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Concavity of the collective excitation branch of a Fermi gas in the BEC-BCS crossover

H. Kurkjian, Y. Castin, A. Sinatra
Laboratoire Kastler Brossel, ENS, PSL, CNRS, UPMC-Sorbonne Universités and Collège de France, Paris, France

We study the concavity of the dispersion relation q 7→ ωq of the bosonic excitations of a three-
dimensional spin-1/2 unpolarized Fermi gas in the Random Phase Approximation (RPA). In the
limit of small wave numbers q we obtain analytically the spectrum up to order 5 in q. In the
neighborhood of q = 0, a change in concavity between the convex Bose-Einstein condensation
(BEC) limit and the concave BCS limit takes place at ∆/µ ≃ 0.869 [1/(kF a) ≃ −0.144], where a
is the scattering length between opposite spin fermions, kF is the Fermi wave number and ∆ the
gap according to BCS theory, and µ is the chemical potential. At that point the branch is concave
due to a negative fifth order term. Our results are supplemented by a numerical study that shows
the border between the zone of the (q,∆) plane where q 7→ ωq is concave and the zone where it is
convex.

PACS numbers: 03.75.Kk, 67.85.Lm, 47.37.+q

I. INTRODUCTION

Cold atomic gases offer a broad flexibility of the mi-
croscopic parameters in exploring the many-body prob-
lem. In particular, in spin-1/2 Fermi gases, the inter-
action strength can be adjusted experimentally using
Feshbach resonances without inducing strong three-body
losses. This degree of freedom, unique among Fermi sys-
tems, allowed cold-atom experiments [1–9] to study the
crossover between a superfluid of Cooper pairs in the so-
called Bardeen-Cooper-Schrieffer (BCS) regime of inter-
action and a superfluid of tightly bound, almost bosonic,
dimers in the Bose-Einstein Condensation (BEC) regime.
Another advantage of cold atomic gases is the simple the-
oretical description of the interactions that the cold and
dilute regime in which they occur allows for. For a Fermi
gas in two spin states ↑ and ↓, one can show that the
only significant interactions at low temperature and weak
density occur between opposite spins fermions in the s
wave and can be fully characterized by a single param-
eter called the scattering length and denoted by a. In
this propitious theoretical framework, entirely analytical
studies of experimentally accessible properties of the gas
are possible. This article is one of those.

At zero temperature, the three-dimensional spatially
homogeneous unpolarized Fermi gas is fully paired and its
excitation spectrum consists of two branches: a fermionic
branch of excitation of the internal degrees of freedom of
the ↑↓ pairs of fermions and a bosonic branch of excita-
tion of their center-of-mass motion, which has a phononic
behavior in the long wavelength limit. The latter branch
is sometimes said to be collective since it involves a large
number of the fermionic modes of internal excitations of
the pairs. The fermionic branch is described to lowest or-
der by the BCS theory. To tackle the bosonic branch sev-
eral approaches have been proposed: The Random Phase
Approximation (RPA) of Anderson [10], a Gaussian ap-
proximation of the action in a path integral framework
[11, 12], a Green’s function approach associated with a
diagrammatic approximation [13], and a linearization of
the time dependent BCS variational equations [14]. Re-

markably, those theories all lead to the same approximate
spectrum of bosonic excitations, which they describe by
the same implicit equation.

The concavity of this spectrum has been studied in the
weak-coupling BCS limit [11] and, in a qualitative way,
in the rest of the BEC-BCS crossover [13, 15, 16]. A
complete quantitative study is thus missing, a gap that
this article intends to bridge. In particular, we obtain the
spectrum analytically up to order 5 in the wave number
q of the center of mass of the pairs. This allows us to
conclude on the concavity of the branch of excitation
in a neighborhood of q = 0 over the whole BEC-BCS
crossover.

Several physically relevant problems can be addressed
after our study. First, the processes that dominate the
collective mode damping at low temperature can be iden-
tified. If the branch is convex over a neighborhood of q =
0 then the Landau-Beliaev 2 phonons ↔ 1 phonon inter-
action processes [17, 18] dominate while if it is concave,
those processes are forbidden by momentum and energy
conservation and the Landau-Khalatnikov 2 phonons ↔
2 phonons processes [19] take over. At low temperature
the contribution of the gapped fermionic branch to the
collective mode damping is exponentially small [20]. Sec-
ond, the quantitative knowledge of the concavity param-
eter γ is required in order to predict the phonon damp-
ing rate due to the 2 phonons ↔ 1 phonon processes in
the convex case beyond the quantum hydrodynamics ap-
proximation [16], or due to the 2 phonons ↔ 2 phonons
processes in the concave case where the effective interac-
tion predicted by quantum hydrodynamics involves vir-
tual 2 phonons ↔ 1 phonon processes and depends on γ.
Finally, the knowledge of γ gives access to the phase dif-
fusion coefficient of the condensate of pairs, a quantity
responsible for an intrinsic and fundamental limit to the
coherence time of the gas [14].
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II. THE RPA EQUATION ON THE

EXCITATION SPECTRUM

The RPA equation yielding implicitly the energy ~ωq

of the collective excitations as a function of their wave
vector q is

I++(ωq, q)I−−(ωq, q) = ~
2ω2

q [I+−(ωq, q)]
2
. (1)

The collective nature of the bosonic modes is visible in
the quantities Iσσ′ which are integrals on the relative
wave vector k of the pairs and depend on ω2

q via the
denominator of their integrand [13]:

I++(ω, q) =

∫

d3k

[

(ǫk+q/2 + ǫk−q/2)(Uk+q/2Uk−q/2 + Vk+q/2Vk−q/2)
2

~2ω2 − (ǫk+q/2 + ǫk−q/2)2
+

1

2ǫk

]

, (2)

I−−(ω, q) =

∫

d3k

[

(ǫk+q/2 + ǫk−q/2)(Uk+q/2Uk−q/2 − Vk+q/2Vk−q/2)
2

~2ω2 − (ǫk+q/2 + ǫk−q/2)2
+

1

2ǫk

]

, (3)

I+−(ω, q) =

∫

d3k
(Uk+q/2Uk−q/2 + Vk+q/2Vk−q/2)(Uk+q/2Uk−q/2 − Vk+q/2Vk−q/2)

~2ω2 − (ǫk+q/2 + ǫk−q/2)2
. (4)

We have introduced the amplitudes Uk and Vk and the
eigenenergies ǫk of the fermionic eigenmodes of the BCS
theory [21]:

ǫk =

√

(

~2k2

2m
− µ

)2

+∆2, (5)

Uk =

√

√

√

√

1

2

(

1 +
~2k2

2m − µ

ǫk

)

, (6)

Vk =

√

√

√

√

1

2

(

1−
~2k2

2m − µ

ǫk

)

, (7)

where m is the mass of a fermion. The two natural pa-
rameters of the BCS theory, with which we express the
energy ~ωq, are the chemical potential µ, identical for
the two spin states, and ∆, the gap in the BCS spectrum
of the fermionic excitations when µ is positive. If needed,
they can be replaced by the scattering length a and the
total density ρ of the gas by inverting the two following
relations [22, 23]:

m

4π~2a
=

∫

d3k

(2π)3

(

m

~2k2
−

1

2ǫk

)

, (8)

ρ =

∫

d3k

(2π)3
2|Vk|

2. (9)

In practice, the Fermi wave number kF defined by ρ =
k3F /(6π

2) is often used instead of the density.

III. GLOBAL NUMERICAL STUDY OF THE

CONCAVITY

From a numerical solution of the dispersion equation
(1) we obtain the dispersion relation q 7→ ωq over its

existence domain. We show an example in Figure 1 in
the unitary limit 1/(kFa) = 0, where ∆/µ ≃ 1.162 ac-
cording to the BCS theory. Rather than q 7→ ωq itself,
we plot as a black solid line the function q 7→ ωq − cq,
where c is the speed of sound and q 7→ cq is the lin-
ear part of the spectrum. The concavity properties of
this function are the same as those of q 7→ ωq, but they
are more visible graphically at low q, because they are
not masked by the dominant linear part, which anyway
plays no role in the selection of the damping processes
mentioned at the end of the Introduction. In the figure,
it is apparent that the dispersion relation exhibits an in-
flection point at q/kµ ≃ 0.795, where kµ = (2mµ)1/2/~,
separating a low-q interval over which the dispersion re-
lation is convex and a high-q interval over which it is
concave. As a consequence, according to the RPA, the
leading damping processes of the collective excitations
of the unitary gas at low temperature are the Beliaev-
Landau 2 phonons ↔ 1 phonon processes.

Figure 2 synthesizes our numerical results on the con-
cavity of the bosonic branch for all values of ∆/µ and
q/kµ. Several domains can be identified depending on
the values of ∆/µ, or equivalently 1/(kFa). (i) When
the scattering length is negative a < 0, that is for
∆/µ < 1.162 (lower dotted line), the existence domain of
the solution to Eq.(1) as a function of q is compact and
simply connected [13], hence of the form [0, qsup]. The
dispersion relation is entirely concave for ∆/µ < 0.869
while for 0.869 < ∆/µ < 1.162 it is first convex at small
q and then concave. Between those two zones it goes
through an inflection point, whose position qinfl(∆/µ) we
compute analytically in the small q limit [see the black
dashed line and Eq.(29) of section IV]. (ii) On the other
side of the resonance (a > 0) and up to ∆/µ = 1.729
(upper dotted line), the existence domain of the solu-
tion to Eq.(1) splits up into two connected components
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FIG. 1: (Color online) At unitarity (kF a)
−1 = 0, which is

here ∆/µ = 1.162, the dispersion relation of the collective
excitations is plotted as a black solid line after subtraction of
its phononic part cq to better reveal its concavity properties.
The wave number q is in units of kµ = (2mµ)1/2/~. The linear
part q 7→ cq is shown for comparison (steep violet dashed
straight line), as well as the cubic (red dashed upper line)
and the quintic (blue dashed lower line) approximations of
ωq − cq, see Eq. (10). The second order derivative d2ωq/dq

2,
plotted as a gray solid line, vanishes at the inflection point
qinfl ≃ 0.795kµ marked by the vertical dotted line. To the left
(right) of this point the dispersion relation q 7→ ωq is convex
(concave).

[0, qsup] and [qinf ,+∞[ [13]. While the branch is al-
ways convex in the second component [qinf ,+∞[, the first
one [0, qsup] exhibits interesting variations: From small q
to high q, the branch is convex and then concave for
1.162 < ∆/µ < 1.22, convex, concave and then convex
again for 1.22 < ∆/µ < 1.710 and finally entirely convex
for 1.710 < ∆/µ < 1.729. (iii) When ∆/µ is greater than
1.729, or negative, the two components of the existence
domain merge and a solution to Eq.(1) exists for all q
[13]. The branch is then entirely convex.

All these numerical values are predicted by the RPA or
the BCS theory. They are therefore approximate. Up to
now the only value that can be compared to experiments
is that of ∆/µ at the unitary limit: From the measured
values ∆ ≃ 0.44~2k2F /(2m) [24] and µ ≃ 0.376~2k2F /(2m)
[8] we get ∆/µ ≃ 1.17, which is remarkably close to the
BCS-theory prediction ∆/µ ≃ 1.162. One must also
keep in mind that the RPA spectrum results from a
linearized treatment of the pair-field quantum fluctua-
tions, which neglects the interactions among the bosonic
quasiparticles. In reality, these interactions will shift the
eigenenergies ~ωq. They will also give rise, even at zero
temperature, to an imaginary part in ωq, corresponding
to a finite lifetime of the excitations, provided that the
concavity of the dispersion relation allows for resonant
1 phonon → 2 phonons Beliaev processes [16].

0 1 2 3 4 5
q/kµ

0.5

1

1.5

∆/
µ

1.729

1/(k
F
a)=0.108

1/(k
F
a)=0

1/(k
F
a)=-0.072
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F
a)=-0.465

1/(k
F
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F
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F
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FIG. 2: (Color online) Local concavity of the bosonic branch
q 7→ ωq depending on ∆/µ and on the wave number q in units

of kµ = (2mµ)1/2/~. The values of 1/(kF a) corresponding
to those of ∆/µ are given on the right vertical axis. Red
points show that the branch is locally concave and orange
points that the branch is locally convex. The thick solid line
is the border of the existence domain of the solutions of the
dispersion equation (1). The black dashed line is the low-q
analytical prediction (29) of the boundary between the red
zone and the orange zone, that is of the locus of the inflection
points of the curve q 7→ ωq, indicated by a thin solid line.
The ordinate ∆/µ = 0.869 of the point where this line meets
the q = 0 axis, and the ordinate ∆/µ = 1.710 above which
the concavity zone disappears are indicated by arrows. For
the values of ∆/µ or 1/(kF a) in between the two dotted lines
indicated by arrows, the q-existence domain of the solution
of equation (1) is not simply connected. The lower dotted
line indicates the unitary limit, where the scattering length
diverges |a| → +∞.

IV. ANALYTICAL STUDY OF THE

CONCAVITY IN THE LONG WAVELENGTH

LIMIT

The dispersion relation can be obtained analytically in
the long wavelength limit q → 0. To this end we expand
the eigenenergy of the collective mode up to order 5 in q:

~ωq =
q→0

~cq

[

1 +
γ

8

(

~q

mc

)2

+
η

16

(

~q

mc

)4

+O

(

~q

mc

)6
]

.

(10)
To lowest order, as for any superfluid system, the energy
is phononic with a sound velocity given by the hydrody-
namic expression

mc2 = ρ

(

∂µ

∂ρ

)

a

, (11)

where the derivative is taken for a fixed scattering length
a, as indicated by the notation. When applied to the
approximate equation of state (9), the hydrodynamic ex-
pression (11) gives the RPA sound velocity, as shown in
reference [13] by an expansion of the solution ωq of equa-
tion (10) up to first order in q. We give here an explicit
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expression in the form of a rational fraction

mc2

µ
=

2(xy + 1)

3(y2 + 1)
, (12)

in terms of the variables

x =
∆

µ
and y =

(

∂∆

∂µ

)

a

. (13)

In turn, the y variable is written as a function of x,

y =

∫

d3k ~
2k2/(2m)−µ

ǫ3
k

∫

d3k ∆
ǫ3
k

=

∫ +∞

0 du u2(u2
−x−1)

[(u2
−x−1)2+1]3/2

∫ +∞

0 du u2

[(u2
−x−1)2+1]3/2

(14)

by taking the derivative of equation (8) with respect to
µ at fixed scattering length a and by expressing the wave
vectors in units of k∆ = (2m∆)1/2/~ to form the dimen-
sionless integration variable u. The integrals over u in
the numerator and in the denominator of the right-hand
side of equation (14) may be expressed in terms of com-
plete elliptic integrals of the first and second kinds [11].
At the unitary limit one has y = x, since ∆ and µ are
proportional due to scale invariance.
To obtain the expression (12) of the reduced sound ve-

locity, we take the derivative of the equation of state (9)
with respect to µ at fixed a and we express all result-
ing integrals as functions of x and y using (14) and the
relation

∫

d3k
(2π)3

∆3

ǫ3
k

ρ
=

∫ +∞

0
du u2

[(u2−x−1)2+1]3/2

∫ +∞

0 du u2
(

1− u2
−x−1

[(u2
−x−1)2+1]1/2

) =
3x/2

1 + xy
,

(15)

which may be derived by integrating by parts the inte-
gral over u in the denominator (u2 is the function to be
integrated).

To obtain the dimensionless coefficients γ and η of the
terms of ~ωq of higher order in q in equation (10), we
cannot rely on known thermodynamic expressions and
we must face the laborious expansion of equation (1) in
powers of q. Still the result can be put into a rational
form in terms of x and y:

γ =

∑4
i=0 Pi(y)x

i

135x2 (x2 + 1) (y2 + 1)
3 , (16)

η =

∑8
i=0 Qi(y)x

i

1020600 (y2 + 1)6 x4 (x2 + 1)2
. (17)

The Pi(y) and Qi(y) polynomials that appear as coeffi-
cients of xi in the numerators of γ and η are given by

P0(y) = −4
(

13y4 + 16y2 + 8
)

,

P1(y) = 4y
(

13y4 + 41y2 + 8
)

,

P2(y) = 50y6 − 21y4 − 252y2 − 61, (18)

P3(y) = 2y
(

y4 + 32y2 + 71
)

,

P4(y) = 35y6 + 56y4 − 13y2 − 54,

and by

Q0(y) = 16
(

7745y8 + 19528y6 + 20304y4 + 8384y2 + 1088
)

,

Q1(y) = 32y
(

2857y8 + 67y6 − 3186y4 − 7920y2 − 2624
)

,

Q2(y) = −8
(

12882y10 + 28061y8 − 26936y6 + 7221y4 − 24496y2 − 5232
)

,

Q3(y) = −8y
(

8456y10 − 9859y8 + 9977y6 + 145295y4 + 3523y2 + 23720
)

,

Q4(y) = −17500y12 − 247996y10 − 1249743y8 − 1341332y6 + 337202y4 − 694392y2 + 18321, (19)

Q5(y) = −4y
(

25564y10 + 36027y8 − 66984y6 + 92206y4 + 387932y2 − 56121
)

,

Q6(y) = −2
(

12250y12 + 115637y10 + 558246y8 + 1071518y6 + 589478y4 − 248499y2 + 53082
)

,

Q7(y) = −4y
(

12957y10 + 33764y8 − 41904y6 − 173106y4 − 96189y2 + 53406
)

,

Q8(y) = −8575y12 − 44544y10 − 149742y8 − 360644y6 − 477615y4 − 270756y2 − 20412.

Our analytical expressions (16) and (17) result from a
Taylor expansion of the integrals I++(ωq, q), I−−(ωq, q)
and I+−(ωq, q) after replacement of ~ωq with the expan-
sion (10). At each order, we reuse the results of the lower
orders, that is the value (12) of c to obtain γ, and then

those of c and γ (16) to obtain η. We encounter integrals
involving in the denominator high powers of ǫk (or of
[(u2 − x−1)2 + 1]1/2 after the k-to-u change of variable).
They can be evaluated by repeated integration by parts,
as explained in Appendix A.
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We have plotted in Figure 3 the coefficients γ and η as
functions of the parameter 1/(kFa) (which we have pre-
ferred here to ∆/µ). Let us briefly review their asymp-
totic behaviors in the BEC 1/(kFa) → +∞ and BCS
1/(kFa) → −∞ limits, and their values in some specific
relevant regimes.
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FIG. 3: Dimensionless coefficients (a) γ and (c) η of the terms
q3 and q5 in the RPA dispersion relation of the bosonic ex-
citations for q → 0, see equation (10), as functions of the
interaction parameter 1/(kF a). In the BEC limit, they have
a finite limit corresponding to the Bogoliubov dispersion re-
lation, see equations (21,22). In the BCS limit, they diverge,
and it is more appropriate to express the wave number q in
units of ∆/(~c), which amounts to considering the quanti-
ties (b) γ∆2/(m2c4) and (d) η∆4/(m4c8) which have a finite
limit. In between these two limits, γ and η vanish and change
sign for 1/(kF a) ≃ −0.144 and 1/(kF a) ≃ −0.389 respec-
tively, and they are weakly positive (γ ≃ 0.0838) or weakly
negative (η ≃ −0.0354) at the unitary limit. The value of η is
relevant mainly at the point where γ vanishes. At this point,
η ≃ −0.0428 so the RPA dispersion relation is concave over a
neighborhood of q = 0.

1. BEC limit

In the BEC limit kF a → 0+, the system is equivalent
to a weakly interacting gas of bosons of mass 2m, with a
chemical potential

µB = 2µ− Edim, (20)

where Edim = −~
2/(ma2) is the internal energy of a

dimer [25, 26]. The dispersion relation of the bosonic
excitations is then known to be convex and to take
the Bogoliubov form at chemical potential µB when
q = o(1/a) [13]:

~ωBog
q =

[

~
2q2

4m

(

~
2q2

4m
+ 2µB

)]1/2

, (21)

in which case the sound velocity is given by 2mc2 = µB.
The coefficients γ and η are thus expected to have the
following limits:

γ →
kF a→0+

1

4
and η →

kF a→0+
−

1

128
. (22)

This is confirmed by equations (16) and (17) taken at
the BEC limit, that is for x = O(kF a)

3/2 → 0− [22] and,
as shown by equation (14) after the change of variable
u = u′/|x|1/2, for y ∼ −4/x.

2. BCS limit

When kF a → 0−, the lower border of the two-
fermionic-excitation continuum (at fixed total wave num-
ber q < qsup) becomes exponentially weak and forces
the bosonic excitation branch, which cannot enter into
this continuum, to bend downward [13, 15]. This bend-
ing takes place over a wave number range qc such that
~cqc = ∆, that is such that the leading term in the ex-
pansion (10) is of the order of ∆. This means that the
collective modes are affected by the pairs internal struc-
ture when the mode wavelength becomes comparable to
the pairs size in real space ≈ ~

2kF /(m∆) [11], a quantity
that is indeed of order 1/qc since c ∝ ~kF /m in the BCS
limit. This qualitatively explains why the dispersion re-
lation is a concave function of q for low q and low ∆/µ
in Figure 2, and why γ < 0 in the BCS limit.
More quantitatively, we expect that the normalized

energy ~ωq/∆ becomes a universal function of q/qc =
~cq/∆ when kFa → 0−, in which case all the terms
in square brackets in equation (10) are of the same or-
der of magnitude for q = qc, that is |γ(~qc/mc)2| ≈ 1,
|η(~qc/mc)4| ≈ 1. This is indeed what we find by taking
the limits x → 0 and y → 0 in equations (16) and (17):

γ ∼
kF a→0−

−
8

15

(

mc2

∆

)2

and η ∼
kF a→0−

136

1575

(

mc2

∆

)4

,

(23)
the first result reproducing that of reference [11].
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3. Crossover region

In the crossover region between BEC and BCS, γ is an
increasing function of 1/(kFa). It vanishes and changes
sign for the value x0 of x = ∆/µ given by

x0 ≃ 0.868567. (24)

This value corresponds to 1/(kFa) ≃ −0.144292, in
agreement with the numerical result of Figure 2 and with
reference [16]. The RPA prediction is then that the dis-
persion relation of a unitary gas is convex close to q = 0:

γ ≃
(kF a)−1=0

0.083769. (25)

The coefficient η changes sign for a value x1 of ∆/µ given
by

x1 ≃ 0.566411 (26)

corresponding to 1/(kFa) ≃ −0.389027. It is negative
both at unitarity

η ≃
(kF a)−1=0

−0.035416, (27)

and at the point x0 where γ = 0:

η(x0)≃ − 0.042794. (28)

At that very point the sign of η is important as it de-
termines the concavity of the dispersion relation close to
q = 0.

4. Locus of the inflection points

The coefficients γ and η allow us to find analytically
the border between the orange and the red zones of Fig-
ure 2 for small q, that is the ensemble of points with co-
ordinates (qinfl/kµ,∆/µ) such that the second derivative
d2ωq/dq

2 is zero. Using the expansion (10) for ωq and
expanding the coefficients γ(x) and η(x) around x = x0,
to order one and order zero in x − x0 respectively, one
obtains the equation

q2infl
k2µ

∼
x→x+

0

−
3γ′(x0)

10η(x0)

mc2

µ
(x− x0) ≃ 2.015858(x− x0)

(29)
plotted as a black dashed curve in Figure 2, which reaches
the axis q = 0 with a horizontal tangent.
In contrast, the border between the red and orange

zones in Figure 2 reaches the border of the existence do-
main of the collective excitation branch with an oblique
tangent. This is due to the fact that the third deriva-
tive of q 7→ ωq is nonzero at the contact point q = qsup
contrarily to what happens at q = 0.

V. CONCLUSION

We have considered a spatially homogeneous unpolar-
ized gas of spin-1/2 fermions at zero temperature, and
we have obtained analytically the spectrum ~ωq of the
bosonic excitation branch predicted by the RPA up to
order 5 included in the wave vector q close to q = 0.
The coefficients of the obtained expansion are rational
fractions of two variables ∆/µ and (∂∆/∂µ)a, where
the second variable can be analytically related to the
first one using the BCS equation of state. This al-
lows us to show analytically that the dispersion rela-
tion q 7→ ωq is concave close to q = 0 when 1/(kFa)
is between −∞ and a value close to −0.144, a point
where the first correction to the linear dispersion rela-
tion is of order q5 with a slightly negative coefficient.
For −0.144 < 1/(kFa) < 0.157 the branch is convex close
to q = 0 but becomes concave when q increases, and it
remains so for q increasing up to the maximal possible
value qsup if 1/(kFa) < 0.022, while it becomes convex
again in the opposite case 0.022 < 1/(kFa) < 0.157. Be-
yond 1/(kFa) = 0.157 the bosonic branch is convex over
its whole existence domain.
A straightforward application of our quintic approxi-

mation (10) for the spectrum is to determine if a low-
q collective excitation of the Fermi gas can decay via

a Beliaev process, that is into two collective excita-
tions of wave vectors q1 and q2 = q − q1. Energy
conservation allows such a process if ωq > Ωinf

q where

Ωinf
q = infq1

(ωq1
+ωq−q1

) is the lower border of the two-
excitation continuum at fixed total wave vector q. If
∆/µ is away from the critical value x0 ≃ 0.869 where
the coefficient γ of q3 vanishes, the dispersion relation is
either entirely convex or entirely concave at low q, and
the Beliaev decay is respectively allowed or forbidden.
If ∆/µ is close to the critical value x0, the dispersion
relation has an inflection point at low q. We then ap-
ply the analysis of reference [15] to Eq. (10) and we find
Ωinf

q = min(2ωq/2, ωq) [32]. The Beliaev decay is thus
allowed if

(

~q

mc

)2

<
8γ

5|η|
(30)

to leading order in γ, that is in ∆/µ − x0. At low but
nonzero temperature, there exist additional decay mech-
anisms: (i) The Landau mechanism q+q1 → q2 is forbid-
den whenever the Beliaev one is since it can be viewed as
an inverse Beliaev mechanism with an initial wave vec-
tor q2 of modulus > q; (ii) the higher-order Landau-
Khalatnikov decay process q + q1 → q2 + q3 is always
allowed, but it is subleading when the Beliaev or Landau
processes are present.
Our results on the concavity of the dispersion relation

close to q = 0 can be tested experimentally in a gas of
cold atoms trapped in a flat bottom potential [27]. This
can be done either (i) indirectly by measuring dissipative
effects such as the damping of collective excitations at low
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temperature, or dispersive effects such as the spreading
of a wave packet of sound waves created by a laser pulse
[9, 28], or (ii) directly by accessing the dispersion relation
at low temperature via the dynamic structure factor of
the Fermi gas through Bragg excitation at a selected wave
vector q [29–31] [33]. Supplemented by kinetic equations
for the collective mode occupation numbers, our results
open the way to an analytical determination of the phase
diffusion coefficient at low temperature, hence to the in-
trinsic limit to the coherence time of the condensate of
pairs in a finite-size Fermi gas [14].

Appendix A: Expressing integrals in terms of the

variables x and y

In the expansion of I++(ωq, q), I−−(ωq, q) and
I+−(ωq, q) at low q, and after a rescaling of the wave vec-
tors by k∆ as in equation (14), k = uk∆, we encounter
integrals of the form

In,p =
k3∆
2π2ρ

∫ +∞

0

du
u2p+2

ǫnu
, (A1)

Jn,p =
k3∆
2π2ρ

∫ +∞

0

du
u2p+2ξu

ǫnu
(A2)

with n ∈ 2N∗ + 1, p ∈ N,

ξu = u2 −
1

x
, (A3)

ǫu =
√

ξ2u + 1, (A4)

and the total density ρ is given by equation (9). The
integrals giving In,p and Jn,p are convergent for n−p ≥ 2
and for n− p ≥ 3, respectively. Integrals that depend on
the direction of k can be expressed in the forms (A1) and
(A2) after angular integration:

∫

d3kf(k)

(

~
2k · q

m

)2p

=

4π

1 + 2p

(

~
2q2

m

)p ∫ +∞

0

dkk2f(k)

(

~
2k2

m

)p

(A5)

where f(k) is an arbitrary function of the modulus of k.
Let us first establish the four recurrence relations

In,p =
n− 3

n− 2
In−2,p −

2p+ 1

2(n− 2)
Jn−2,p−1, (A6)

Jn,p =
2p+ 1

2(n− 2)
In−2,p−1, (A7)

In,p = Jn,p−1 +
In,p−1

x
, (A8)

Jn,p =
Jn,p−1

x
+ In−2,p−1 − In,p−1, (A9)

holding under the conditions 1 ≤ p ≤ n − 4 for the first
relation, 1 ≤ p ≤ n− 3 for the second one, 1 ≤ p ≤ n− 2
for the third one and 1 ≤ p ≤ n − 3 for the last one. In
order to derive the relation (A6), we integrate by parts
the integral

k3∆
2π2ρ

∫ +∞

0

du
u2p+2ξ2u

ǫnu
= In−2,p − In,p, (A10)

selecting u 7→ u2p+1ξu as the function to be differenti-
ated. In order to derive the relation (A7), we integrate
by parts the integral defining Jn,p in equation (A2), se-
lecting u 7→ u2p+1 as the function to be differentiated.
In both cases, we note that the function u 7→ uξu/ǫ

n
u

admits the primitive u 7→ −[2(n − 2)ǫn−2
u ]−1. Finally,

we simply write u2p+2 = u2p(ξu + x−1) in the inte-
grand of (A1) in order to obtain (A8), and we write
u2p+2ξu = u2p(ǫ2u − 1 + x−1ξu) in the integrand of (A2)
in order to obtain (A9). This procedure generalizes that
of reference [11].

We now show by induction using the relations
(A6,A7,A8,A9) that In,p and Jn,p can be expressed as
functions of I3,0 and J3,0, for all odd n ≥ 3 and for all
positive p within the existence domain of the integrals.
Let n be odd and ≥ 3 and assume that we know all the
In,p, 0 ≤ p ≤ n − 2, and all the Jn,p, 0 ≤ p ≤ n − 3.
Then (i) In+2,1 and Jn+2,1 can be deduced using (A6)
and (A7), (ii) using (A9) and (A8) we obtain a Cramer
system for In+2,0 and Jn+2,0:

x−1Jn+2,0 − In+2,0 = Jn+2,1 − In,0, (A11)

Jn+2,0 + x−1In+2,0 = In+2,1, (A12)

which we solve, (iii) we use (A8) and (A9) to access the
values of In+2,p and Jn+2,p for p ≥ 2. We set the induc-
tion basis at n = 3, by expressing I3,1 as a function of
I3,0 and J3,0 due to (A8).

Finally we relate I3,0 and J3,0 to x and y thanks to
the relations (14) and (15) of the main text, which take
the form y = J3,0/I3,0 and I3,0 = 3x/[2(1+xy)] with the
notation of this appendix.
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