
HAL Id: hal-01228825
https://hal.science/hal-01228825v2

Submitted on 21 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The tail empirical process of regularly varying functions
of geometrically ergodic Markov chains

Rafal Kulik, Philippe Soulier, Olivier Wintenberger

To cite this version:
Rafal Kulik, Philippe Soulier, Olivier Wintenberger. The tail empirical process of regularly varying
functions of geometrically ergodic Markov chains. Stochastic Processes and their Applications, 2019,
129 (11), pp.4209-4238. �10.1016/j.spa.2018.11.014�. �hal-01228825v2�

https://hal.science/hal-01228825v2
https://hal.archives-ouvertes.fr


The tail empirical process of regularly varying
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Rafa l Kulik∗ Philippe Soulier† Olivier Wintenberger‡

September 21, 2018

Abstract

We consider a stationary regularly varying time series which can be expressed

as a function of a geometrically ergodic Markov chain. We obtain practical con-

ditions for the weak convergence of the tail array sums and feasible estimators of

cluster statistics. These conditions include the so-called geometric drift or Foster-

Lyapunov condition and can be easily checked for most usual time series models with

a Markovian structure. We illustrate these conditions on several models and statis-

tical applications. A counterexample is given to show a different limiting behavior

when the geometric drift condition is not fulfilled.

1 Introduction

Let {Xj, j ∈ Z} be a stationary, regularly varying univariate time series with marginal
distribution function F and tail index α > 0. This means that for each integer h ≥ 0,

there exists a non zero Radon measure ν0,h on R
h+1 \ {0} such that ν0,h(R

h+1 \Rh+1) = 0
and

lim
x→∞

P((X0, . . . , Xh) ∈ xA)

P(X0 > x)
= ν0,h(A) , (1.1)

for all relatively compact sets A ⊂ R
h+1 \ {0} satisfying ν0,h(∂A) = 0. The measure

ν0,h, called the exponent measure of (X0, . . . , Xh), is homogeneous with index −α, i.e.
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ν0,h(tA) = t−αν0,h(A). The choice of the denominator P(X0 > x) entails that ν0,h((1,∞)×
Rh) = 1 i.e. that the right tail of the stationary distribution is not trivial and that X0

satisfies the so-called balanced tail condition.

Many statistical methods for extreme value characteristics of a time series are based on
tail array sums of the form

Mn(φ) =
1

nF̄ (un)

n∑

j=1

φ((Xj , . . . , Xj+h)/un) , (1.2)

for a fixed non negative integer h, a non decreasing sequence {un} such that limn→∞ un =
limn→∞ nF̄ (un) = ∞ and a measurable function φ on Rh+1 such that E[|φ((X0, . . . , Xh)/un)|] <
∞ for all n. An important example is the tail empirical distribution function, defined by

T̃n(s) =
1

nF̄ (un)

n∑

j=1

1{Xj > uns} , (1.3)

which is used for the estimation of univariate extremal characteristics such as the tail index.
We are interested in the weak convergence of the centered and renormalized process

Mn(φ) =
√
nF̄ (un){Mn(φ) − E[Mn(φ)]} . (1.4)

There is a huge literature on this problem. Essential references are Rootzén et al. (1998)
which investigate weak convergence of tail array sums, Drees (1998, 2000, 2002, 2003) who
developed techniques to study tail empirical and tail quantile processes for β-mixing time
series, Rootzén (2009) which reviews the results for the functional convergence of the tail
empirical process in the case of i.i.d. and weakly dependent (strong or β-mixing) univariate
time series. Recently, Drees and Rootzén (2010) investigated the weak convergence of
{Mn(φ), φ ∈ G} as a sequence of random elements in the space ℓ∞(G), where G is a class of
functions. Drees et al. (2014) applied the latter reference to the estimation of the empirical
distribution function of the spectral tail process (see definition in Example 2.10).

In all these references, results are proved under strong or β-mixing conditions and under
additional assumptions guaranteeing the existence of the limiting variances and tightness in
the case of functional convergence. These additional conditions are notably hard to check
and have been verified for a handful of particular models such as solutions of stochastic
recurrence equations (including some GARCH processes) and certain linear processes such
as AR(1) processes. See e.g. Drees (2000, 2003) and Davis and Mikosch (2009).

The main purpose of this paper is to show that for time series which can be expressed
as functions of an underlying Markov chain, these results can be proved under essentially
a single, easily checked condition, namely the geometric or Foster-Lyapunov drift condi-
tion. See (Meyn and Tweedie, 2009, Chapter 15). In order to use it in the context of
extreme value theory, the drift function must have an additional homogeneity property.
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This geometric drift condition was first used in the context of extreme value theory by
Roberts et al. (2006) who used it to prove that the extremal index is positive. It was later
used by Mikosch and Wintenberger (2013) to obtain large deviations and weak convergence
to stable laws for heavy tailed functions of a Markov chain.

The main result of this paper is Theorem 2.3 in Section 2.1 which proves the joint
asymptotic normality of tail array sums of the form (1.2) for functions of irreducible Markov
chains which satisfy the geometric drift condition. In the first place, irreducibility and the
drift condition imply that the time series is β-mixing with geometric decay of the β-
mixing coefficients. Then, it is possible to use the regenerative properties of irreducible
Markov chains to obtain the bounds and other ingredients needed to prove the central
limit theorem, such as the existence of the limiting variance and asymptotic negligibility.
The link between this condition and those used in the literature will be discussed at the
end of Section 2.1. In Section 2.2, we will strengthen the finite dimensional convergence
to functional convergence over classes of functions. Such a strengthening is needed for
statistical applications.

The geometric drift condition is well known and has been established for many models
in the Markov chain literature, but in order to be useful for extreme value problems, the
drift function must have some homogeneity properties. In Section 2.3, we will provide a
practical method to obtain a suitable drift function.

The geometric decay of the β-mixing coefficient is actually not an essential ingredient
of the proof of our results. However, as illustrated in Section 2.4, there are examples
of non geometrically ergodic Markov chains for which the centered and normalized tail
empirical process has a non Gaussian limit, the normalization being different from the
usual

√
nF̄ (un). Thus the geometric drift condition cannot be relaxed easily and it is

the subject of further research to find practical sufficient conditions for non geometrically
ergodic Markov chains.

The rest of the paper is organized as follows. Section 2 contains our main results on
functions of Markov chains, examples and the aforementioned counterexample. Section 3
contains a central limit theorem for tail array sums and Section 4 contains the proof of the
results of Section 2.

2 Main results for functions of Markov chains

Our context is a slight extension of the one in Mikosch and Wintenberger (2013). We now
assume that {Xj, j ∈ N} is a function of a stationary Markov chain {Yj, j ∈ N}, defined
on a probability space (Ω,F ,P), with values in a measurable space (E, E). That is, there
exists a measurable real valued function g : E → R such that Xj = g(Yj).

Assumption 2.1. (i) The Markov chain {Yj , j ∈ Z} is strictly stationary under P.
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(ii) The sequence {Xj = g(Yj), j ∈ Z} is regularly varying with tail index α > 0.

(iii) There exist a measurable function V : E → [1,∞), γ ∈ (0, 1) and b > 0 such that for
all y ∈ E,

E[V (Y1) | Y0 = y] ≤ γV (y) + b . (2.1)

(iv) There exist an integer m ≥ 1 and x0 ≥ 1 such that for all x ≥ x0, there exists
a probability measure ν on (E, E) and ǫ > 0 such that, for all y ∈ {V ≤ x} and all
measurable sets B ∈ E ,

P(Ym ∈ B | Y0 = y) ≥ ǫν(B) . (2.2)

(v) There exist q0 ∈ (0, α) and a constant c > 0 such that

|g|q0 ≤ cV . (2.3)

(vi) For every s > 0,

lim sup
n→∞

1

uq0n F̄ (un)
E [V (Y0)1{|g(Y0)| > uns}] <∞ . (2.4)

Under Assumption 2.1, it is well known that the chain {Yj} is irreducible and geomet-
rically ergodic and E[V (Y0)] < ∞. This implies that the chain {Yj} and the sequence
{Xj} are β-mixing and there exists c > 0 such that βn = O(e−cn), where {βn, n ≥ 1}
is the β-mixing coefficients sequence; see (Bradley, 2005, Theorem 3.7). This is a very
strong requirement. However, it is satisfied by many time series models. We will provide
in Section 2.3 a fairly general methodology to check Assumption 2.1.

2.1 Convergence of tail arrays sums

Throughout the paper we will write xa,b for (xa, . . . , xb), a ≤ b ∈ Z, for any sequence
x = (xj)j∈Z. For q ≥ 0, let Lq be the space of measurable functions φ defined on Rh+1

such that

(i) there exists a constant ǫ > 0 such that |φ(x)| ≤ ǫ−1(|x|q∨1)1{|x| > ǫ} for x ∈ Rh+1;

(ii) for all j ≥ 0, the function x0,j+h 7→ φ(xj,j+h) is almost surely continuous with respect
to ν0,j+h.

Note that Lq ⊂ Lq′ if q ≤ q′. As an important example, the continuity condition is satisfied
for functions of the form x 7→ ψ(x)1(−∞,u]c(x), for u ∈ [0,∞)h+1 \ {0} and a continuous
function ψ, because of the homogeneity of the exponent measures.
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Lemma 2.2. Under Assumption 2.1, for φ ∈ Lq0/2,
∫

Rh+1

φ2(x)ν0,h(dx) +
∞∑

j=1

∫

Rj+h+1

|φ(x0,h)φ(xj,j+h)|ν0,j+h(dx) <∞ . (2.5)

This lemma will be proved in Section 3.1. Therefore, for φ, φ′ ∈ Lq0/2, we can define

σ2(φ) =

∫

Rh+1

φ2(x)ν0,h(dx) + 2

∞∑

j=1

∫

Rj+h+1

φ(x0,h)φ(xj,j+h)ν0,j+h(dx) , (2.6)

C(φ, φ′) =
1

2
{σ2(φ+ φ′) − σ2(φ) − σ2(φ′)} . (2.7)

Let M be a Gaussian process indexed by Lq0/2 with covariance function C. Our main result
is the finite dimensional convergence of the sequence of the processes Mn defined in (1.4)
and indexed by Lq for q < q0/2. The proof is given in Section 4.2.

Theorem 2.3. Let Assumption 2.1 hold and let {un} be an increasing sequence such that

lim
n→∞

un = lim
n→∞

nF̄ (un) = +∞ (2.8)

and there exists η > 0 such that

lim
n→∞

log1+η(n)F̄ (un) = 0 . (2.9)

Assume moreover that either q = 0 or there exists δ > 0 such that q(2 + δ) ≤ q0 and

lim
n→∞

log1+η(n)

{nF̄ (un)}δ/2 = 0 . (2.10)

Then Mn
fi.di.−→ M on Lq.

Comments on the assumptions

Theorem 2.3 is obtained under Assumption 2.1 and the very mild restrictions (2.8), (2.9)
and (2.10) on the choice of the sequence un. This simplicity is due to the Markovian
assumption. In the literature on the fidi convergence of tail array sums for general mixing
time series, assumptions are usually more involved. We briefly review some of them.

In the first place note that the geometric drift condition implies that the β-mixing
coefficients decay geometrically fast. This allows to apply the blocking method for the
proof with blocks of size rn of order log1+η(n). Even though β-mixing is restrictive, it is
a commonly made assumption and conditions which ensure for β mixing are well known.
Geometric ergodicity may also be considered restrictive since it excludes many Markov
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chains, but as will be illustrated in Section 2.4, non geometrically ergodic Markov chains
may have a non standard extremal behaviour and in particular may have a vanishing
extremal index. See e.g. Roberts et al. (2006).

In the literature, the convergence of the variance of the sum within one block is often
assumed: e.g. (Rootzén et al., 1998, Theorem 4.1) or Rootzén (2009). For the tail empirical
process (1.3) and other bounded functions which vanish in a neighborhood of zero, the
following condition, introduced by Smith (1992), has been used:

lim
m→∞

lim sup
n→∞

rn∑

j=m

P(Xj > uns | X0 > uns) = 0 . (2.11)

See for instance Drees et al. (2014) whose Condition C is equivalent to (2.11). For sums
of unbounded functions (which vanish in a neighborhood of zero), ad hoc conditions are
usually assumed to ensure convergence of the block variance and the Lindeberg asymptotic
negligibility condition for the central limit theorem; see for instance (Leadbetter et al.,
1988, Condition 4.2) and (Drees and Rootzén, 2010, Condition 3.15). In this paper, we
consider an extension of (2.11) to unbounded functions. We will prove in Lemma 4.3 that
if φ ∈ Lq for q ≤ q0/2, then Assumption 2.1 yields

lim
m→∞

lim sup
n→∞

rn∑

j=m

E[|φ((X0 . . . , Xh)/un)||φ((Xj, . . . , Xj+h)/un)|]
F̄ (un)

= 0 . (2.12)

This property in turn will allow to prove convergence of the variance and also some technical
conditions related to tightness in the functional central limit theorem. Again, this is a
consequence of geometric ergodicity which may seem to be a high price to pay, but on the
other hand the condition (2.11) does not hold for the example of Section 2.4.

2.2 Statistical applications

For statistical purposes, we will consider the process Mn indexed by a class G of func-
tions and convergence of Mn to M must be strengthened to weak convergence in ℓ∞(G),
in particular in order to replace the deterministic threshold un by an appropriate sequence
of order statistics. The general theory of weak convergence in ℓ∞(G) is developed in
van der Vaart and Wellner (1996) and Giné and Nickl (2016) and was adapted in full gen-
erality in the context of cluster statistics in Drees and Rootzén (2010). We give here an
illustration adapted from (van der Vaart and Wellner, 1996, Theorem 2.11.1). We state it
under the simplifying assumption of linear ordering since it is sufficient for the forthcom-
ing examples. More sophisticated examples can be treated as in Drees and Rootzén (2010)
using entropy conditions but are beyond the scope of this paper.

We say that a class G of functions is pointwise separable (cf. (van der Vaart and Wellner,
1996, Section 2.3.3)) if there exists a countable subclass G0 ⊂ G such that every g ∈ G is
the pointwise limit of a sequence in G0.
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Let ρh be the pseudometric defined on Lq by

ρ2h(φ, ψ) = ν0,h((φ− ψ)2) .

Note that ρh is well defined under the assumptions of Theorem 2.3 which imply q < q0/2.

Theorem 2.4. Let the assumptions of Theorem 2.3 hold and let G ⊂ Lq. Assume moreover
that

(i) G is pointwise separable and linearly ordered;

(ii) the envelope function ΦG = supφ∈G |φ| is in Lq;

(iii) (G, ρh) is totally bounded;

(iv) for every sequence {δn} which decreases to zero,

lim sup
n→∞

sup
φ,ψ∈G

ρh(φ,ψ)≤δn

E[{φ(u−1
n X0,h) − ψ(u−1

n X0,h)}2]
F̄ (un)

= 0 . (2.13)

Then Mn ⇒ M in ℓ∞(G).

The proof is in Section 4.3.

In order to obtain convenient expressions for the limiting variances, we consider the
tail process {Yj, j ∈ Z}, introduced in Basrak and Segers (2009) and defined as the weak
limit (in the sense of finite dimensional distributions) of the sequence {Xj/x, j ∈ Z} given
that |X0| > x, as x→ ∞: for i ≤ j ∈ Z,

P((Yi, . . . , Yj) ∈ ·) = lim
x→∞

P(x−1(Xi, . . . , Xj) ∈ · | |X0| > x) . (2.14)

Then |Y0| is a Pareto random variable with tail index α. The spectral tail process {Θj, j ∈
Z} is then defined as Θj = |Y0|−1Yj.

As a first corollary of Theorem 2.4, we obtain functional convergence of the univariate
tail empirical process. Note that contrary to most of the related literature, we do not have
additional conditions to ensure existence of the limiting variance or tightness. Geometric
ergodicity of the underlying Markov chain is sufficient.

Corollary 2.5. Let the assumptions of Theorem 2.3 hold. Let 0 < s0 < 1 < t0 and assume
moreover that

lim
n→∞

√
nF̄ (un) sup

s0≤s≤t0

∣∣∣∣
F̄ (uns)

F̄ (un)
− s−α

∣∣∣∣ = 0 . (2.15)
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Then,

√
nF̄ (un)

{
1

nF̄ (un)

n∑

j=1

1{Xj > uns} − s−α

}
⇒ W , (2.16)

in ℓ∞([s0, t0]), where W is a Gaussian process with covariance function

cov(W(s),W(t)) = (s ∨ t)−α +

∞∑

j=1

E[{(Θj/t) ∧ (1/s)}α+ + {(Θj/s) ∧ (1/t)}α+ | Θ0 = 1] .

Assume that F is continuous and let k = k(n) be an intermediate sequence of integers,
that is limn→∞ k = limn→∞ n/k = ∞. Assume that the sequence un is such that k =
nF̄ (un). Let Xn;1 ≤ · · · ≤ Xn:n be the increasing order statistics. Consequently, by
Vervaat’s lemma (Resnick (2007, Proposition 3.3)) we obtain that Xn:n−k/un

p→ 1. For
statistical applications, the deterministic threshold un will be replaced by Xn:n−k. Define
the processes M̂n and M̂ on Lq by

M̂n(φ) =
√
k

{
1

k

n∑

i=1

φ(X−1
n:n−kXj,j+h) − ν0,h(φ)

}
,

M̂(φ) = M(φ) − ν0,h(φ)M(1(1,∞)×Rh ) .

Corollary 2.6. Let the assumptions of Theorem 2.3 and (2.15) hold. Let 0 < s0 < 1 < t0
and let G0 ⊂ Lq. Define G = {φs, φ ∈ G0, s ∈ [s0, t0]} with φs(x) = φ(x/s). If G satisfies
the assumptions of Theorem 2.4 and

lim
n→∞

√
k sup
s0≤s≤t0

sup
φ∈G

∣∣∣∣
E[φ(X0,h/(uns))]

F̄ (un)
− s−αν0,h(φ)

∣∣∣∣ = 0 , (2.17)

then M̂n ⇒ M̂ on ℓ∞(G0).

Remark 2.7. The term ν0,h(φ)M(1(1,∞]×Rh ) is an effect of the random threshold. Condi-
tions (2.15) and (2.17) allow to get rid of the bias terms. These conditions are certainly
fulfilled for some choices of k but they might be in conflict with (2.10) if the convergence
in the definition of regular variation is very slow. However, conditions (2.15) and (2.17)
are generally obtained by means of so-called second order conditions which yield polyno-
mial rates of convergence. We do not pursue in this direction, nor in the very important
practical issue of a data-driven choice of k, both problems being largely beyond the scope
of this paper.

The proof of Corollaries 2.5 and 2.6 is in Section 4.4. We now give several examples.

Example 2.8 (Estimation of the (cluster) large deviation index). Assume for simplicity that
the random variables Xj are nonnegative. For Ah = {x0 + · · · + xh > 1} we consider the
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following quantity which exists by regular variation:

b+,h =
1

h+ 1
lim
x→∞

P(X0 + · · · +Xh > x)

F̄ (x)
=

1

h + 1
ν0,h(Ah) =

1

h+ 1

∫

Ah

ν0,h(dx) .

If {Xj} is a sequence of i.i.d. regularly varying nonnegative random variables, then b+,h = 1
for all h. In general, regular variation implies that (h+ 1)−1 ≤ b+,h ≤ (h+ 1)α. It is shown
in Mikosch and Wintenberger (2014) that the drift condition (2.1) implies that

b+ = lim
h→∞

b+,h ∈ [0,∞) .

The quantity b+ thus defined is called the cluster index and is related to the large devi-
ation behavior of the partial sums

∑n
j=1Xj; see Mikosch and Wintenberger (2014). No

estimators of b+ have been provided yet in the literature. Here we consider an estimator
of b+,h. Define

b̂n,+,h =
1

k(h + 1)

n∑

j=1

1{Xj + · · · +Xj+h > Xn:n−k} .

With the notation of Corollary 2.6, b+,h = ν0,h(φ) with φ(x) = (h+1)−1
1{x0 + · · · + xh > 1}.

The class G0 consists of the single function φ and G = {φs, s ∈ [s0, t0]}. The class G is
pointwise separable, linearly ordered and its envelope function is φs0 which belongs to L0.
Conditions (iii) and (iv) of Theorem 2.4 are checked in Section 4.4.1, while (2.17) becomes

lim
n→∞

√
k sup
s≥s0

∣∣∣∣
P(X0 + · · · +Xh > uns)

F̄ (un)
− s−αν0,h(Ah)

∣∣∣∣ = 0 . (2.18)

Therefore, under the assumptions of Theorem 2.3 with q = 0 and (2.18), we can ap-
ply Corollary 2.6 and we obtain

√
k(̂bn,+,h − b+,h)

d→ N(0, σ2
+,h) ,

with

σ2
+,h = b+,h{b+,h − 1/(h+ 1)} + 2

∞∑

j=1

{
h∑

i=0

(h+ 1)−α−2×

P(Y−i ≤ 1, . . . , Y−1 ≤ 1, Y−i + · · · + Yh−i > h + 1, Yj−i + · · · + Yj+h−i > h+ 1)

− b+,h
h+ 1

{P(Yj + · · · + Yj+h > 1) + P(Y−j + · · · + Y−j+h > 1)} + (b+,h)
2
P(Yj > 1)

}
.

Example 2.9 (Conditional tail expectation). We assume for simplicity that the time series
{Xj} is non negative and has tail index α > 1. Then the following limit exists:

lim
x→∞

1

x
E[Xh | X0 > x] =

∫ ∞

x0=1

∫

Rh+

xh ν0,h(dx) = E[Yh] =
αE[Θh]

α− 1
= CTEh . (2.19)
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Indeed, regular variation implies that the distribution of x−1(X0, . . . , Xh) conditionally on
X0 > x converges weakly to the probability measure equal to ν0,h restricted to [1,∞)×Rh

and if α > 1, Potter’s bounds ensure that x−1Xh is uniformly integrable conditionally on
X0 > x. Define

Ĉn,h =
1

k

n∑

j=1

Xj+h

Xn:n−k
1{Xj > Xn:n−k} .

The bias condition (2.17) becomes

lim
n→∞

√
k sup
s0≤s≤t0

∣∣∣∣
E [Xh1{X0 > uns}]

unF̄ (un)
− CTEhs

1−α

∣∣∣∣ = 0 . (2.20)

In order to apply Corollary 2.6, we assume that α > 2. We set φ(x) = xh1{x0 > 1},
G0 = {φ} and G = {φs, s ∈ [s0, t0]} with 0 < s0 < 1 < t0. The class G is pointwise
separable, linearly ordered and its envelop function is s−1

0 xh1{x0 > s0} which belongs to
L2; it is totally bounded for the metric ρh and Condition (2.13) holds (see Section 4.4.2
for a proof of the latter two points).

Thus we obtain, under the assumptions of Theorem 2.3 with q = 2,

√
k
{
Ĉn,h − CTEh

}
d→ N(0, σ2

h) ,

with

σ2
h = E[(Yh − CTEh)

2] + 2

∞∑

j=1

E[(Yh − CTEh)(Yj+h − CTEh)1{Yj > 1}] .

Example 2.10 (Estimation of the distribution of the spectral tail process). For h > 0, let
Lh be the distribution function of the spectral tail process Θh at lag h,

Lh(y) = lim
x→∞

P(|X0| > x,Xh ≤ |X0|y)

P(|X0| > x)
, y ∈ R .

An estimator L̂n,h of Lh is defined by

L̂n,h(y) =
1

k

n∑

i=1

1{|Xj | > Xn:n−k}1{Xj+h ≤ |Xj|y} , (2.21)

where k is a non decreasing sequence. For y ∈ R, define the function Jy on Rh+1 by

Jy(x) = 1{|x0 | > 1}1{xh ≤ |x0|y} ,

and set Lh(y) = M(Jy) − Lh(y)M(1(1,∞]×Rh ).
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Theorem 2.11. Let the assumptions of Theorem 2.3 with q = 0 and (2.15) hold. Assume
that the distribution function Lh of Θh is continuous on [a, b] with a < b ∈ R and for each
y ∈ [a, b],

lim
n→∞

√
k sup
s0≤s≤t0

∣∣∣∣
P(|X0| > uns,Xh ≤ |X0|y)

F̄ (un)
− s−αLh(y)

∣∣∣∣ = 0 , (2.22)

where un is such that k = nF̄ (un). Then
√
k(L̂n,h − Lh)

fi.di.−→ Lh on [a, b].

The proof is in Section 4.4.3. We only consider fidi convergence since a proof of tight-
ness for a two-parameter process would be much more technical since the linearly ordered
property of the class of functions would fail to hold. Under additional assumptions on
the distribution of the spectral tail process and if the bias condition (2.22) holds uni-
formly on [a, b], tightness with respect to y could be proved by the same techniques as in
(Drees and Rootzén, 2010, Example 4.4) for a plausibly slower rate of convergence.

Consider a univariate non negative Markov chain which in addition to Assumption 2.1
satisfies Θj+1 = Aj+1Θj, j ≥ 0 where {Aj , j ≥ 1} is a sequence of i.i.d. random variables
with the same distribution as Θ1. This is the case for most usual Markovian time series,
see Janssen and Segers (2014). For h = 1, we can calculate

var(L1(y)) = P(Θ1 ≤ y)P(Θ1 > y) .

This is the same as the variance found in (Drees et al., 2014, Corollary 5.2) for their forward
estimator which instead of using a random threshold replaces the scaling k by the random
number of exceedances of the Markov chain {Xj} above the deterministic threshold un.

2.3 Checking Assumption 2.1

We now show how to check Assumption 2.1. Irreducibility and the drift condition (2.1)
are well known for most Markovian time series models, but the link with the conditions of
extreme value theory has not been yet fully investigated. Janssen and Segers (2014) used
the functional autoregressive representation of most Markov chains to obtain conditions for
the whole time series to be regularly varying when the stationary distribution is regularly
varying. We build on this approach to check Assumption 2.1. Assume that {Yj, j ∈ N} is
a Rd-valued Markov chain which admits a functional autoregressive representation

Yj+1 = Φ(Yj , Zj+1) , j ≥ 0 , (2.23)

where {Z,Zj, j ≥ 1} is a sequence of i.i.d. random variables with values in a measurable
space E and Φ : Rd × E → Rd is a measurable map. Fix a norm ‖ · ‖ and denote the unit
sphere by Sd−1. We assume that there exist q0 < α, ζ1, ζ2 > 0 and a map V : Rd → [1,∞)

11



such that

ζ1(‖x‖ ∨ 1)q0 ≤ V (x) ≤ ζ2(‖x‖ ∨ 1)q0 , (2.24a)

sup
x∈Rd

‖x‖−q0E[‖Φ(x, Z)‖q0] <∞ , (2.24b)

lim sup
‖x‖→∞

E [V (Φ(x, Z))]

V (x)
< 1 . (2.24c)

Under these conditions, (2.1) holds. Indeed, under (2.24c), we can choose γ ∈ (0, 1) such
that for r sufficiently large

sup
‖x‖>r

E[V (Φ(x, Z))]

V (x)
< γ .

The upper bounds in (2.24a) and (2.24b) ensure that E[V (Φ(x, Z))] is bounded on compact
sets, and the lower bound in (2.24a) ensures that V is unbounded outside compact sets;
thus (2.1) holds.

In most examples, {Yj} is itself a regularly varying time series and g is a homogeneous
function, so that {Xj} is regularly varying and (2.4) holds by the conditions |g|q0 ≤ cV
and (2.24a). We now consider two examples.

AR(p) with regularly varying innovations

Convergence of the tail empirical processes of exceedances for infinite order moving averages
has been obtained in the case of finite variance innovation; for infinite variance innovations
it was proved only in the case of an AR(1) process in Drees (2003). We next show that
Assumption 2.1 holds for general causal invertible AR(p) models.

Corollary 2.12. Assume that {Xj} is an AR(p) time series

Xj = ϕ1Xj−1 + · · · + ϕpXj−p + εj , j ≥ 1 ,

that satisfies the following conditions:

• {εj} is a sequence of i.i.d. random variables, regularly varying with index α whose
common density possesses an absolutely continuous component;

• the spectral radius of the matrix

A =




ϕ1 ϕ2 ϕ3 · · · ϕp
1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 · · · 1 0




is smaller than 1.
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• if α ≤ 2, then
∑p

i=1 |ϕi|r < 1 for r = min{1, α}.

Let {Yj, j ≥ 1} be the Rp-valued vector-autoregressive Markov chain

Yj = AYj−1 + Zj (2.25)

with

Yj = (Xj, . . . , Xj−p+1)
T , Zj = (εj, 0, . . . , 0)T .

Then there exists a norm ‖·‖ on Rp such that Assumption 2.1 holds with V (x) = 1+‖x‖q0
for any q0 < α.

Proof. Under the stated assumptions, the Markov chain {Yj , j ≥ 1} is positive Harris
recurrent on R

p, all compact sets are small sets, see (Alsmeyer, 2003, Example 2.6 (d));
the stationary distribution is given by Yj =

∑∞
k=0A

kZj−k and is regularly varying, see
Hult and Samorodnitsky (2008). The AR(p) process admits the representation (2.23) with
Φ given by

Φ(x, z) = Ax + z .

Therefore (2.24a) and (2.24b) hold for V = 1 + ‖ · ‖q0 for any norm ‖ · ‖ on Rp with
ϕ(x, z) = Ax and for any q0 such that E[|ε0|q0] < ∞. We must show that there exists a
norm such that condition (2.24c) is fulfilled. Let λ be the spectral radius of the matrix A.
Fix ǫ such that γ = λ+ ǫ < 1. Then there exists a norm (depending on A) such that

sup
x∈Rp

‖x‖p=1

‖Ax‖ ≤ γ ;

see e.g. (Douc et al., 2014, Proposition 4.24 and Example 6.35). This yields (2.24c) with
V (x) = 1 + ‖x‖q0.

Threshold ARCH

We consider the Threshold-ARCH model. It was proved to have a regularly varying sta-
tionary distribution by Cline (2007). We show here that it satisfies Assumption 2.1.

Corollary 2.13. Let ξ ∈ R. Assume that {Xj} follows a Threshold-ARCH model,

Xj = (b10 + b11X
2
j−1)

1/2Zj1{Xj−1 < ξ} + (b20 + b21X
2
j−1)

1/2Zj1{Xj−1 ≥ ξ} , (2.26)

that satisfies the following conditions:

• b10, b11, b20, b21 > 0;
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• {Zj, j ∈ Z} is a sequence of i.i.d. random variables such that E[|Z1|β] < ∞ for all
β > 0;

• the distribution of Z1 has a bounded density with respect to Lebesgue’s measure not
vanishing in a neighbourhood of zero;

• E[log{|Z1|(
√
b111{Z1 < 0} +

√
b211{Z1 ≥ 0})}] < 0.

Then the Markov chain {Xj} is an irreducible and aperiodic chain; its stationary distribu-
tion is regularly varying with index α obtained by solving

b
α/2
11 E[|Z1|α1{Z1 < 0}] + b

α/2
21 E[|Z1|α1{Z1 ≥ 0}] = 1 . (2.27)

Assumption 2.1 holds with V (x) = 1 + |x|q0(bq0/211 1{x < 0}+ b
q0/2
21 1{x ≥ 0}) for any q0 < α.

Proof. The statements about ergodicity and the tail of the marginal distribution are proved
in Cline (2007). The chain has the representation (2.23) with

Φ(x, z) = (b10 + b11x
2)1/2z1{x < ξ} + (b20 + b21x

2)1/2z1{x ≥ ξ} .

Thus (2.24a) and (2.24b) hold for all q0 > 0. For q0 < α, set λq0 = b
q0/2
11 E[|Z1|q01{Z1 < 0}]+

b
q0/2
21 E[|Z1|q01{Z1 ≥ 0}]. Then (2.27) guarantees that λq0 < 1 and it is readily checked that

lim
|x|→∞

E[V (Φ(x, Z1))]

V (x)
= λq0 < 1 .

This proves (2.24c).

2.4 A counterexample

Considering the sum of an i.i.d. regularly varying sequence and a non geometrically ergodic
lighter tailed Markov chain, one can easily see that the geometric drift condition is not
a necessary condition for the results of Sections 2.1 and 2.2 to hold. However, when
the geometric drift condition does not hold, it is easy to build counterexamples of non
geometrically ergodic Markov chains which exhibit a highly non standard behaviour of
their tail empirical process. In particular, their extremal index is 0. We now provide a toy
example of such a non standard behaviour.

Let {Zj , j ∈ Z} be a sequence of i.i.d. positive integer valued random variables with
regularly varying right tail with index β > 1. Define the Markov chain {Xj, j ≥ 0} by the
following recursion:

Xj =

{
Xj−1 − 1 if Xj−1 > 1 ,

Zj if Xj−1 = 1 .
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Since β > 1, the chain admits a stationary distribution π on N given by

π(n) =
P(Z0 ≥ n)

E[Z0]
, n ≥ 1 .

To avoid confusion, we will denote the distributions functions of Z0 and X0 (when the initial
distribution is π) by FZ and FX , respectively. The tail F̄X of the stationary distribution
is then regularly varying with index α = β − 1, since it is given by

F̄X(x) =
E[(Z0 − [x])+]

E[Z0]
∼ xF̄Z(x)

βE[Z0]
, x→ ∞ . (2.28)

We assume for simplicity that P(Z0 = n) > 0 for all n ≥ 1; this implies that the chain
is irreducible and aperiodic and the state {1} is a recurrent atom. The distribution of
the return time τ1 to the atom {1}, when the chains start from {1}, is the distribution
of Z0. Hence the chain is not geometrically ergodic since under the assumption on Z0,
E1[κ

τ1 ] = E[κZ0 ] = ∞ for all κ > 1. Moreover, the extremal index of the chain is 0, by an
application of (Rootzén, 1988, Theorem 3.2 and Eq. (4.2)).

Let {un} be a scaling sequence. Consider the tail empirical distribution function defined

in (1.3) and Tn(s) = E[T̃n(s)] = F̄X(uns)/F̄X(un). Let {an} be a scaling sequence such
that limn→∞ nP(Z0 > an) = 1.

Proposition 2.14. • If limn→∞ nF̄Z(un) = 0, then limn→∞ P(T̃n(s) 6= 0) = 0.

• If β ∈ (1, 2) and limn→∞ nF̄Z(un) = ∞, then there exists a β-stable random variable Λ

such that for every s > 0, a−1
n nF̄X(un){T̃n(s) − Tn(s)} d→ Λ.

• If β > 2, limn→∞ nF̄Z(un) = ∞ and s0 > 0, then the process s→
√
nF̄Z(un){T̃n(s)−

Tn(s)} converges weakly in D([s0,∞)) equipped with the Skorokhod J1-topology to a

centered Gaussian process G̃ with covariance function

C(s, t) =
(β + 1)t1−β

β(β − 1)
− st−β

β
, s < t .

Remark 2.15. In the standard situation (for example, under the geometric drift condition),
a non degenerate limit is expected if nF̄X(un) → ∞. Since F̄X(un) ∼ unF̄Z(un), it may
happen simultaneously that nF̄X(un) → ∞ and nF̄Z(un) → 0. The appropriate threshold
is determined by the distribution of Z0 and not by the stationary distribution of the chain.

3 Central limit theorem for tail array sums

In this section we prove the central limit theorem for tail array sums in the general frame-
work of a strictly stationary regularly varying β-mixing sequence with values in Rd.
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3.1 Finite cluster condition

The main tool to prove our results is a modified form of the condition (2.11). Precisely, let
{ξj, j ∈ Z} be a regularly varying stationary Rd-valued sequence. Let | · | be an arbitrary
norm on Rd and let H be the distribution function of |ξ0|.

Assumption 3.1 (Condition S(un, rn, ψ)). Let {un} and {rn} be sequences which tend
to infinity, {rn} being integer valued, and ψ : Rd → R be a function which vanishes in a
neighborhood of zero (i.e. there exists ǫ > 0 such that ψ(x) = 0 if |x| ≤ ǫ). For all s, t > 0,

lim
L→∞

lim sup
n→∞

1

H̄(un)

rn∑

j=L+1

E [|ψ(sξ0/un)||ψ(tξj/un)|] = 0 . (S(un, rn, ψ))

Note that by stationarity,

∑

L<−j≤rn

E [|ψ(sξ0/un)||ψ(tξj/un)|] =
∑

L<j≤rn

E [|ψ(sξj/un)||ψ(tξ0/un)|] .

Therefore Condition S(un, rn, ψ) can be equivalently written as a one-sided or a two sided
sum. Note also that for bounded ψ Condition S(un, rn, ψ) is implied by (2.11) applied to
{ξj}. An equivalent formulation of (2.11) is condition (C) of Drees et al. (2014).

By assumption, for j ≥ 0 the vector (ξ0, . . . , ξj) is regularly varying so we can define
the exponent measure µ0j of (ξ0, . . . , ξj), that is the Radon measure on R

d(j+1) \ {0} such
that

lim
x→∞

P((ξ0, . . . , ξj) ∈ xA)

P(|ξ0| > x)
= µ0j(A)

for relatively compact sets A in Rd(j+1) \ {0} such that µ0j(∂A) = 0. For j = 0 we simply
write µ0 for µ00. Note that if d = h+ 1 and ξ0 = (X0, . . . , Xh), then µ0 is proportional to
the measure ν0,h appearing in (1.1). For measurable functions φ, φ′, define formally

Γ(φ, φ′) =

∫

Rd

φ(x0)φ
′(x0)µ0(dx0)

+
∞∑

j=1

∫

Rd(j+1)

{φ(x0)φ
′(xj) + φ(x0)φ

′(xj)}µ0j(dx) , (3.1)

with x = (x0, . . . ,xj) ∈ Rd(j+1). In order to provide conditions for the series in (3.1) to be
summable, we define the following set of functions.

Definition 3.2. Let ψ be a non negative function defined on Rd. The space Mψ is the set
of measurable functions φ defined on R

d having the following properties:
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• |φ| ≤ cst · ψ, where cst depends on φ;

• for all j ≥ 0, the function defined on Rd(j+1) by (x0, . . . ,xj) → φ(xj) is almost surely
continuous with respect to µ0j.

Obviously, Mψ is a linear space.

Lemma 3.3. Let {ξj, j ∈ Z} be a strictly stationary regularly varying sequence and let H
be the distribution function of |ξ0|. Let {un} and {rn} be non decreasing sequences tending
to infinity, {rn} being integer valued. Let ψ be a non negative measurable function which
vanishes in a neighborhood of zero, satisfying Condition S(un, rn, ψ) and for which there
exists δ > 0 such that

sup
n≥1

E
[
ψ2+δ(ξ0/un)

]

H̄(un)
<∞ . (3.2)

Then for all φ, φ′ ∈ Mψ, the series defining Γ(φ, φ′) in (3.1) is absolutely summable and

Γ(φ, φ′) = lim
n→∞

1

rnH̄(un)
E

[(
rn∑

j=1

φ(ξj/un)

)(
rn∑

j=1

φ′(ξj/un)

)]
(3.3)

= lim
L→∞

lim
n→∞

L∑

j=−L

E[φ(ξ0/un)φ′(ξj/un)]

H̄(un)
. (3.4)

If moreover

lim
n→∞

rnH̄(un) = 0 , (3.5)

then

Γ(φ, φ′) = lim
n→∞

1

rnH̄(un)
cov

(
rn∑

j=1

φ(ξj/un),
rn∑

j=1

φ′(ξj/un)

)
. (3.6)

Throughout this section, we will use the following notation. Set

φn,j = φ(ξj/un) , cj(φ) =

∫

Rd(j+1)

φ(x0)φ(xj)µ0j(dx) , j ≥ 0 .

Proof. Since Mψ is a linear space and by the identity 2xy = (x+ y)2 − x2 − y2, it suffices
to prove these identities for φ = φ′. We restrict ourselves to non negative functions
φ, the extension for general φ ∈ Mψ being straightforward. We must first prove that
condition (3.2) ensures that the coefficients cj(φ) are well defined. Since the support of
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φ is bounded away from zero and vague convergence coincides with weak convergence on
such sets, if φ is bounded, then the continuous mapping theorem yields

lim
n→∞

E[φn,0φn,j]

H̄(un)
= cj(φ) . (3.7)

If φ is unbounded and condition (3.2) holds, then for all A > 0, applying Markov and
Hölder inequalities, we obtain

lim
A→∞

lim sup
n→∞

E[φn,0φn,j1{|φn,0φn,j| > A}]

H̄(un)
≤ lim

A→∞
cst ·A−δ/2 sup

n≥1

E[ψ2+δ(ξ0/un)]

H̄(un)
= 0 .

This allows to use a truncation argument and prove that (3.7) holds.

We now prove that the series Γ(φ, φ) is summable and without loss of generality we
assume that φ is nonnegative. Fix η > 0. Applying S(un, rn, ψ) and the fact that φ is
bounded by a multiple of ψ, we can choose L such that, for every R ≥ L

lim
n→∞

R∑

j=L

E[φn,0φn,j]

H̄(un)
≤ η .

This yields that for every η > 0, large enough L and all R ≥ L,
∑R

j=L cj(φ) ≤ η and this
means that the series

∑∞
j=1 cj(φ) is summable and that (3.4) holds. To prove (3.3), write

E

[(∑rn
j=1 φn,j

)2]

rnH̄(un)
=

E[φ2
n,0]

H̄(un)
+ 2

L∑

j=1

(1 − j/rn)
E[φn,0φn,j]

H̄(un)
+ 2

rn∑

j=L+1

(1 − j/rn)
E[φn,0φn,j]

H̄(un)
.

By Condition S(un, rn, ψ), for every η > 0, we can choose L in such a way that the last
term above is less than η. This yields

lim sup
n→∞

∣∣∣∣∣
∑

1≤j,j′≤rn

E[φn,jφn,j′]

rnH̄(un)
− c0(φ) − 2

L∑

j=1

cj(φ)

∣∣∣∣∣ ≤ η .

Since the series
∑L

j=1 cj(φ) is convergent we can also choose L in such a way that
∑∞

j=L+1 cj(φ) ≤
η. This yields

lim sup
n→∞

∣∣∣∣∣
∑

1≤j,j′≤rn

E[φn,jφn,j′]

rnH̄(un)
− Γ(φ, φ)

∣∣∣∣∣ ≤ 3η .

Since η is arbitrary, this proves (3.3). Finally, with

Sn(φ) =

rn∑

j=1

φn,j ,

we have

var(Sn(φ))

rnH̄(un)
=

E[S2
n(φ)]

rnH̄(un)
− r2n(E[φn,0])

2

rnH̄(un)
=

E[S2
n(φ)]

rnH̄(un)
+O(rnH̄(un)) .

Under condition (3.5), the last term is o(1). This proves (3.6).
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3.2 Fidi convergence of tail array sums

In this section, we prove a theorem on convergence of tail array sums which complements
the results of Rootzén et al. (1998) and (Drees and Rootzén, 2010, Theorem 2.3). We
show that under β-mixing, condition S(un, rn, ψ) is the main ingredient of the proof of the
central limit theorem.

Define the process Wn on Mψ by

Wn(φ) =
1√

nH̄(un)

n∑

j=1

{φ(ξj/un) − E[φ(ξ0/un)]} , φ ∈ Mψ .

Theorem 3.4. Let {ξj, j ∈ Z} be a strictly stationary regularly varying sequence and let H
be the distribution function of |ξ0|. Let {un} and {rn} be non decreasing sequences which
tend to infinity, {rn} being integer valued, such that

lim
n→∞

un = lim
n→∞

nH̄(un) = ∞ , lim
n→∞

rnH̄(un) = 0 . (3.8)

Let ψ be a function which vanishes in a neighborhood of zero and such that S(un, rn, ψ)
holds. Assume that either ψ is bounded or there exists δ ∈ (0, 1] such that (3.2) holds and

lim
n→∞

rn(
nH̄(un)

)δ/2 = 0 . (3.9)

Assume that the sequence {ξj, j ∈ Z} is β-mixing with coefficients {βn, n ≥ 1} and there
exists a sequence {ℓn} such that

ℓn → ∞ , ℓn/rn → 0 , lim
n→∞

nβℓn/rn = 0 . (3.10)

Let W be a Gaussian process indexed by Mψ with covariance function Γ defined in (3.1).

Then Wn
fi.di.−→ W on Mψ.

Remark 3.5. It is possible to find sequences ℓn and rn that satisfy (3.10) if the β-mixing
coefficients βn satisfy βn = O(n−a) for some a > 0. A suitable choice is then rn = nζ and
ℓn = nη with 0 < η < ζ < 1 and ζ + aη > 1.

Proof of Theorem 3.4. Since Mψ is a linear space and Γ is a quadratic form, it suffices to
prove the central limit theorem for an arbitrary φ ∈ Mψ. For i = 1, . . . , [n/rn], define

Sn,i(φ) =

irn∑

j=(i−1)rn+1

φ(ξj/un) , S̄n,i(φ) = Sn,i(φ) − E[Sn,i(φ)] . (3.11)

Arguing as in (Drees and Rootzén, 2010, Lemma 5.1), Condition (3.10) implies that it
suffices to prove the central limit theorem for the sum with independent blocks of length rn
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having the same marginal distribution as the original blocks (ξ(i−1)rn+1, . . . , ξirn) and that
we can remove a smaller block (ξirn−ℓn+1, . . . , ξirn) of size ℓn at the end of each large block.
To this end, we must prove the convergence of the variance and the Lindeberg asymptotic
negligibility condition on the sum of independent big blocks. By Lemma 3.3, we already
know that

lim
n→∞

var(Sn,1(φ))

rnH̄(un)
= lim

n→∞

var
(∑rn

j=1 φ(ξj/un)
)

rnH̄(un)
= Γ(φ, φ) .

Since ℓn ≤ rn, S(un, rn, ψ) implies S(un, ℓn, ψ) and hence the limit above holds with rn
replaced with ℓn. By ℓn/rn → 0, this also entails that

lim
n→∞

1

rnH̄(un)
var

(
ℓn∑

j=1

φ(ξj/un)

)
= 0 .

This means that the small blocks do not contribute to the limit. Therefore, we only need
to prove the asymptotic negligibility condition. This is done in Lemma 3.6 in the bounded
case and Lemma 3.7 in the unbounded case.

Lemma 3.6. Let ψ be a bounded non negative function which vanishes in a neighborhood
of zero and such that S(un, rn, ψ) holds. If (3.8) holds, then for all η > 0 and all φ ∈ Mψ,

lim
n→0

1

rnH̄(un)
E

[
S2
n,1(φ)1{|Sn,1(φ)| > η

√
nH̄(un)}

]

= lim
n→0

1

rnH̄(un)
E

[
S̄2
n,1(φ)1{|S̄n,1(φ)| > η

√
nH̄(un)}

]
= 0 .

Proof. Write for brevity vn =
√
nH̄(un), Sn(φ) for Sn,1(φ) and S̄n(φ) for S̄n,1(φ). At the

first step we note that the centering can be omitted. By the assumptions on ψ and regular
variation, E[|φn,0|q] = O(H̄(un)) for all φ ∈ Mψ and q > 0 which implies E[Sn(φ)] =
O(rnH̄(un)). Since rn = o(n), we have, for large enough n,

1{|S̄n,1(φ)| > η
√
nH̄(un)} ≤ 1{|Sn,1(φ)| > η

√
nH̄(un)/2} .

Since η is arbitrary, we can remove the centering from the indicator. Furthermore,

1

rnH̄(un)
E
[
S̄2
n(φ)1{|Sn(φ)| > ηvn}

]

=
1

rnH̄(un)
E
[
S2
n(φ)1{|Sn(φ)| > ηvn}

]
+
O({E[Sn(φ)]}2)

rnH̄(un)

=
1

rnH̄(un)
E
[
S2
n(φ)1{|Sn(φ)| > ηvn}

]
+O(rnH̄(un)) . (3.12)
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Hence, under condition (3.8), it suffices to study the main term on the right hand side of
(3.12), which is developed as I1 + 2I2 with

I1 =
1

rnH̄(un)

rn∑

j=1

E[φ2
n,j1{|Sn(φ)| > ηvn}] , I2 =

1

rnH̄(un)

rn∑

i=1

rn∑

j=i+1

E[φn,iφn,j1{|Sn(φ)| > ηvn}] .

By (3.6) and the Hölder inequality, we have E[|Sn(φ)|] = O(
√
rnH̄(un)). Applying Markov’s

inequality and the boundedness of φ, we obtain

I1 ≤
1

ηvnrnH̄(un)

rn∑

j=1

E[φ2
n,j|Sn(φ)|]

= O

(
1

vn

)
1

rnH̄(un)
E



(

rn∑

j=1

|φn,j|
)2

 = O

(
1

vn

)
= o(1) .

Fix a positive integer L. Since φ is bounded, we have

I2 ≤
1

rnH̄(un)

L∑

i=1

rn∑

j=i+1

E[|φn,iφn,j|1{|Sn(φ)| > ηvn}] (3.13)

+
1

rnH̄(un)

rn∑

i=L+1

i+L∑

j=i+1

E[|φn,iφn,j|1{|Sn(φ)| > ηvn}] (3.14)

+
1

rnH̄(un)

rn∑

i=L+1

rn∑

j=i+L+1

E[|φn,iφn,j|] . (3.15)

Since φ is bounded, the terms in (3.13) and (3.14) are each bounded by

L‖φ‖∞
rnH̄(un)

rn∑

j=1

E[|φn,j|1{|Sn(φ)| > ηvn}] = o(1) ,

by the same argument as for I1. Thus,

I2 = o(1) +
2

H̄(un)

rn∑

i=L+1

E[|φn,0φn,i|] . (3.16)

By Condition S(un, rn, ψ), the last expression in (3.16) can be made arbitrarily small by
choosing L large enough.

We extend Lemma 3.6 to the case of unbounded functions, at the cost of the extra
restriction (3.9) on the sequence {rn}.
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Lemma 3.7. Let ψ be a non negative measurable function which vanishes in a neighborhood
of zero, such that Conditions S(un, rn, ψ), (3.2), (3.8) and (3.9) hold for the same δ ∈ (0, 1].
Then for all η > 0 and all φ ∈ Mψ,

lim
n→0

1

rnH̄(un)
E

[
S2
n,1(φ)1{|Sn,1(φ)| > η

√
nH̄(un)}

]

= lim
n→0

1

rnH̄(un)
E

[
S̄2
n,1(φ)1{|S̄n,1(φ)| > η

√
nH̄(un)}

]
= 0 .

Proof. We follow closely the proof of Lemma 3.6 with appropriate modifications. Recall
that we have set vn =

√
nH̄(un). Since φ ∈ Mψ, Lemma 3.3 implies that E[Sn(φ)] =

O(
√
rnH̄(un)) and thus the centering can be removed inside the indicator. The calculations

leading to (3.12) are still valid in the unbounded case. Since δ ∈ (0, 1], we have by Markov
inequality,

I1 = O

(
1

vδn

)
1

rnH̄(un)

rn∑

j=1

E[φ2
n,j|Sn(φ)|δ]

= O

(
1

vδn

)
1

rnH̄(un)

rn∑

i=1

rn∑

j=1

E[φ2
n,i|φn,j|δ] = O

(
rn
vδn

)
= o(1) ,

by (3.2) and (3.9). As for I2, the second term in (3.16) is handled again by Condition
S(un, rn, ψ). Applying Markov inequality, the term in (3.14) is bounded by

1

ηvδnrnH̄(un)

rn∑

i=ℓ+1

i+ℓ∑

j=i+1

rn∑

k=1

E[|φn,i||φn,j||φn,k|δ] ≤
ℓrn
ηvδn

E[|φn,0|2+δ]
H̄(un)

,

on account of the extended Hölder inequality with p = q = 2 + δ and r = (2 + δ)/δ. This
again is o(1) by (3.2) and (3.9). The term in (3.13) is treated analogously.

4 Proof of the results for functions of Markov chains

Let {Xj, j ∈ Z} be as in Section 2. We will apply the results of Section 3 to the sequence
{ξj, j ∈ Z} defined as ξj = Xj,j+h = (Xj, . . . , Xj+h) which is also regularly varying. Since
the distribution of X0 satisfies the balanced tail condition and the right tail of X0 is not
trivial, X0 and |ξ0| are tail equivalent.

We first recall some consequences of the geometric drift condition. Under condi-
tion (2.2), the chain {Yj} can be embedded into an extended Markov chain {(Yj, Bj)}
such that the latter chain possesses an atom A, that is P̄ (s, ·) = P̄ (t, ·) for every s, t ∈ A,
where P̄ is the transition kernel of the extended chain. This existence is due to the Num-
melin splitting technique (see (Meyn and Tweedie, 2009, Chapter 5)). Denote by EA the
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expectation conditionally to (Y0, B0) ∈ A and let τA be the first return time to A of the
chain {(Yj, Bj), j ≥ 0}. Note that τA is a stopping time with respect to the extended chain,
but not with respect to the chain {Yj}. We assume that the extended chain is defined on
the original probability space (Ω,F ,P) and that the extended chain is stationary under P.
Then, by (Meyn and Tweedie, 2009, Theorem 15.4.1) for q0 as in Assumption 2.1, there
exist κ > 1 and a constant cst such that for all y ∈ E,

E

[
τA∑

j=1

κj |Xj|q0 | Y0 = y

]
≤ cE

[
τA∑

j=1

κjV (Yj) | Y0 = y

]
≤ cstV (y) . (4.1)

By Jensen’s inequality, this implies that for all q1 ≤ q0, there exists κ1 ∈ (1, κ) such that

E

[
τA∑

j=1

κj1|Xj|q1 | Y0 = y

]
≤ cstV q1/q0(y) . (4.2)

Moreover, Kac’s formula (Meyn and Tweedie, 2009, Theorem 10.0.1) gives an expression of
the stationary distribution in terms of the return time to A. For every bounded measurable
function f , it holds that

E[f(Y0)] =
1

EA[τA]
EA

[
τA−1∑

j=0

f(Yj)

]
. (4.3)

Since V ≥ 1, the inequality (4.1) integrated with respect to the stationary distribution
implies that E[κτA ] <∞.

4.1 Checking the finite cluster condition

In the present context, the anticlustering condition S(un, rn, ψ) can be re-written as

lim
L→∞

lim sup
n→∞

1

F̄ (un)

rn∑

j=L+1

E [|ψ(sX0,h/un)||ψ(tXj,j+h/un)|] = 0 , (4.4)

where F is the distribution function of X0.

Let | · | denote an arbitrary norm on R
h+1. In this section, we prove that for all ǫ > 0

Assumption 2.1 implies the condition (4.4) for the function ψǫ defined by

ψǫ(x) = |x|q0/21{|x| > ǫ} .

This will be done in Lemma 4.3 below. First we introduce some notation and prove two
preliminary results. For 0 < s <∞ define

Qn(s) =
1

uq0n F̄ (un)
E [V (Y0)1{|X0 | > uns}] .
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Lemma 4.1. Let Assumption 2.1 holds. For every s0 > 0, there exists a constant C0 > 0
and κ0 > 1 such that for q1 + q2 ≤ q0 and s ≥ s0,

1

F̄ (un)
E

[
τA∑

j=L

1{|X0 | > sun}|X0/un|q1|Xj/un|q2
]
≤ C0κ

−L
0 Q(q1+q2)/q0

n (s) . (4.5)

Proof. Let κ be as in (4.1). Let the left hand side of (4.5) be denoted by Sn(s). Conditioning
on Y0 and applying (4.2), we obtain that there exists κ0 ∈ (1, κ) such that

Sn(s) ≤ cst · κ−L0

1

uq2n F̄ (un)
E
[
V q2/q0(Y0)|X0/un|q11{|X0 | > sun}

]

≤ cst · κ−L0

F̄ (uns)

uq2n F̄ (un)
E
[
V q2/q0(Y0)|X0/un|q1 | |X0| > sun

]

≤ cst · κ−L0

F̄ (uns)

uq1+q2n F̄ (un)
E
[
V (q1+q2)/q0(Y0) | |X0| > sun

]
.

Applying Jensen’s inequality to the conditional distribution given |X0| > uns, we obtain

Sn(s) ≤ cst · κ−L0

F̄ (uns)

uq1+q2n F̄ (un)
(E [V (Y0) | |X0| > sun])(q1+q2)/q0

= cst · κ−L0

F̄ (uns)

uq1+q2n F̄ (un)

(
E [V (Y0)1{|X0 | > sun}] /F̄ (un)

)(q1+q2)/q0
(
F̄ (un)

F̄ (uns)

)(q1+q2)/q0

= cst · κ−L0

(
F̄ (uns)

F̄ (un)

)1−(q1+q2)/q0

Q(q1+q2)/q0
n (s) . (4.6)

This yields (4.5) since F̄ (uns)/F̄ (un) is uniformly bounded on [s0,∞) and 1−(q1+q2)/q0 >
0.

Lemma 4.2. If Assumption 2.1 holds, rnF̄ (un) = o(1), and q1 + q2 ≤ q0, then

1

F̄ (un)
E

[
rn+h∑

j=τA+1

1{|X0 | > sun}1{|Xj | > sun}|X0/un|q1|Xj/un|q2
]

= o(1) , (4.7)

uniformly with respect to s ≥ s0.

Proof. Let the left hand side of (4.7) be denoted by Rn(s). Then, by the strong Markov
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property,

Rn(s) ≤ 1

F̄ (un)
E

[
1{|X0 | > uns}|X0/un|q1E

[
rn+h∑

j=τA+1

1{|Xj | > uns0}|Xj/un|q2 | YτA

]]

≤ 1

F̄ (un)
E

[
1{|X0 | > uns0}|X0/un|q1E

[
rn+τA+h∑

j=τA+1

1{|Xj | > uns0}|Xj/un|q2 | YτA

]]

≤ 1

F̄ (un)
E [1{|X0 | > uns0}|X0/un|q1] EA

[
rn+h∑

j=1

1{|Xj | > uns0}|Xj/un|q2
]
.

By classical regenerative arguments, Kac’s formula (4.3) and regular variation, we obtain
as n→ ∞ (and since h is fixed),

EA

[
rn+h∑

j=1

1{|Xj | > uns0}|Xj/un|q2
]
∼ rn

EA[τA]
EA

[
τA∑

j=1

1{|Xj | > uns0}|Xj/un|q2
]

≤ rnF̄ (un)
E[1{|X0 | > uns0}|X0/un|q2]

F̄ (un)
= O(rnF̄ (un)) .

This yields, applying again the drift condition, Condition (2.4) and Jensen’s inequality,

sup
s≥s0

Rn(s) = O(rn)E [1{|X0 | > uns0}|X0/un|q1]

= O(rnF̄ (un))
E
[
V q1/q0(Y0) | |X0| > uns0

]

uq1n

= O(rnF̄ (un))

(
E [V (Y0) | |X0| > uns0]

uq0n

)q1/q0
= o(1) .

Lemma 4.3. Let Assumption 2.1 hold. Then S(un, rn, ψǫ) holds.

Proof. For j ≥ h, we have

0 ≤ |ψǫ(X0,h/un)||ψǫ(Xj,j+h/un)|

≤ cstu−q0n

h∑

i1,i2,i3,i4=0

1{|Xi1 | > unǫ}|Xi2|q0/21{|Xj+i3 | > unǫ}|Xj+i4|q0/2 . (4.8)

For all i, i′, we can write

1{|Xi | > unǫ}|Xi′/un|q0/2

= 1{|Xi | > unǫ}1{|Xi′ | ≤ unǫ}|Xi′/un|q0/2 + 1{|Xi | > unǫ}1{|Xi′ | > unǫ}|Xi′/un|q0/2

≤ 1{|Xi | > unǫ}ǫq0/2 + 1{|Xi′ | > unǫ}|Xi′/un|q0/2

≤ 1{|Xi | > unǫ}|Xi/un|q0/2 + 1{|Xi′ | > unǫ}|Xi′/un|q0/2 .
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Thus, we can restrict the sum in (4.8) to the set of indices (i1, i2, i3, i4) such that i1 = i2
and i3 = i4. For L > h and i, i′ ≤ h, we have by Lemmas 4.1 and 4.2 and by stationarity,

1

F̄ (un)
E

[ rn∑

j=2L

1{|Xi | > uns}1{|Xj+i′ | > uns}|Xi/un|q0/2|Xj+i′/un|q0/2
]

≤ 1

F̄ (un)
E

[ rn∑

j=2L

1{|X0 | > uns}1{|Xj+i′−i| > uns}|X0/un|q0/2|Xj+i′−i/un|q0/2
]

≤ 1

F̄ (un)
E

[ rn+h∑

j=2L−h

1{|X0 | > uns}1{|Xj | > uns}|X0/un|q0/2|Xj/un|q0/2
]

≤ 1

F̄ (un)
E

[
τA∑

j=L

1{|X0 | > uns}1{|Xj | > uns}|X0/un|q0/2|Xj/un|q0/2
]

+
1

F̄ (un)
E

[
rn+h∑

j=τA+1

1{|X0 | > uns}1{|Xj | > uns}|X0/un|q0/2|Xj/un|q0/2
]

≤ cst κ−L0 Qn(s) + o(1) .

where the o(1) term is uniform with respect to s ≥ s0. The bound (2.4) in Assumption 2.1
implies that Qn is asymptotically uniformly bounded on [s0,∞). Therefore,

lim sup
n→∞

1

F̄ (un)
E

[ rn∑

j=L

1{|X0 | > uns}1{|Xj | > uns}|X0/un|q0/2|Xj/un|q0/2
]

= O(κ−L0 ) .

Since κ0 > 1, this proves (4.4).

4.2 Proof of Theorem 2.3

Fix q ≤ q0/(2 + δ). We apply Theorem 3.4 to the sequence ξj = (Xj, . . . , Xj+h), j ∈ Z in

order to prove that Mn
fi.di.−→ M on Mhq,ǫ for each ǫ > 0, where hq,ǫ is defined on Rh+1 by

hq,ǫ(x) = |x|q1{|x| > ǫ} . (4.9)

Since Lq = ∪ǫ>0Mhq,ǫ, this will prove Theorem 2.3.

(i) Assumption 2.1 implies S(un, rn, hq,ǫ) (cf. Lemma 4.3 and note that hq0/2,ǫ = ψǫ) and
β-mixing with geometric rate. Therefore we can choose rn = log1+η(n) and ℓn = c log(n)
for c large enough so that (3.10) holds.

(ii) Since q(2 + δ) ≤ q0, assumptions (2.3) and (2.4) imply that Condition (3.2) holds for
ψ = hq,ǫ.

(iii) With rn as above, Conditions (2.9) and (2.10) are exactly (3.8) and (3.9).
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4.3 Proof of Theorem 2.4

Let ℓ0(R
h+1) be the set of Rh+1-valued sequences x = (xj)j∈Z such that lim|j|→∞ |xj | = 0.

Let Hq be the set of functions f defined on ℓ0(R
h+1) for which there exists φ ∈ Lq such

that

f(x) =
∑

j∈Z

φ(xj) , x ∈ ℓ0(R
h+1) .

Since functions in Lq vanish in a neighborhood of zero, the series has finitely many non
zero terms and the function φ is uniquely determined by f and will be denoted φf . We
define a pseudometric ρ on Hq (with q < q0/(2 + δ) by

ρ2(f, g) = ρ2h(φ
f , φg) = ν0,h({φf − φg}2) . (4.10)

Let {rn} be as in (i) of the proof of Theorem 2.3 and let mn = [n/rn]. Set Xn,i =
u−1
n (X(i−1)rn+1,(i−1)rn+h+1, . . . ,X irn,irn+h) and identify it with an element of ℓ0(R

h+1) by
adding zeros on both sides. Then

Zn,i(f) = f(Xn,i) =

irn∑

j=(i−1)rn+1

φf(u−1
n Xj,j+h) , Zn(f) =

mn∑

i=1

Zn,i(f) ,

Z̄n(f) =
1√

nF̄ (un)
(Zn(f) − E[Zn(f)]) .

Let Z be the Gaussian process on Hq defined by Z(f) = M(φf ). Under the assumptions
of Theorem 2.3 and with rn = log1+η(n), we have

1√
nF̄ (un)

n∑

i=rn[n/rn]+1

{
φf(u−1

n Xj,j+h) − E[φf(u−1
n X0,h)]

}
= oP (1) .

Moreover, since the envelope function belongs to Lq, we can apply Lemma 3.3 (in view of
Lemma 4.3) and we obtain

sup
f∈Ĝ

∣∣Mn(φf) − Z̄n(f)
∣∣ ≤ 1√

nF̄ (un)

n∑

j=mnrn+1

ΦG(Xn,j/un) +
rnF̄ (un)√
nF̄ (un)

E[ΦG(Xn,0/un)]

F̄ (un)

= OP

(√
rn
n

)
+O

(
rnF̄ (un)√
nF̄ (un)

)
= oP (1) .

Thus Z̄n(f) = Mn(φf) + oP (1) uniformly on Hq and Z̄n
fi.di.−→ Z on Hq.

We define the subclass Ĝ of Hq associated to the subclass G of Lq by Ĝ = {f : f(x) =∑
j∈Z φ(xj), φ ∈ G}. Arguing as in (Drees and Rootzén, 2010, Proof of Theorem 2.8), in

order to prove weak convergence of Z̄n, it suffices to prove the tightness of the process Z∗
n

summing independent copies of Z∗
n,i of Zn,i indexed by the class Ĝ. For this purpose, we

apply Theorem A.2.
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− The pointwise separability of G implies that Ĝ is also pointwise separable.

− The property (4.10) yields that (Ĝ, ρ) is totally bounded since (G, ρh) is totally bounded
by assumption.

− Since the envelope function ΦG is assumed to be in Lq and Lq = ∪ǫ>0Mhq,ǫ, Lemma 3.7
implies that the Lindeberg condition (A.2) holds.

− We now check (A.3). For f, g ∈ Ĝ, we have

ρ(f, g) = lim
n→∞

1

F̄ (un)
E[{φf (X0,h/un) − φg(X0,h/un)}2] , (4.11)

Since the envelope function of G is in Lq, there exists ǫ > 0 (which depends only on G) such
that |φf | ∨ |φg| ≤ ǫ−1hq,ǫ (defined in (4.9)). Set φn,j = φf(Xj,j+h/un)−φg(Xj,j+h/un). For
every integer L > 0, by stationarity, we have

1

rnF̄ (un)
E[{Zn,1(f) − Zn,1(g)}2]

≤ 2

F̄ (un)

L∑

j=0

E [|φn,0||φn,j|] +
2

F̄ (un)

rn∑

j=L+1

E [|φn,0||φn,j|]

≤
2(L+ 1)E[φ2

n,0]

F̄ (un)
+

cst

F̄ (un)

rn∑

j=L+1

E [hq,ǫ(X0,h/un)hq,ǫ(Xj,j+h/un)] .

By Lemma 4.3, for every η > 0, we can choose L such that

lim sup
n→∞

1

F̄ (un)

rn∑

j=L+1

E [hq,ǫ(X0,h/un)hq,ǫ(Xj,j+h/un)] ≤ η . (4.12)

Applying this bound and the assumption (2.13) yields, for any sequence δn decreasing to
zero,

lim sup
n→∞

sup
f,g∈Ĝ

ρ(f,g)≤δn

1

rnF̄ (un)
E
[
(Zn,1(f) − Zn,1(g))2

]
≤ η . (4.13)

Since η is arbitrary, this proves (A.3).

− Since G is linearly ordered, so is Ĝ thus it is a VC subgraph class and the entropy
condition (A.4) holds by (Giné and Nickl, 2016, Theorem 3.7.37).

We have checked all the assumptions of Theorem A.2. Therefore, Z∗
n and hence Z̄n

converges to Z in ℓ∞(Ĝ) and since M(φf) = Z(f) by definition, this proves our result.
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4.4 Proof of Corollaries 2.5 and 2.6

We first apply Theorem 2.4 with GI = {Is = 1(s,∞)×Rh , s ∈ [s0, t0]} for 0 < s0 ≤ 1 ≤ t0.
Then

ρh(Is, It) = |s− t|−α ≤ αs−α−1
0 |s− t| .

The class GI is pointwise separable, linearly ordered and totally bounded for the metric
ρh. Condition (2.13) holds by regular variation and the uniform convergence theorem. The
envelope of GI is Is0 which belongs to Lq. This proves Corollary 2.5.

We now prove Corollary 2.6. Set

Bn,1(s) =
√
k{E[Mn(Is)] − s−α} , Bn,2(s) =

√
k{E[Mn(φs)] − ν0,h(φs)} .

By conditions (2.15) and (2.17), we have limn→∞ sups∈[s0,t0]Bn,i(s) = 0, i = 1, 2. Using
this bound and ν0,h(φs) = s−αν0,h(φ), we obtain after some algebra,

√
k

(
Mn(φs)

Mn(Is)
− ν0,h(φ)

)
=

Mn(φs) − ν0,h(φ)Mn(Is) − ν0,h(φ)Bn,1(s) +Bn,2(s)

Mn(Is)

=
Mn(φs) − ν0,h(φ)Mn(Is) + o(1)

Mn(Is)
,

the term o(1) begin uniform in s ∈ [s0, t0] and φ ∈ G0. Moreover,

Mn(Is) = s−α + k−1/2
Mn(Is) + k−1/2Bn,1(s) = s−α + op(1) ,

again uniformly in s ∈ [s0, t0]. Therefore,

√
k

(
Mn(φs)

Mn(Is)
− ν0,h(φ)

)
=

Mn(φs) − ν0,h(φ)Mn(Is) + o(1)

s−α + oP (1)
, (4.14)

the terms oP (1) begin uniform in s ∈ [s0, t0] and φ ∈ G0. Set ζn = Xn:n−k/un. Since
Mn(Iζn) = 1,

M̂n(φ) =
√
k

(
Mn(φζn)

Mn(Iζn)
− ν0,h(φ)

)
,

and ζn
p→ 1 (see comments after Corollary 2.5), we finally obtain that

M̂n(φ) =
Mn(φζn) − ν0,h(φ)Mn(Iζn) + o(1)

ζ−αn + oP (1)
⇒ M(φ) − ν0,h(φ)M(1[1,∞)×Rh ) ,

on ℓ∞(G0).
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4.4.1 Proof for Example 2.8

By homogeneity of ν0,h, the semimetric ρh on the class G for this example becomes, for
s0 < s < t,

ρ2h(φs, φt) = ν0,h({1{x0 + · · · + xh > s} − 1{x0 + · · · + xh > t}}2)
= ν0,h(Ah)(s

−α − t−α) ≤ cst · (t− s) .

Thus (G, ρh) is totally bounded. Moreover, by regular variation and the uniform conver-
gence theorem, the convergence

lim
n→∞

1

F̄ (un)
E
[
{1{X0 + · · · +Xh > sun} − 1{X0 + · · · +Xh > tun}}2

]
= ρ2h(φs, φt)

is uniform on [s0, t0]
2. Thus (2.13) holds.

4.4.2 Proof for Example 2.9

Since α > 2, the semimetric ρh on the class G for to this example becomes, for s0 < s < t,

ρ2h(φs, φt) = E[{s−1Yh1{Y0 > s} − t−1Yh1{Y0 > t}}2]

=
αE[Θ2

h]

α− 2

{
(s−α + t−α − 2

1

st
(s ∨ t)−α+2

}

≤ αE[Θ2
h]

α− 2
(s−α − t−α) ≤ cst · (t− s) .

Thus (G, ρh) is totally bounded. Moreover, by regular variation and the uniform conver-
gence theorem, the convergence

lim
n→∞

1

u2nF̄ (un)
E
[
{s−1Xh1{X0 > sun} − t−1Xh1{X0 > tun}}2

]
=
αE[Θ2

h]

α− 2
(s−α − t−α)

is uniform on [s0, t0]
2. Thus (2.13) holds.

4.4.3 Proof of Theorem 2.11

Consider sets

Cs,y(x) = {x ∈ R
h+1 : |x0| > s, xh ≤ |x0|y} .

for s0 ≤ s ≤ t0 and y ∈ [a, b]. The fidi convergence on the class {1Cs,y , s0 ≤ s ≤ t0, y ∈
[a, b]} is a consequence of Theorem 2.3. We only need to prove tightness over s ∈ [s0, t0] at
one point y in order to conclude the tightness over a finite collection of points y1, . . . . , yk,
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k ≥ 0. Define the linearly ordered class G = {1Cs,y , s0 ≤ s ≤ t0}. The class G is pointwise
separable and its envelope function 1Cs0 ,y

is in L0. We now prove that (G, ρh) is totally
bounded. For s0 ≤ s < t, we have

ρ2h((1Cs,y − 1Ct,y )2) = {s−α + t−α − 2t−α}Lh(y)

≤ s−α + t−α − 2t−α ≤ αs−α−1
0 |s− t| . (4.15)

Thus the class (G, ρh) is totally bounded. Moreover, the convergence

lim
n→∞

1

F̄ (un)
E

[
(1{|X0 | > sun}1{Xh ≤ |X0|y} − 1{|X0 | > tun}1{Xh ≤ |X0|y′})

2
]

= {s−α + t−α − 2(s ∨ t)−α}Lh(y)

is uniform on compact sets [s0, t0] because of monotonicity. Therefore (2.13) holds.

5 Proof of Proposition 2.14

Let Nn be the number of returns to the state 1 before time n, that is

Nn =

n∑

j=0

1{Xj = 1} .

Set also σ−1 = −∞, σ0 = X0−1 and σj = X0−1+
∑j

k=1Zσk−1+1 for j ≥ 1. Then, {Nn} is
the counting process associated to the delayed renewal process {σn}. That is, for n, k ≥ 0,

Nn = k ⇔ σk−1 ≤ n < σk ,

Since E[Z0] < ∞, setting λ = 1/E[Z0], we have Nn/n → λ a.s. With this notation, we
have, for every s > 0,

n∑

j=0

1{Xj > uns} = (X0 − [uns])+ +

Nn∑

j=1

(Zσj−1+1 − [uns])+ + ςn , (5.1)

where ςn = (n − σNn) ∧ (ZNn − [uns])+ is a correcting term accounting for the possibly
incomplete last portion of the path. Since ςn = OP (1), it does not play any role in the
asymptotics.

• Consider the case limn→∞ nF̄Z(un) = 0. Then, for an integer m > λ,

P

(
Nn∑

j=1

(Zj − [uns])+ 6= 0

)
≤ P(Nn > mn) + P

(
mn∑

j=1

(Zj − [uns])+ 6= 0

)

≤ P(Nn > mn) + P(∃j ∈ {1, . . . , mn}, Zj > [uns])

≤ P(Nn > mn) +mnF̄Z([uns]) → 0 , n→ ∞.

This proves our first claim.
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We proceed with the case limn→∞ nF̄Z(un) = ∞. Using (2.28) and (5.1) we have

n∑

j=0

{1{Xj > uns} − P(X0 > uns)} =
Nn∑

j=1

{(Zσj−1+1 − [uns])+ − E[(Z0 − [uns])+]}

+ (X0 − [uns])+ + ςn + {Nn − λn)E[(Z0 − [uns])+] . (5.2)

• Consider the case nF̄Z(un) → ∞ and β ∈ (1, 2). Since limn→∞E[(Z0 − [uns])+] = 0, we
obtain, for every s > 0,

a−1
n

n∑

j=0

{1{Xj > uns} − P(X0 > uns)}

= a−1
n

Nn∑

j=1

{Zσj−1+1 − E[Z0]}−a−1
n

Nn∑

j=1

{Zσj−1+1 ∧ [uns] − E[Z0 ∧ [uns]]} + oP (1) .

By regular variation of F̄Z , we obtain

var

(
n∑

j=1

{Zj ∧ [uns] − E[(Z0 ∧ [uns])]}
)

= O(u2nnF̄Z(un)) .

The regular variation of F̄Z and the conditions nF̄Z(un) → ∞ and nF̄Z(an) → 1 imply

that un/an → 0. Define h(x) = x
√
F̄Z(x). The function h is regularly varying at infinity

with index 1 − β/2 > 0 and thus

lim
n→∞

un
√
nF̄Z(un)

an
= lim

n→∞

un
√
F̄Z(un)

an
√
F̄Z(an)

= lim
n→∞

h(un)

h(an)
= 0 .

This yields

a−1
n

n∑

j=0

{1{Xj > uns} − P(X0 > uns)} = a−1
n

Nn∑

j=1

{Zσj−1+1 − E[Z0]} + oP (1) ,

where the oP (1) term is locally uniform with respect to s > 0. Since the distribution
of Z0 is in the domain of attraction of the β-stable law and the sequence {Zj} is i.i.d.,
{a−1

n (σ[ns] − λ−1ns), s > 0} ⇒ Λ, where Λ is a mean zero, totally skewed to the right β-
stable Lévy process, and the convergence holds with respect to the J1 topology on compact
sets of (0,∞). Since limn→∞Nn/n = λ a.s., and since a Lévy process is stochastically
continuous, this yields, by (Whitt, 2002, Proposition 13.2.1),

a−1
n

Nn∑

j=1

{Zσj−1+1 − E[Z0]} d→ Λ(λ) , n→ ∞.

This proves the second claim.
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• Consider now the case β > 2. In that case, Vervaat’s Lemma implies that (Nn−λn)/
√
n

converges weakly to a gaussian distribution. Thus, (5.2) combined with E[(Z0− [uns])+] =
O(unF̄Z(un)), yields

(Nn − λn)E[(Z0 − [uns])+] = OP (unF̄Z(un)
√
n) .

Next, we apply the Lindeberg central limit theorem for triangular arrays of independent
random variables to prove that

1

un
√
nF̄Z(un)

n∑

j=1

{(Zσj−1+1 − [uns])+ − E[(Z0 − [uns])+]} d→ N

(
0,

2s1−α

α(α− 1)

)
.

By regular variation of F̄Z , we have, for all δ ∈ [2, β),

E[(Z0 − uns)
δ
+] ∼ Cδu

δ
nF̄Z(un)sδ−β ,

with Cδ = δ
∫∞

1
(z − 1)δ−1z−βdz. Set

Yn,j(s) =
1

un
√
nF̄Z(un)

{(Zj − [uns])+ − E[(Z0 − [uns])+]} .

The previous computations yield, for δ ∈ (2, β) and s > 0,

lim
n→∞

nvar(Yn,1(s)) =
2s2−β

(β − 1)(β − 2)
,

nE[|Yn,1|δ] = O

(
nuδnF̄Z(un)

uδn{nF̄Z(un)}δ/2
)

= O
(
{nF̄Z(un)}1−δ/2

)
= o(1) .

We conclude that the Lindeberg central limit theorem holds. Convergence of the finite
dimensional distribution is done along the same lines. Tightness with respect to the J1
topology on (0,∞) is proved by applying (Billingsley, 1999, Theorem 13.5).

A Convergence in ℓ∞

Theorem A.1 (Giné and Nickl (2016, Theorem 3.7.23)). Let {Zn, n ∈ N}, be a sequence
of processes with values in ℓ∞(F). Then the following statements are equivalent.

(i) The finite dimensional distributions of the processes Zn converge in law and there
exists a pseudometric ρ on F such that (F , ρ) is totally bounded and for all ǫ > 0,

lim
δ→0

lim sup
n→∞

P
∗

(
sup

ρ(f,g)<δ

|Zn(f) − Zn(g)| > ǫ

)
= 0 . (A.1)

33



(ii) There exists a process Z whose law is a tight Borel probability measure on ℓ∞(F) and
such that Zn ⇒ Z in ℓ∞(F).

Moreover, if (i) holds, then the process Z in (ii) has a version with bounded uniformly
continuous paths for ρ.

The following result provides a sufficient condition for (A.1) above. Let {Xn,i, 1 ≤ i ≤
mn}, n ≥ 1, be an array of row-wise i.i.d. random elements in a measurable space (X,X )
and define Zn,i(f) = f(Xn,i), f ∈ F . Let an be a non decreasing sequence and F be a set
of measurable functions defined on X. Define the random pseudometric dn on F by

d2n(f, g) =
1

a2n

mn∑

i=1

{f(Xn,i) − g(Xn,i)}2 , f, g ∈ F .

Let N(ǫ,F , dn) be the minimum number of balls in the pseudometric dn needed to cover F .
Let Zn be the empirical process defined by

Zn(f) =
1

an

mn∑

i=1

{f(Xn,i) − E[f(Xn,i)]} , f ∈ F .

Define finally the sup-norm ‖H‖F = supf∈F |H(f)| for any functional H on F . If F is
a pseudometric space and H is measurable on F then the separability of F implies that
‖H‖F is measurable.

Theorem A.2 (Adapted from van der Vaart and Wellner (1996, Theorem 2.11.1)). As-
sume that the pseudometric space F is totally bounded and pointwise separable.

(i) For all η > 0,

lim
n→∞

a−2
n mnE[‖Zn,1‖2F1{‖Zn,1‖F > ηan}] = 0 . (A.2)

(ii) For every sequence {δn} which decreases to zero,

lim
n→∞

sup
f,g∈F

ρ(f,g)≤δn

E[d2n(f, g)] = 0 , (A.3)

∫ δn

0

√
logN(ǫ,F , dn)dǫ

P−→ 0 . (A.4)

Then Zn is asymptotically ρ-equicontinuous, i.e. (A.1) holds. .
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