
HAL Id: hal-01228821
https://hal.science/hal-01228821v3

Preprint submitted on 25 Jul 2017 (v3), last revised 2 Mar 2018 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NEW STABILITY RESULTS FOR SPHERES AND
THE WULFF SHAPES

Julien Roth

To cite this version:
Julien Roth. NEW STABILITY RESULTS FOR SPHERES AND THE WULFF SHAPES. 2017.
�hal-01228821v3�

https://hal.science/hal-01228821v3
https://hal.archives-ouvertes.fr


NEW STABILITY RESULTS FOR SPHERES AND THE WULFF

SHAPES

JULIEN ROTH

Abstract. We prove that a closed convex hypersurface of a Euclidean space

with almost constant anisotropic first and second mean curvatures in the Lp-
sense is W 2,p-close (up to rescaling and translations) to the Wulff shape. We

also obtain characterizations of geodesic hypersphere of space forms improving

those of [7] and [8].

1. Introduction

Let F : Sn −→ Rn+1 be a smooth function satisfying the following convexity
assumption

(1) AF = (∇dF + F Id |TxSn)x > 0,

for all x ∈ Sn, where ∇dF is the Hessian of F . Here, > 0 mean positive definite in
the sense of quadratic forms. Now, we consider the following map

φ : Sn −→ Rn+1

x 7−→ F (x)x+ (grad|SnF )x

The imageWF = φ(Sn) is called the Wulff shape of F and is a smooth hypersurface
of Rn+1. Moreover, by the condition (8), WF is convex. Note that if F = 1, the
the Wulff shape is the sphere Sn. Now, let (Mn, g) be a n-dimensional com-
pact, connected, oriented manifold without boundary, isometrically immersed into
by X into Rn+1. We denote by ν a normal unit vector field globally defined on
M , that is, we have ν : M −→ Sn. We set SF = AF ◦ dν, where AF is defined in
(1). SF is called the F -Weingarten operator or anisotropic shape operator, and we
can defined in this anisotrpic setting all the corresponding extrinsic quantities like
anisotropic principal curvatures and anisotropic mean curvature and higher order
mean curvature (see the preliminaries section for the precise definitions).

In the isotropic context, geodesic hyperspheres in Euclidean spaces can be char-
acterized among closed hypersurfaces by various properties. In particular, it is
well known that geodesic hyperspheres are the only totally umbilical closed con-
nected hypersurfaces in Euclidean spaces. The question of the stability of this
characterization has been intensively studied in the last years by many authors (see
[1, 3, 6, 7, 8, 9, 10] and references therein for instance). In the anisotropic setting,
the so-called Wulf shape plays the role of geodesic spheres and can be character-
ized by similar results (see [4, 5] for instance). Analogously to spheres, the Wulff
shape is, up to homotheties, the only closed convex hypersurfaces with vanishing
traceless anisotropic second fundamental form. Very recently, De Rosa and Gioffrè
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[2] studied the stability of this characterization. Namely, they proved that if the
traceless part of the anisotropic second fundamental form is sufficiently small, then
the hypersurface is closed to the Wulff shape. The aim of the present note is first
to obtain a new stability result concerning the Wulff shape. Namely, we prove the
following stability result.

Theorem 1.1. Let n > 2 an integer, F : Sn −→ R be a smooth function satisfying
the convexity assumption (8), h > 0, p > 1 and R > 0. Let M a closed and
oriented hypersurface pf Rn+1 bounding a convex domain. Assume that V ol(M) =
V ol(WF ) and that the extrinsic radius of M is smaller than R. Then, there exists
ε0(n, p, h,R, F ) > 0 such that if for ε 6 ε0, we have

• ‖HF − h‖p < εh and
• ‖HF

2 − h2‖p < εh2 for a constant h2,

then M is closed to the Wulff shape in the following sense : there exists a smooth
parametrisation ψ : WF −→ M , a vector c0 ∈ Rn+1 and a constant K depending
on n, p, h,R and F so that

‖ψ − Id− c0‖W 2,p(W) 6 Kε
p
2 .

Remark 1.2. • Here V ol(M) is the volume of M for the induced metric g.
• We recall that the extrinsic radius of M is the radius of the smallest closed

ball in Rn+1 containing M .
• Note that the right-hand sides in both pinching conditions of the theorem

are respectively hε and h2ε for some homogeneity reasons, since for the
Wulff shape, we have HF

2 = (HF )2. Equivalently, they can be replaced by
ε
R and ε

R2 .

This result is a generalization in the anisotroic context of the main result of [7],
but not only since the hypothesis are that both first and second anisotropic mean
curvatures are close to constants for the Lp-norm. We can alos improve the results
of [7] for space forms in the same way and obtain new characterizations of geodeisc
hyperspheres under weaker assumptions. Namely we prove the following result.

Theorem 1.3. Let n > 2 an integer, h > 0, p > n and R > 0. Assume that
V ol(M) = V ol(S2) and that the extrinsic radius of M is smaller than R. If δ > 0,
assume moreover that M is contained in an open hemisphere. Then, there exist
ε0(n, p, h,R) > 0, C(n, p, h,R) and β(n, p) 6 1 such that if for ε 6 ε0, we have

• ‖H − h‖p < εh and
• ‖H2 − h2‖p < εh2 for a constant h2,

then M is diffeomorphic and Kεβ-close to a geodesic hypersphere of radius 1
‖H‖2 .

Remark 1.4. • For more convenience, we wrote the above theorem with H2,
but due to the twice traced Gauss, formula, we have n(n−1)H2 + δ = Scal ,
we can reformulate equivalentely the theorem with almost constant scalar
curvature.
• Note that considering Lp-norms instead of pointwise almost proximity to

constant is not the only improvement. Indeed, in the case where δ > 0, we
need that M is contained in an open hemisphere that is a geodeisc ball of
radius π

2
√
δ

whereas in [7], the assumption was that M is contained in a

geodesic ball of radius π
4
√
δ
.
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From the following theorem, we can obtain new characterizations of geodesic
hypersphere.

Corollary 1.5. Let (Mn, g) be a closed and oriented Riemannian manifold, iso-
metrically immersed into Mn+1

δ and p > n. If δ > 0, we assume that M is contained
in a ball of radius π

2
√
δ
. Let h > 0 Then, there exists ε(n, h, δ) > 0 such that if M

has constant mean curvature H = h, and ‖Scal − s‖p < ε for a constant s, then M
is a geodesic sphere.

Corollary 1.6. Let (Mn, g) be a closed and oriented Riemannian manifold, iso-
metrically immersed into Mn+1

δ and p > n. If δ > 0, we assume that M is contained
in a ball of radius π

2
√
δ
. Let s > 0 Then, there exists ε(n, δ) > 0 such that if M has

constant scalar curvature Scal = s, and ‖H − h‖p < ε for a constant h, then M is
a geodesic sphere.

When p ∈ (1, n], one can not obtain similar result, since we use a pichning result
for almost umbilical hypersurfaces for the Lp-norm with p > n. Nevertheless, we
can obtain for the Euclidean space a stability result comparable to Theorem 1.1,
with the assumption that the hypersurface is convex using a result by Gioffrè [3].
Namely, we have the following for p > 1 which can also be deduced form Theorem
1.1 for F = 1.

Corollary 1.7. Let n > 2 an integer, h > 0, p > 1 and R > 0. Let M a
closed and oriented hypersurface pf Rn+1 bounding a convex domain. Assume that
V ol(M) = V (Sn) and that the extrinsic radius of M is smaller than R. Then, there
exists ε0(n, p, h,R) > 0 such that if for ε 6 ε0, we have

• ‖H − h‖p < εh and
• ‖H2 − h2‖p < εh2 for a constant h2,

then M is closed to the unit sphere in the following sense : there exists a smooth
parametrisation ψ : Sn −→M , a vector c0 ∈ Rn+1 and a constant K depending on
n, p, h and R so that

‖ψ − Id− c0‖W 2,p(W) 6 Kε
p
2 .

Remark 1.8. Note that there is no interest here to obtain corollaries comparable
to Corollaries 1.5 and 1.6. Indeed, if the hypersurface (which is supposed to bound
a domain) has constant mean curvature, the Alexandrov theorem gives that M is a
sphere without need of the almost constancy of the scalar curvature.

Remark 1.9. In all the statements, we assume a normalization of the volume for a
sake of simplicity, but be scaling, we can obtain statements with constants depending
also on the volume.

2. Preliminaries

Let (Mn, g) be a n-dimensional compact, connected, oriented Riemannian man-
ifold without boundary, isometrically immersed into the (n+1)-dimensional simply
connected real space form Mn+1

δ of constant curvature δ. The (real-valued) second
fundamental form B of the immersion is the bilinear symmetric form on Γ(TM)
defined for two vector fields X,Y by

B(X,Y ) = −g
(
∇Xν, Y

)
,
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where ∇ is the Riemannian connection on Mn+1
δ and ν a normal unit vector field

on M . When M is embedded, we choose ν as the inner normal field.
From B, we can define the mean curvature,

H =
1

n
tr (B).

Now, we recall the Gauss formula. For X,Y, Z,W ∈ Γ(TM),

(2) R(X,Y, Z,W ) = R(X,Y, Z,W ) + 〈AX,Z〉 〈AY,W 〉 − 〈AY,Z〉 〈AX,W 〉

where R and R are respectively the curvature tensor of M and Mn+1
δ , and A is the

Weingarten operator defined by AX = −∇Xν.
By taking the trace and for W = Y , we get

(3) Ric(Y ) = Ric(Y )−R(ν, Y, ν, Y ) + nH 〈AY, Y 〉 −
〈
A2Y, Y

〉
Since, the ambient space is of constant sectional curvature δ, by taking the trace a
seconde time, we have

(4) Scal = n(n− 1)δ + n2H2 − |A|2,

or equivalently

(5) Scal = n(n− 1)
(
H2 + δ

)
− |τ |2,

where τ = A−HId is the umbilicity tensor.
Now, we define the higher order mean curvatures, for k ∈ {1, · · · , n}, by

Hk =
1(
n
k

)σk(κ1, · · · , κn),

where σk is the k-th elementary symmetric polynomial and κ1, · · · , κn are the
principal curvatures of the immersion.

From the definition, it is obvious that H1 is the mean curvature H. We also
remark from the Gauss formula (2) that

(6) H2 =
1

n(n− 1)
Scal − δ.

On the other hand, we have the well-known Hsiung-Minkowski formula

(7)

∫
M

(
Hk+1 〈Z, ν〉+ cδ(r)Hk

)
= 0,

where r(x) = d(p0, x) is the distance function to a base point p0, Z is the position
vector defined by Z = sδ(r)∇r, and the functions cδ and sδ are defined by

cδ(t) =

 cos(
√
δt) if δ > 0

1 if δ = 0

cosh(
√
−δt) if δ < 0

and sδ(t) =


1√
δ

sin(
√
δt) if δ > 0

t if δ = 0
1√
−δ sinh(

√
−δt) if δ < 0

Finally, we define the function tδ = sδ
cδ

.

On the other hand, let F : Sn −→ Rn+1 be a smooth function satisfying the
following convexity assumption

(8) AF = (∇dF + F Id |TxSn)x > 0,
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for all x ∈ Sn, where ∇dF is the Hessian of F . Here, > 0 mean positive definite in
the sense of quadratic forms. Now, we consider the following map

φ : Sn −→ Rn+1

x 7−→ F (x)x+ (grad|SnF )x

The imageWF = φ(Sn) is called the Wulff shape of F and is a smooth hypersurface
of Rn+1. Moreover, by the condition (8), WF is convex. Note that if F = 1, the
the Wulff shape is the sphere Sn.

Now, let (Mn, g) be a n-dimensional compact, connected, oriented manifold
without boundary, isometrically immersed into by X into Rn+1. We denote by ν a
normal unit vector field globally defined on M , that is, we have ν : M −→ Sn. We
set SF = AF ◦ dν, where AF is defined in (8). SF is called the F -Weingarten oper-
ator or anisotropic shape operator, and it eigenvalues are the anisotropic principal
curvatures that we will denote κ1, κ2, · · · , κn. Finally, for r ∈ {1, · · · , n}, the r-th
anisotropic mean curvature is defined by

HF
r =

1(
n
r

) ∑
i1<···<ir

κi1 · · ·κir .

We also set HF
0 = 1 for convenience. Note that if F = 1 then this is the defini-

tion of the classical r-th mean curvatures and the Wulff shpae is just the unit sphere.

We finally recall these integral forumlas proved by He and Li in [4] and which
generalize the classical Hsiung-Minkowski formulas (7) in the anisotropic setting.

(9)

∫
M

(
F (ν)HF

r−1 +HF
r < X, ν >

)
dvg = 0.

Now, we have the ingredient to prove the results.

3. Key lemmas

Using the integral formula (9), we are able to prove the following techincal lemma.

Lemma 3.1. Let (Mn, g) be a closed Riemannian manifold, isometrically immersed
into Rn+1 and assume that the extrinsic radius of M is smaller than R. Let h and
h2 be two positive constants and ε ∈ (0, 1). If the first and second anisotropic mean
curvatures satisfy

• ‖HF − h‖p < εh and
• ‖HF

2 − h2‖p < εh2,

for some positive ε, then ∣∣∣h2 − h2∣∣∣ 6 Aε,
where A is an explicit positive constant depending on h, R and F .

Proof. The proof of this lemma is based on the Hisung-Minkowski formulas (9) for
r = 1 and k = 2. Indeed, the Hisung-Minkowski formula for r = 2 is the following

(10)

∫
M

(
HF

2 〈X, ν〉+ F (ν)HF
)
dvg = 0.
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Then, we get

0 =

∫
M

(
HF

2 〈X, ν〉+ F (ν)H
)
dvg

=

∫
M

(
h2 〈X, ν〉+ F (ν)H

)
dvg +

∫
M

(HF
2 − h2) 〈X, ν〉 dvg

=
h2
h

∫
M

h 〈X, ν〉+

∫
M

F (ν)HF dvg +

∫
M

(H2 − h2) 〈X, ν〉 dvg

=
h2
h

∫
M

HF 〈X, ν〉 dvg +
h2
h

∫
M

(h−HF ) 〈X, ν〉 dvg +

∫
M

F (ν)hdvg +

∫
M

F (ν)(HF − h)dvg

+

∫
M

(HF
2 − h2) 〈X, ν〉 dvg

Now, we use the Hsiung-Minkowski formula for r = 1, that is

(11)

∫
M

(
HF 〈X, ν〉+ F (ν)

)
dvg = 0,

to get

0 = −h2
h

∫
M

F (ν)dvg +
h2
h

∫
M

(h−HF ) 〈X, ν〉 dvg +

∫
M

F (ν)hdvg +

∫
M

F (ν)(HF − h)dvg

+

∫
M

(HF
2 − h2) 〈X, ν〉 dvg

=

(
h− h2

h

)∫
M

F (ν)dvg +
h2
h

∫
M

(h−HF ) 〈X, ν〉 dvg +

∫
M

F (ν)(HF − h)dvg

+

∫
M

(HF
2 − h2) 〈X, ν〉 dvg

Then, since |〈X, ν〉| 6 R, using the Hölder inequality and both conditions
‖HF − h‖p < εh and ‖HF

2 − h2‖p < εh2, we get∣∣∣h− h2
h

∣∣∣ ∫
M

F (ν)dvg 6 h2εRV ol(M) + εh sup(F )V ol(M) + εh2RV ol(M).

Using the fact that |HF
2 | 6

(
HF
)2

, we deduce

|h2| 6 h2 + (HF − h)2 + 2h(HF − h) + (h2 −HF
2 )

and so with the assumptions ‖HF − h‖p < εh and ‖HF
2 − h2‖p < εh2 , we get

|h2| 6 5h2.

Thus, we have∣∣∣h2 − h2∣∣∣ ∫
M

F (ν)dvg 6 εh2 sup(F )V ol(M) + (h3 + hh2)RV ol(M)ε

6 εh2 sup(F )V ol(M) + 6h3RV ol(M)ε

and we obtain

|h2 − h2| 6
(
h2

sup(F )

inf(F )
+

6h3R

inf(F )

)
ε

6 A(h,R, F )ε,
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which gives the wanted assertion. �

Now, we give this second lemma for hypersurfaces of spheres and hyperbolic
spaces.

Lemma 3.2. Let (Mn, g) be a closed Riemannian manifold, isometrically immersed
into Mn+1

δ and assume that the extrinsic radius of M is smaller than R. Let p > 1,
h and h2 be two positive constants and ε ∈ (0, 1). If the first and second mean
curvatures satisfy

• ‖H − h‖p < εh and
• ‖H2 − h2‖p < εh2,

for some positive ε, then
|h2 − h2| 6 Bε,

where B is an explicit positive constant depending on n, δ, h and R.

Proof: The proof is close to the proof of Lemma 3.1 with some slight differences.
Proceeding as in the proof of Lemma 3.1 with the Hsiung-Minkowski (7) instead of
the anisotropic one (9), we get

0 =

(
h− h2

h

)∫
M

cδ(r)dvg +
h2
h

∫
M

(h−H) 〈Z, ν〉 dvg +

∫
M

cδ(r)(H − h)dvg

+

∫
M

(H2 − h2) 〈Z, ν〉 dvg.

Then, since |〈Z, ν〉| 6 sδ(R), using the Hölder inequality and both conditions
‖H − h‖p < εh and ‖H2 − h2‖p < εh2, we get∣∣∣h− h2

h

∣∣∣ inf(cδ(r))V ol(M) 6 h2εsδ(R)V ol(M) + εh sup(cδ(r))V ol(M) + εh2sδ(R)V ol(M).

Using the fact that |H2| 6 (H)
2
, we deduce

|h2| 6 h2 + (H − h)2 + 2h(H − h) + (h2 −H2)

and so with the assumptions ‖H − h‖p < εh and ‖H2 − h2‖p < εh2 , we get

|h2| 6 5h2.

Thus, we have∣∣∣h2 − h2∣∣∣ inf(cδ(r))V ol(M) 6 εh2 sup(cδ(r))V ol(M) + (h3 + hh2)sδ(R)V ol(M)ε

6 εh2 sup(cδ(r))V ol(M) + 6h3sδ(R)V ol(M)ε

and we obtain

|h2 − h2| 6
(
h2

sup(cδ(r))

inf(cδ(r))
+

6h3sδ(R)

inf(cδ(r))

)
ε.

If δ = 0, then cδ = 1 and so(
h2

sup(cδ(r))

inf(cδ(r))
+

6h3sδ(R)

inf(cδ(r))

)
= h2 + 6h3R.

If δ > 0, then cδ(t) = cos(
√
δt), so we deduce immediately that cδ(R) 6 cδ(r) 6 1

and then

h2
sup(cδ(r))

inf(cδ(r))
+

6h3sδ(R)

inf(cδ(r))
6

h2

cδ(R)
+

6h3sδ(R)

cδ(R)
.
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If δ < 0, then cδ(t) = cosh(
√
−δt) and thus cδ(R) > cδ(r) > 1 and then

h2
sup(cδ(r))

inf(cδ(r))
+

6h3sδ(R)

inf(cδ(r))
6 h2cδ(R) + 6h3sδ(R).

Then, in the three cases, we have |h2 − h2| 6 Bε, with B a positive constant
depending only on δ, h and R. This concludes the proof of the lemma. �

4. Proofs of the Theorems

Now, using this lemma together with appropriate result for almost umbilical hy-
persurfaces, we can prove the different theorems of this note.

Proof of Theorem 1.1. We begin with the proof of Theorem 1.1. For this, we
first recall the main result of [2]. We will use this result together with Lemma 3.1
to conclude.

Theorem (De Rosa-Gioffrè [2]). Let n > 2, p ∈ (1, p) and F : Sn −→ R+ satisfying
the convexity assumption (8). There exists a constant δ0 = δ0(n, p, F ) > 0 such
that if Σ is closed convex hypersurface into Rn+1 satisfying

V ol(M) = V (WF ) and

∫
M

‖SF −HF Id‖pdvg 6 δ

with δ 6 δ0 then there exists a smooth parametrisation ψ : WF −→ M , a vector
c0 ∈ Rn+1 and a constant C depending on n, p and F so that

‖ψ − Id− c0‖W 2,p(W) 6 Cδ.

Now, if ‖HF − h‖ < εh and ‖HF
2 − h2‖ < εh2, then from Lemma 3.1∣∣∣h2 − h2∣∣∣ 6 Aε,

with A a positive constant depending on h, R and F . Thus, we deduce that

(HF )2 −HF
2 6 (HF − h)2 + 2h(HF − h) + |h2 − h2|+ |h2 −HF

2 |

and so

‖(HF )2 −HF
2 ‖p 6 (4h+A)ε = A′ε

where A′ is a positive constant depending only on h, R and F . On the other hand,
we have

(HF )2 −HF
2 =

1

n2(n− 1)

n∑
i,j=1

(κi − κj)2,

so we get ∥∥∥∥∥∥
n∑

i,j=1

(κi − κj)2
∥∥∥∥∥∥
p

6 A′′ε.

where A′′ = n2(n− 1)A′ is also a positive constant depending only on h, n, R and
F . Hence, M has almost vanishing anisotropic second fundamental form. Indeed,
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we have at a point x ∈M ,

‖SF −HF Id‖2 =

n∑
i=1

(ki −HF )2

=

n∑
i=1

κi − 1

n

n∑
j=1

κj

2

=
1

n

n∑
i,j=1

(κi − κi)2

which give after integration

‖SF −HF Id‖2p 6
1

n
A′′ε.

Finally, we fix p > 1 and set ε0 = inf

{
1,
n(δ0V ol(WF ))

2
p

A′′

}
where A′′ is the

constant defined above and δ0 comes from Theorem 1.3. Note that ε0 depends on

n, p, h, R and F . Now, let ε 6 ε0. We set δ =
(A′′ε)

p
2

n
p
2 V (WF )

. Since ε 6 ε0 and from

the definiton of δ, we have δ 6 δ0 and∫
M

‖SF −HF Id‖pdvg 6 δ.

Thus, since by assumption, we also have V ol(M) = V ol(WF ), we can apply The-
orem 1.3 to obtain that there exists a smooth parametrisation ψ : WF −→ M a
vector c0 ∈ Rn+1 and a constant C depending on n, p, h, R and F so that

‖ψ − Id− c0‖W 2,p(W) 6 Cδ = Kε
p
2 ,

where K =
(nA′′)

p
2C

V ol(WF )
is a positive constant depending only on n, p, h, R and F

since A′′ depends on n, h, R and F , V ol(WF ) depends on n and F and C depends
on n, p and F . This concludes the proof of Theorem 1.1. �

Proof of Theorem 1.3. The proof of Theorem 1.3 is a combination of Lemma
3.2 and the main Theorem of [10]. We recall this result

Theorem (Roth-Scheuer [10]). Let M −→ Rn+1 be a closed, connected, oriented
and isometrically immersed hypersurface with V ol(M) = 1. Let p > n ≥ 2. Then,
there exist η0(n, p, ‖A‖p) > 0, C(n, p, ‖A‖p) > 0 and α(n, p) 6 1 such that if for
η 6 η0,

‖A−HId ‖p ≤ ‖H‖pη
holds, then M is diffeomorphic and Cηα-close to a geodesic hypersphere (of radius

1
‖H‖2 ).

First, if ‖H − h‖ < εh and ‖H2 − h2‖ < εh2, then from Lemma 3.1∣∣∣h2 − h2∣∣∣ 6 Bε,
with B a positive constant depending on h, R and δ. Thus, we deduce that

H2 −H2 6 (H − h)2 + 2h(H − h) + |h2 − h2|+ |h2 −H2|
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and so after integration, we get immediately

‖H2 −H2‖p 6 (4h+B)ε = B′ε

with B′ a positive constant depending only on h, R and δ. But, since

‖H2 −H2‖p = n(n− 1)‖A−HId ‖2p,

we deduce that

‖A−HId ‖p 6
(

B′ε

n(n− 1)

) 1
2

= B′′ε
1
2 ,

with B depending on n, h, R and δ. Second, from the assumption ‖H − h‖p < εh,
we get immediately

h

2
6 (1− ε)h 6 ‖H‖p 6 (1 + ε)h 6 2h,

if we assume that ε < 1
2 . Hence, we deduce that

‖A‖p 6 B′′ + 2h
√
n.

So ‖A‖p is bounded from above by a constant depending only on n, h, R and δ.

Now, we set ε1 = inf

{
1
2 ,

(
2η1
B′′h

)2
}

. With this choice, if ε < ε1, we get that

η = B′′

‖H‖p ε
1
2 6 η1 and

‖A−HId ‖pp 6 ‖H‖pη,
and we conclude that M is diffeomorphic and Cηα-close to a geodesic sphere of

radius 1
‖H‖2 . But, Cηα = C

(
B′′

‖H‖p

)α
ε
α
2 6 Cηα = C

(
2B′′

h

)α
ε
α
2 = Kεβ , where K

is a constant depending only on n, p, h and R and β = α
2 depends only on n and p.

In the case where the ambient space is the space form of constant curvature δ,
the proof is analogue using Theorem 3.1 of [10] for sphere and hyperbolic spaces
obtain the Euclidean theorem with a conformal change of metric. In this case, the
constants C, and so K too, depend also on δ. This conlcudes the proof. �.

4.1. Proof of Corollaries 1.5 and 1.6. Assume that M has constant mean cur-
vature H = h, and ‖Scal − s‖p < ε for a constant s. First, by the Gauss formula,
we have clearly Scal = n(n− 1)(H2 + δ) and so ‖Scal − s‖p < ε gives ‖H2 − h2‖pε
with h2 = 1

n(n−1)Scal − δand we can apply Theorem 1.3 to conclude that M is

diffeomorphic to a geodesic hypersphere of radius ρ. But this diffeomorphism is
explicitely given (see [7, 8]) by F = ρ X

|X| where X is the immersion of M into

Mn+1(δ). Hence, F is of the form G ◦ X. Necessarily, X is injective and so the
immersion of M is an embedding. By the Alexandrov theorem, we conclude that
M is a geodesic hypersphere.
If Scal is constant and ‖H − h‖p 6 ε, the proof is the same and we conclude by
the Alexandrov theorem for H2.
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