement learning approach to robotic soccer[END_REF] or to produce a new plan with respect to some objective e.g. [START_REF] Karim | Plans as products of learning[END_REF].

Learning was also used to reinforce the selection of plans among different possible alternatives. In particular, a decision tree was introduced by [START_REF] Guerra-Hernandez | Learning in bdi multi-agent systems[END_REF] to represent the different contexts in which the agent behaves. Indeed, the behavior of the agent is learned from the successes and failures of the executions of the agent's plans. The idea to take advantage from the past execution experiences was adapted in [START_REF] Airiau | Incorporating learning in BDI agents[END_REF] bringing out an on-line technique, based on a hierarchical goal-plan structure, in order to make the selection of some alternative according to the failures of the previous ones.

The work proposed in [START_REF] Nunes | Softgoal-based plan selection in model-driven bdi agents[END_REF] addresses plan selections. Closer to our approach, it proposes to evaluate the contribution of each plan in terms of utility and preferences seen as parameters for optimization. In our approach the utilities are given by the agent and are similar to the concept of softgoal and the preferences discussed in [START_REF] Nunes | Softgoal-based plan selection in model-driven bdi agents[END_REF]. They correspond, in our approach, to a multi-objective strategy based on the proportions of performances and temporal filtering information, together used for the selection of some maximum traces. Let us notice that our traces depend of real experiments instead of pre-established probabilities.

For the two last approaches [START_REF] Nunes | Softgoal-based plan selection in model-driven bdi agents[END_REF], [START_REF] Waters | Evaluating coverage based intention selection[END_REF], the validation of the proposed techniques requires a huge number of experiences since they are based on probabilities. In this paper, unlike the former proposals, our approach is driven by the maximization of intentions' satisfaction, in order to guide the agent through the set of paths implied by the concurrency of actions.

The learned CPS can be viewed as reinforcement learning for the selection of elementary plans but based on the successes and failures of the executed actions. Actually, the selection of a path implies the selection of some alternative for each intention plan. The queues recording the pastexperiences of actions are bounded in order to tackle the combinatorial complexity introduced by their management. This approach is compatible with the idea of forgetting useless history.

Regarding the relevance strategies, our technique is aligned with earlier propositions like the Q-learning algorithm. The last one learns a quality value for each action taking into account that the known values become deprecated as the time progresses, under a function like = 1/t. In our context, the applied forgetting function (1/x) allows us to privilege the most recent past-experiences according to a logical recording time.

Finally, our plans are built dynamically by reasoning on situated actions and their context (duration, start, locality, etc.) which is valuable for dynamic environment and contexts.

VII. CONCLUSION

This paper proposes an original approach to deal with BDI agent planning in a dynamic context. The framework is based on AgLOTOS algebraic language which is suitable to specify an agent plan as a set of concurrent processes, helped by a plan library describing elementary plans. The semantics of AgLOTOS allows to build, as structure, a Contextual Planning System (CPS), for any BDI state of the agent. From the current set of intentions, all the possible evolutions of a plan can be evaluated through the CPS.

The CPS structure has been enriched with contextual and spatio-temporal information related to past-experiences of the agent. Improved with learning, our CPS allows to learn situated actions in order to qualify them with relevant attributes (success or failure, durations, starting time, etc.) and to combine these actions in order to reactively build robust plans in a dynamic context. Consequently, our approach provides a built-in look-ahead mechanism to contextually guide the agent in his future executions. This guidance, thanks to learning from past experiences, optimizes the number of satisfied intentions while respecting the agent strategies based on his utilities and preferences.

This work has been applied in the context of ambient intelligence where the concepts of "location" and "context" are the key stone of such systems. As future work, we plan to tackle the problem of the verification of formal properties of this planning system which based on formal specification language and techniques. We plan also to extend our experiment to the context of a major project called "SMART" in which we develop the " SMART CAMPUS " Framework.

Figure 1 .

 1 Figure 1. Agent planning structure

Figure 2 .

 2 Figure 2. The CP S B corresponding to the plan P B

Figure 3 .

 3 Figure 3. Learned Contextual Experiences (LCE) of an action a

1 day - 2 day - 3 Figure 4 .

 1234 Figure 4. The example of the queue LCEa()

2 Figure 5 . 2 Figure 6 .

 2526 Figure 5. Maximum traces and CP B for the plan P B QP

 helps characterizing

					getc					
	s 6		s 7			s 8		s 9		
			meet							
	s 11	s 12	s 13		s 14		s 15	s 16		s 17
	s 18	s 19	s 20	s 21	s 22	s 23	s 24	s 25	s 26	s 27
	s 28	s 29	s 30	s 31	s 32	s 33	s 34	s 35	s 36	s 37

Table II COMPUTED

 II QUALITY VALUES OF σ 1 AND σ 2 MAXIMUM TRACESTable II highlights the qualities of two maximum traces σ 1 and σ 2 of Figure

	Σ M AX	QP	QD	N QD	Q B1	Q B2
	σ 1 σ 2	0.42 -0.04	9.74 8.54	-0.63 0.27	-0.31 0.17	0.10 0.05

We assume that the BDI agent himself can solve conflicting situations that could arise between intentions for some context, by means of a scheduling process applied to the set of intentions.