
HAL Id: hal-01228798
https://hal.science/hal-01228798v1

Preprint submitted on 13 Nov 2015 (v1), last revised 26 Jan 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concavity of the collective excitation branch of a Fermi
gas in the BEC-BCS crossover

H Kurkjian, Yvan Castin, A Sinatra

To cite this version:
H Kurkjian, Yvan Castin, A Sinatra. Concavity of the collective excitation branch of a Fermi gas in
the BEC-BCS crossover. 2015. �hal-01228798v1�

https://hal.science/hal-01228798v1
https://hal.archives-ouvertes.fr


Concavity of the collective excitation branch of a Fermi gas in the BEC-BCS crossover

H. Kurkjian, Y. Castin, A. Sinatra
Laboratoire Kastler Brossel, ENS-PSL, CNRS, UPMC-Sorbonne Universités and Collège de France, Paris, France

We study the concavity of the dispersion relation q 7→ ωq of the bosonic excitations of a three-
dimensional spin-1/2 Fermi gas in the Random Phase Approximation (RPA). In the limit of small
wave numbers q we obtain analytically the spectrum up to order 5 in q. In the neighborhood of
q = 0, a change in concavity between the convex BEC limit and the concave BCS limit takes place at
∆/µ ≃ 0.869 [1/(kF a) ≃ −0.144], where a is the scattering length between opposite spin fermions,
kF the Fermi wave number and ∆ the gap according to BCS theory, and µ the chemical potential.
At that point the branch is concave due to a negative fifth order term. Our results are supplemented
by a numerical study which shows the evolution of the border between the zone of the (q,∆) plane
where q 7→ ωq is concave and the zone where it is convex.

PACS numbers: 03.75.Kk, 67.85.Lm, 47.37.+q

I. INTRODUCTION

Cold atoms gases offer a broad flexibility of micro-
scopic parameters in exploring the many-body problem.
In particular, in spin-1/2 Fermi gases, the interaction
strength can be adjusted experimentally using Feshbach
resonances. This degree of freedom, unique among Fermi
systems, allowed cold atoms experiments [1–9] to study
the crossover between a superfluid of Cooper pairs in
the so-called Bardeen-Cooper-Schrieffer (BCS) regime
of interaction and a superfluid of tightly bound almost
bosonic dimers in the Bose-Einstein Condensation (BEC)
regime. Another advantage of cold atoms gases is the
simple theoretical description of the interactions which
the cold and dilute regime in which they occur allows for.
For a Fermi gas in two spin states ↑ and ↓, one can show
that the only significant interactions at low temperature
and weak density occur between opposite spins fermions
in the s-wave and can be fully characterized by a single
parameter called the scattering length and denoted by a.
In this propitious theoretical framework, entirely analyt-
ical studies of experimentally accessible properties of the
gas are possible. This article is one of those.

At zero temperature, the three-dimensional spatially
homogeneous unpolarized Fermi gas is fully paired and
its excitation spectrum consists of two branches: A
fermionic branch of excitation of the internal degrees of
freedom of the ↑↓ pairs of fermions and a bosonic branch
of excitation of their center-of-mass motion, which has
a phononic behavior in the long wavelength limit. The
latter branch is sometimes said to be collective since it
involves a large number of the fermionic modes of inter-
nal excitations of the pairs. The fermionic branch is de-
scribed to lowest order by the BCS theory. To tackle the
bosonic branch several approaches have been proposed:
The Random Phase Approximation (RPA) of P.W. An-
derson [10], a Gaussian approximation of the action in
a path integral framework [11, 12], a Green’s functions
approach associated with a diagrammatic approximation
[13], and a linearization of the time dependent BCS varia-
tional equations [14]. Remarkably, those theories all lead

to the same approximate spectrum of bosonic excitations,
which they describe by the same implicit equation.
The concavity of this spectrum has been studied in the

weak-coupling BCS limit [11] and, in a qualitative way,
in the rest of the BEC-BCS crossover [13, 15, 16]. A
complete quantitative study is thus missing, a gap which
this article intends to bridge. In particular, we obtain the
spectrum analytically up to order 5 in the wave number
q of the center of mass of the pairs. This allows us to
conclude on the concavity of the branch of excitation
in a neighborhood of q = 0 over the whole BEC-BCS
crossover.
Several physically relevant problems can be addressed

after our study. First, the processes which dominate the
collective mode damping at low temperature can be iden-
tified. If the branch is convex over a neighborhood of q =
0 then the Landau-Beliaev 2 phonons ↔ 1 phonon inter-
action processes [17, 18] dominate while if it is concave,
those processes are forbidden by momentum and energy
conservation and the Landau-Khalatnikov 2 phonons ↔
2 phonons processes [19] take over. At low temperature
the contribution of the gapped fermionic branch to the
collective mode damping is exponentially small [20]. Sec-
ond, the quantitative knowledge of the concavity param-
eter γ is required in order to predict the phonon damp-
ing rate due to the 2 phonons ↔ 1 phonon processes in
the convex case beyond the quantum hydrodynamics ap-
proximation [16], or due to the 2 phonons ↔ 2 phonons
processes in the concave case where the effective interac-
tion predicted by quantum hydrodynamics involves vir-
tual 2 phonons ↔ 1 phonon processes and depends on γ.
Last but not least, the knowledge of γ gives access to
the phase diffusion coefficient of the condensate of pairs,
a quantity responsible for an intrinsic and fundamental
limit to the coherence time of the gas [14].

II. THE RPA EQUATION ON THE

EXCITATION SPECTRUM

The RPA equation yielding implicitly the energy ~ωq

of the collective excitations as a function of their wave



2

vector q is the following:

I++(ωq, q)I−−(ωq, q) = ~
2ω2

q [I+−(ωq, q)]
2 . (1)

The collective nature of the bosonic modes is visible in
the quantities Iσσ′ which are integrals on the relative

wave vector k of the pairs and depend on ω2
q via the

denominator of their integrand:

I++(ω, q) =

∫

d3k

[

(ǫk+q/2 + ǫk−q/2)(Uk+q/2Uk−q/2 + Vk+q/2Vk−q/2)
2

~2ω2 − (ǫk+q/2 + ǫk−q/2)2
+

1

2ǫk

]

, (2)

I−−(ω, q) =

∫

d3k

[

(ǫk+q/2 + ǫk−q/2)(Uk+q/2Uk−q/2 − Vk+q/2Vk−q/2)
2

~2ω2 − (ǫk+q/2 + ǫk−q/2)2
+

1

2ǫk

]

, (3)

I+−(ω, q) =

∫

d3k
(Uk+q/2Uk−q/2 + Vk+q/2Vk−q/2)(Uk+q/2Uk−q/2 − Vk+q/2Vk−q/2)

~2ω2 − (ǫk+q/2 + ǫk−q/2)2
. (4)

We have introduced the amplitudes Uk and Vk and the
eigenenergies ǫk of the fermionic eigenmodes of the BCS
theory [21]:

ǫk =

√

(

~2k2

2m
− µ

)2

+∆2, (5)

Uk =

√

√

√

√

1

2

(

1 +
~2k2

2m − µ

ǫk

)

, (6)

Vk =

√

√

√

√

1

2

(

1−
~2k2

2m − µ

ǫk

)

, (7)

where m is the mass of a fermion. The two natural pa-
rameters of the BCS theory, with which we shall express
the energy ~ωq, are the chemical potential µ, identical
for the two spin states, and ∆, the gap in the BCS spec-
trum of the fermionic excitations when µ is positive. If
needed, they can be replaced by the scattering length
a and the total density ρ of the gas provided the two
following relations [22, 23] are inverted:

m

4π~2a
=

∫

d3k

(2π)3

(

m

~2k2
−

1

2ǫk

)

, (8)

ρ =

∫

d3k

(2π)3
2|Vk|

2. (9)

In practice, the Fermi wave vector defined by ρ =
k3F /(6π

2) is often used instead of the density.

III. GLOBAL NUMERICAL STUDY OF THE

CONCAVITY

Figure 1 synthesizes our results on the concavity of
the bosonic branch obtained from a numerical resolution
of the dispersion equation (1). Several domains can be

identified depending on the values of ∆/µ, or equiva-
lently 1/(kFa). (i) When the scattering length is negative
a < 0, that is for ∆/µ < 1.162 (lower dotted line), the
existence domain of the solution to Eq.(1) as a function
of q is compact and simply connected [13], hence of the
form [0, qsup]. The dispersion relation is entirely concave
for ∆/µ < 0.869 while for 0.869 < ∆/µ < 1.162 it is
first convex at small q then concave. Between those two
zones it goes through an inflection point, whose position
qinfl(∆/µ) we compute analytically in the small q limit
(see the black-dashed line and Eq.(29) of section IV).
(ii) On the other side of the resonance (a > 0) and up to
∆/µ = 1.729 (upper dotted line), the existence domain of
the solution to Eq.(1) splits up into two connected com-
ponents [0, qsup] and [qinf ,+∞[ [13]. While the branch is
always convex in the second component [qinf ,+∞[, the
first one [0, qsup] exhibits interesting variations: From
small q to high q, the branch is convex then concave for
1.162 < ∆/µ < 1.22, convex then concave then convex
again for 1.22 < ∆/µ < 1.710 and finally entirely convex
for 1.710 < ∆/µ < 1.729. (iii) When ∆/µ is greater than
1.729, or negative, the two components of the existence
domain merge and a solution to Eq.(1) thus exists for all
q [13]. The branch is then entirely convex.

All these numerical values are predicted by the RPA or
the BCS theory. They are therefore approximate. Up to
now the only value that can be compared to experiments
is that of ∆/µ at the unitary limit: From the measured
values ∆ ≃ 0.44~2k2F /(2m) [24] and µ ≃ 0.376~2k2F /(2m)
[8] we get ∆/µ ≃ 1.17, which is remarkably close to the
BCS-theory prediction ∆/µ ≃ 1.162. One must also
keep in mind that the RPA spectrum results from a
linearized treatment of the pair-field quantum fluctua-
tions, which neglects the interactions among the bosonic
quasiparticles. In reality, these interactions will shift the
eigenenergies ~ωq. They will also give rise, even at zero
temperature, to an imaginary part in ωq, corresponding
to a finite lifetime of the excitations, provided that the
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concavity of the dispersion relation allows for resonant
1 phonon → 2 phonons Beliaev processes [16].
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FIG. 1: (Color online) Local concavity of the bosonic branch
q 7→ ωq depending on ∆/µ and on the wave number q in units

of kµ = (2mµ)1/2/~. The values of 1/(kF a) in correspondence
with those of ∆/µ are given in the right vertical axis. Red
points: The branch is locally concave; orange points: The
branch is locally convex. Thick solid line: Border of the exis-
tence domain of the solutions of the dispersion equation (1).
Dashed line: Low-q analytical prediction (29) of the boundary
between the red zone and the orange zone, that is of the locus
of the inflection points of the curve q 7→ ωq, indicated by a
thin solid line. The ordinate ∆/µ = 0.869 of the point where
this line meets the q = 0 axis, and the ordinate ∆/µ = 1.710
above which the concavity zone disappears are indicated by
arrows. For the values of ∆/µ or 1/(kF a) in between the two
dotted lines indicated by arrows, the q-existence domain of the
solution of equation (1) is not simply connected. The lower
dotted line indicates the unitary limit, where the scattering
length diverges |a| → +∞.

IV. ANALYTICAL STUDY OF THE

CONCAVITY IN THE LONG WAVELENGTH

LIMIT

The dispersion relation can be obtained analytically in
the long wavelength limit q → 0. To this end we expand
the eigenenergy of the collective mode up to order 5 in q:

~ωq =
q→0

~cq

[

1 +
γ

8

(

~q

mc

)2

+
η

16

(

~q

mc

)4

+O

(

~q

mc

)6
]

.

(10)
To lowest order, as for any superfluid system, the energy
is phononic with a sound velocity given by the hydrody-
namic expression

mc2 = ρ

(

∂µ

∂ρ

)

a

, (11)

where the derivative is taken for a fixed scattering length
a, as indicated by the notation. When applied to the
approximate equation of state (9), the hydrodynamic ex-
pression (11) gives the RPA sound velocity, as shown in
reference [13] by an expansion of the solution ωq of equa-
tion (10) up to first order in q. We give here an explicit

expression in the form of a rational fraction

mc2

µ
=

2(xy + 1)

3(y2 + 1)
, (12)

in terms of the variables

x =
∆

µ
and y =

(

∂∆

∂µ

)

a

. (13)

In turn, the y variable is written as a function of x,

y =

∫

d3k ~
2k2/(2m)−µ

ǫ3
k

∫

d3k ∆
ǫ3
k

=

∫ +∞

0
du u2(u2

−x−1)
[(u2−x−1)2+1]3/2

∫ +∞

0
du u2

[(u2−x−1)2+1]3/2

(14)

by taking the derivative of equation (8) with respect to
µ at fixed scattering length a and by expressing the wave
vectors in units of k∆ = (2m∆)1/2/~ to form the dimen-
sionless integration variable u. The integrals over u in
the numerator and in the denominator of the right-hand
side of equation (14) may be expressed in terms of com-
plete elliptic integrals of the first and second kind [11].
At the unitary limit one has y = x, since ∆ and µ are
proportional due to scale invariance.
To obtain the expression (12) of the reduced sound ve-

locity, we take the derivative of the equation of state (9)
with respect to µ at fixed a and we express all result-
ing integrals as functions of x and y using (14) and the
relation
∫

d3k
(2π)3

∆3

ǫ3
k

ρ
=

∫ +∞

0
du u2

[(u2
−x−1)2+1]3/2

∫ +∞

0
du u2

(

1− u2
−x−1

[(u2−x−1)2+1]1/2

) =
3x/2

1 + xy
,

(15)
which may be derived by integrating by parts the inte-
gral over u in the denominator (u2 is the function to be
integrated).
To obtain the dimensionless coefficients γ and η of the

terms of ~ωq of higher order in q in equation (10), we
cannot rely on known thermodynamic expressions and
we must face the laborious expansion of equation (1) in
powers of q. Still the result can be put into a rational
form in terms of x and y:

γ =

∑4
i=0 Pi(y)x

i

135x2 (x2 + 1) (y2 + 1)
3 , (16)

η =

∑8
i=0 Qi(y)x

i

1020600 (y2 + 1)
6
x4 (x2 + 1)

2 . (17)

The Pi(y) and Qi(y) polynomials that appear as coeffi-
cients of xi in the numerators of γ and η are given by

P0(y) = −4
(

13y4 + 16y2 + 8
)

,

P1(y) = 4y
(

13y4 + 41y2 + 8
)

,

P2(y) = 50y6 − 21y4 − 252y2 − 61, (18)

P3(y) = 2y
(

y4 + 32y2 + 71
)

,

P4(y) = 35y6 + 56y4 − 13y2 − 54,
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and by

Q0(y) = 16
(

7745y8 + 19528y6 + 20304y4 + 8384y2 + 1088
)

,

Q1(y) = 32y
(

2857y8 + 67y6 − 3186y4 − 7920y2 − 2624
)

,

Q2(y) = −8
(

12882y10 + 28061y8 − 26936y6 + 7221y4 − 24496y2 − 5232
)

,

Q3(y) = −8y
(

8456y10 − 9859y8 + 9977y6 + 145295y4 + 3523y2 + 23720
)

,

Q4(y) = −17500y12 − 247996y10 − 1249743y8 − 1341332y6 + 337202y4 − 694392y2 + 18321, (19)

Q5(y) = −4y
(

25564y10 + 36027y8 − 66984y6 + 92206y4 + 387932y2 − 56121
)

,

Q6(y) = −2
(

12250y12 + 115637y10 + 558246y8 + 1071518y6 + 589478y4 − 248499y2 + 53082
)

,

Q7(y) = −4y
(

12957y10 + 33764y8 − 41904y6 − 173106y4 − 96189y2 + 53406
)

,

Q8(y) = −8575y12 − 44544y10 − 149742y8 − 360644y6 − 477615y4 − 270756y2 − 20412.

Our analytical expressions (16) and (17) result from a
Taylor expansion of the integrals I++(ωq, q), I−−(ωq, q)
and I+−(ωq, q) after replacement of ~ωq with the expan-
sion (10). At each order, we reuse the results of the
lower orders, that is the value (12) of c to obtain γ, then
those of c and γ (16) to obtain η. We encounter integrals
involving in the denominator high powers of ǫk (or of
[(u2 − x−1)2 + 1]1/2 after the k-to-u change of variable).
They can be evaluated by repeated integration by parts,
as explained in Appendix A.
We have plotted in figure 2 the coefficients γ and η as

functions of the parameter 1/(kFa) (which we have pre-
ferred here to ∆/µ). Let us briefly review their asymp-
totic behaviors in the BEC 1/(kFa) → +∞ and BCS
1/(kFa) → −∞ limits, and their values in some specific
relevant regimes.
a. BEC limit In the BEC limit kFa → 0+, the sys-

tem is equivalent to a weakly interacting gas of bosons of
mass 2m, with a chemical potential

µB = 2µ− Edim, (20)

where Edim = −~
2/(ma2) is the internal energy of a

dimer [25, 26]. The dispersion relation of the bosonic
excitations is then known to be convex and to take
the Bogoliubov form at chemical potential µB when
q = o(1/a) [13]:

~ωBog
q =

[

~
2q2

4m

(

~
2q2

4m
+ 2µB

)]1/2

, (21)

in which case the sound velocity is given by 2mc2 = µB.
The coefficients γ and η are thus expected to have the
following limits:

γ →
kF a→0+

1

4
and η →

kF a→0+
−

1

128
. (22)

This is confirmed by equations (16) and (17) taken at
the BEC limit, that is for x = O(kF a)

3/2 → 0− [22] and,
as shown by equation (14) after the change of variable
u = u′/|x|1/2, for y ∼ −4/x.

b. BCS limit When kF a → 0−, the lower border
of the two-fermionic-excitation continuum (at fixed total
wave number q < qsup) becomes exponentially weak and
forces the bosonic excitation branch, which cannot enter
into this continuum, to bend downward [13, 15]. This
bending takes place over a wave number range qc such
that ~cqc = ∆, that is such that the leading term in the
expansion (10) is of the order of ∆. This means that the
collective modes are affected by the pairs internal struc-
ture when the mode wavelength becomes comparable to
the pairs size in real space ≈ ~

2kF /(m∆) [11], a quantity
that is indeed of order 1/qc since c ∝ ~kF /m in the BCS
limit. This qualitatively explains why the dispersion re-
lation is a concave function of q for low q and low ∆/µ
in figure 1, and why γ < 0 in the BCS limit.

More quantitatively, we expect that the normalized
energy ~ωq/∆ becomes a universal function of q/qc =
~cq/∆ when kF a → 0−, in which case all the terms in
between brackets in equation (10) are of the same or-
der of magnitude for q = qc, that is |γ(~qc/mc)2| ≈ 1,
|η(~qc/mc)4| ≈ 1. This is indeed what we find by taking
the limit x → 0 and y → 0 in equations (16) and (17):

γ ∼
kF a→0−

−
8

15

(

mc2

∆

)2

and η ∼
kF a→0−

136

1575

(

mc2

∆

)4

,

(23)
the first result reproducing that of reference [11].

c. Crossover region In the crossover region between
BEC and BCS, γ is an increasing function of 1/(kFa). It
vanishes and changes sign for the value x0 of ∆/µ given
by

x0 ≃ 0.868567. (24)

This value corresponds to 1/(kFa) ≃ −0.144292, in
agreement with the numerical result of figure 1 and with
reference [16]. The RPA prediction is then that the dis-
persion relation of a unitary gas is convex close to q = 0:

γ ≃
(kF a)−1=0

0.083769. (25)
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FIG. 2: Dimensionless coefficients γ and η of the terms q3 and
q5 in the RPA dispersion relation of the bosonic excitations
for q → 0, see equation (10), as functions of the interaction
parameter 1/(kF a). In the BEC limit, they have a finite limit
corresponding to the Bogoliubov dispersion relation, see equa-
tions (21,22) and the panels (a) and (c). In the BCS limit,
they diverge, and it is more appropriate to express the wave
number q in units of ∆/(~c), which amounts to considering
the quantities γ∆2/(m2c4) and η∆4/(m4c8) which have a fi-
nite limit, see panels (b) and (d). In between these two limits,
γ and η vanish and change sign for 1/(kF a) ≃ −0.144 and
1/(kF a) ≃ −0.389 respectively, and they are weakly positive
(γ ≃ 0.0838) or weakly negative (η ≃ −0.0354) at the unitary
limit. The value of η is relevant mainly at the point where γ
vanishes. At this point, η ≃ −0.0428 so the RPA dispersion
relation is concave over a neighborhood of q = 0.

The coefficient η changes sign for a value x1 of ∆/µ given
by

x1 ≃ 0.566411 (26)

corresponding to 1/(kFa) ≃ −0.389027. It is negative
both at unitarity

η ≃
(kF a)−1=0

−0.035416, (27)

and at the point x0 where γ = 0:

η(x0)≃ − 0.042794. (28)

At that very point the sign of η is important as it de-
termines the concavity of the dispersion relation close to
q = 0.
d. Locus of the inflection points The coefficients γ

and η allow us to find analytically the border between
the orange and the red zones of figure 1 for small q, that
is the ensemble of points with coordinates (q/kµ,∆/µ)
such that the second derivative d2ωq/dq

2 is zero. Using
the expansion (10) for ωq and expanding the coefficients
γ(x) and η(x) around x = x0, to order one and order
zero in x− x0 respectively, one obtains the equation

q2infl
k2µ

∼
x→x+

0

−
3γ′(x0)

10η(x0)

mc2

µ
(x − x0) ≃ 2.015858(x− x0)

(29)
plotted as a black-dashed curve in figure 1, which reaches
the axis q = 0 with an horizontal tangent.
On the contrary, the border between the red and or-

ange zone in figure 1 reaches the border of the exis-
tence domain of the collective excitation branch with an
oblique tangent. This is due to the fact that the third
derivative of q 7→ ωq is nonzero at the contact point
q = qsup contrarily to what happens at q = 0.

V. CONCLUSION

We have considered a spatially homogeneous unpolar-
ized gas of spin-1/2 fermions at zero temperature, and
we have obtained analytically the spectrum ~ωq of the
bosonic excitation branch predicted by the RPA up to
order 5 included in the wave vector q close to q = 0.
The coefficients of the obtained expansion are rational
fractions of two variables ∆/µ and (∂∆/∂µ)a, where the
second variable can be analytically related to the first
one using the BCS-theory equation of state. This al-
lows us to show analytically that the dispersion rela-
tion q 7→ ωq is concave close to q = 0 when 1/(kFa)
is between −∞ and a value close to −0.144, a point
where the first correction to the linear dispersion rela-
tion is of order q5 with a slightly negative coefficient.
For −0.144 < 1/(kFa) < 0.157 the branch is convex close
to q = 0 but becomes concave when q increases, and it
remains so for q increasing up to the maximal possible
value qsup if 1/(kFa) < 0.022, while it becomes convex
again in the opposite case 0.022 < 1/(kFa) < 0.157. Be-
yond 1/(kFa) = 0.157 the bosonic branch is convex over
its whole domain of existence.
Our results on the concavity of the dispersion relation

close to q = 0 can be tested experimentally in a gas of
cold atoms trapped in a flat bottom potential [27]. This
can be done either (i) indirectly by measuring dissipative
effects such as the damping of collective excitations at low
temperature, or dispersive effects such as the spreading
of a wave packet of sound waves created by a laser pulse
[9, 28], or (ii) directly by accessing the dispersion relation
at low temperature via the dynamic structure factor of
the Fermi gas through Bragg excitation at a selected wave
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vector q [29–31].
Supplemented by kinetic equations for the collective

mode occupation numbers, our results open the way to an
analytical determination of the phase diffusion coefficient
at low temperature, hence to the intrinsic limit to the
coherence time of the condensate of pairs in a finite-size
Fermi gas [14].

Appendix A: Expressing integrals in terms of the

variables x and y

In the expansion of I++(ωq, q), I−−(ωq, q) and
I+−(ωq, q) at low q, and after a rescaling of the wave
vectors by k∆ as in equation (14), we encounter integrals
of the form

In,p =
k3∆
2π2ρ

∫ +∞

0

du
u2p+2

ǫnu
, (A1)

Jn,p =
k3∆
2π2ρ

∫ +∞

0

du
u2p+2ξu

ǫnu
(A2)

with n ∈ 2N∗ + 1, p ∈ N,

ξu = u2 −
1

x
, (A3)

ǫu =
√

ξ2u + 1, (A4)

and the total density ρ is given by equation (9). The
integrals giving In,p and Jn,p are convergent for n−p ≥ 2
and for n − p ≥ 3 respectively. Integrals which depend
on the direction of k can be expressed in the forms (A1)
and (A2) after angular integration:

∫

d3kf(k)

(

~
2k · q

m

)2p

=

4π

1 + 2p

(

~
2q2

m

)p ∫ +∞

0

dkk2f(k)

(

~
2k2

m

)p

(A5)

where f(k) is an arbitrary function of the modulus of k.
Let us first establish the four recurrence relations:

In,p =
n− 3

n− 2
In−2,p −

2p+ 1

2(n− 2)
Jn−2,p−1, (A6)

Jn,p =
2p+ 1

2(n− 2)
In−2,p−1, (A7)

In,p = Jn,p−1 +
In,p−1

x
, (A8)

Jn,p =
Jn,p−1

x
+ In−2,p−1 − In,p−1, (A9)

holding under the conditions 1 ≤ p ≤ n − 4 for the first
relation, 1 ≤ p ≤ n− 3 for the second one, 1 ≤ p ≤ n− 2
for the third one and 1 ≤ p ≤ n − 3 for the last one. In
order to derive the relation (A6), we integrate by parts
the integral

k3∆
2π2ρ

∫ +∞

0

du
u2p+2ξ2u

ǫnu
= In−2,p − In,p, (A10)

selecting u 7→ u2p+1ξu as the function to be differenti-
ated. In order to derive the relation (A7), we integrate
by parts the integral defining Jn,p in equation (A2), se-
lecting u 7→ u2p+1 as the function to be differentiated.
In both cases, we note that the function u 7→ uξu/ǫ

n
u

admits the primitive u 7→ −[2(n − 2)ǫn−2
u ]−1. Finally,

we simply write u2p+2 = u2p(ξu + x−1) in the inte-
grand of (A1) in order to obtain (A8), and we write
u2p+2ξu = u2p(ǫ2u − 1 + x−1ξu) in the integrand of (A2)
in order to obtain (A9). This procedure generalizes that
of reference [11].

We now show by induction using the relations
(A6,A7,A8,A9) that In,p and Jn,p can be expressed as
functions of I3,0 and J3,0, for all odd n ≥ 3 and for all
positive p within the existence domain of the integrals.
Let n be odd and ≥ 3 and assume that we know all the
In,p, 0 ≤ p ≤ n − 2, and all the Jn,p, 0 ≤ p ≤ n − 3.
Then (i) In+2,1 and Jn+2,1 can be deduced using (A6)
and (A7), (ii) using (A9) and (A8) we obtain a Cramer
system for In+2,0 and Jn+2,0:

x−1Jn+2,0 − In+2,0 = Jn+2,1 − In,0, (A11)

Jn+2,0 + x−1In+2,0 = In+2,1, (A12)

which we solve, (iii) we use (A8) and (A9) to access the
values of In+2,p and Jn+2,p for p ≥ 2. We set the induc-
tion basis at n = 3, by expressing I3,1 as a function of
I3,0 and J3,0 thanks to (A8).

Finally we relate I3,0 and J3,0 to x and y thanks to
the relations (14) and (15) of the main text, which take
the form y = J3,0/I3,0 and I3,0 = 3x/[2(1+xy)] with the
notations of this appendix.
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