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ABSTRACT

This paper introduces a new statistical hypothesis test for ro-

bust image classification. First, we introduce the proposed

statistical hypothesis test based on the geodesic distance and

on the fixed point estimation algorithm. Next, we analyze

its properties in the case of the zero-mean multivariate Gaus-

sian distribution by studying its asymptotic distribution un-

der the null hypothesis H0. Then, the performance of the

proposed classifier is addressed by analyzing its noise robust-

ness. Finally, the robust classification method is employed for

the classification of simulated Polarimetric Synthetic Aper-

ture Radar images of maritime pine forests.

Index Terms— Robust image classification, statistical

hypothesis test, geodesic distance, fixed point estimate, SAR

imagery.

1. INTRODUCTION

Multiscale approaches have been found to be effective for

many image processing applications including filtering [1],

segmentation [2] or classification [3]. In the classification

context, the image processing workflow consists in two steps.

First of all, the image is decomposed into a set of wavelet sub-

bands, each of them being modeled by a probability density

function with a specific parameter vector. Next, for each sub-

band, the estimated parameter vector composes the signature

of the image. Then, a similarity measure based on a proba-

bilistic metric is computed between the signature vectors.

Simple but effective methods have been proposed to char-

acterize wavelet detail statistics based on univariate models

such as the generalized Gaussian distribution [3]. Nonethe-

less, they do not take into account the dependencies existing

in the image. To overcome this difficulty, multivariate distri-

butions, including elliptical models [4, 5] and copula based

approaches [6, 7], have been proposed to model the spatial

and spectral dependencies in the images. Once the feature

vectors are computed for each texture image, a distance (or at

least a divergence) is calculated in order to measure the degree

of similarity between two images. A well-known choice is the

Kullback-Leibler (KL) divergence [8], or its symmetric ver-

sion: the Jeffreys divergence [9]. Recently, some authors have

proposed to consider the geodesic distance, which has shown

superior retrieval rate compared to the KL divergence [5].

In a classification or texture retrieval experiment, a nearest

neighbor classifier is generally considered. In such case, a test

image is labeled to the class of the closest training image. But,

nothing tells that the test image is well classified, especially

for noisy datasets. An hypothesis test should be performed

to regulate the false alarm rate. Inspired from previous works

on the KL divergence [10] and on the family of (h, φ) diver-

gences [11, 12], we introduce a new statistical hypothesis test

based on the geodesic distance. The advantage of using the

geodesic distance lies in its property of being a distance mea-

sure, which is symmetric and respects the triangle inequality.

The main objective of the paper is the construction of a robust

classification algorithm.

The robustness of an algorithm can be analyzed by tak-

ing into account the decision-making strategies but also the

parameter estimation techniques. For this latter, we propose

an extension of the statistical hypothesis test to robust esti-

mators [13]. A comparison between the sample covariance

matrix (SCM) and the fixed point (FP) estimates is conducted

in various experiments.

The paper is structured as follows. Section 2 introduces

the proposed statistical hypothesis test based on the geodesic

distance. Section 3 presents the robust FP estimates for

the zero-mean multivariate Gaussian distribution (MGD).

The performance of the proposed statistic is analyzed in

terms of efficiency and noise robustness on simulated dataset.

Comparisons with the SCM estimator are also carried out.

Section 4 introduces an application for the classification of

maritime pine forests based on simulated Polarimetric Syn-

thetic Aperture Radar (PolSAR) images. Conclusions and

future works are finally reported in Section 5.

2. HYPOTHESIS TEST FOR ROBUST

CLASSIFICATION

2.1. Context

Let X1 = (x1
1, . . . ,x

1
m) and X2 = (x2

1, . . . ,x
2
n) be two

sets of m and n independent and identically distributed ran-

dom variables (vectors) x according to the parametric models



p(x|θ1) and p(x|θ2). Let θ̂1 and θ̂2 be the maximum likeli-

hood (ML) estimates computed on these sets. In a classifica-

tion problem, the aim is to determine if X1 and X2 are issued

from the same parametric model. Let consider the following

hypothesis test {
H0 : θ1 = θ2,
H1 : θ1 �= θ2.

(1)

Under the regularity conditions discussed in [11], it has been

proved in [10, 11, 12] that under the null hypothesis H0 and

for sample sizes n,m −→ ∞, the test statistic SGD follows a

chi-square distribution:

S(θ̂1, θ̂2) =
2mnv

m+ n
D(θ̂1, θ̂2) −−−−−→

n,m→∞
χ2
M , (2)

where the degree of freedom M is equal to the dimension of

the parameter space. v is a constant depending on the con-

sidered similarity measure D (v = 1 for the KL divergence).

This hypothesis test has been first introduced in [10] for D
being the KL divergence and further generalized in [11] for

the class of (h, φ) divergences. In the paper, we extend this

definition to the Rao geodesic distance, which is the short-

est path in the parametric manifold. Indeed, under the null

hypothesis H0, distributions are lying infinitesimally close on

the probabilistic manifold and in such case the KL divergence

equals half of the squared geodesic distance (GD). Hence,

when θ1 = θ2, the test statistic

SGD(θ̂1, θ̂2) =
mn

m+ n
GD2(θ̂1, θ̂2) (3)

is asymptotically chi-square distributed with M degrees of

freedom for sufficiently large values of m and n. Note that

under H0, the distribution of the statistic SGD is independent

of θ1 and θ2.

2.2. Application to zero-mean multivariate Gaussian dis-

tributions

In the following, we suppose that X1 and X2 are two zero-

mean multivariate Gaussian distributions (MGDs), having the

parameter vectors represented by the covariance matrices M1

and M2. In this case, the Rao geodesic distance is computed

according to:

GD(M̂1||M̂2) =

[
1

2

∑
i

(lnλi)
2

] 1

2

, (4)

where M̂1 and M̂2 are the SCM estimators of the covariance

matrices M1 and M2 and λi, i = 1 . . . d are the eigenvalues

of M̂−1

2 M̂1. It yields that the null hypothesis M1 = M2 can

be rejected at a level α if Pr(χ2
M > SGD(M̂1, M̂2)) ≤ α.

Here, the degree of freedom M is equal to d(d + 1)/2 where

d is the dimension of the covariance matrix.
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Fig. 1. Convergence of the estimated p-value as a function of

the dataset size.

Some simulation results are displayed to evaluate the po-

tential of the proposed statistical hypothesis test on a simu-

lated dataset. The sets X1 and X2 are generated as m and

n independent and identically distributed random vectors dis-

tributed according to a zero-mean MGD, having the covari-

ance matrix of the form M = (Mi,j) with

Mi,j = ρ|i−j|. (5)

For each set X1 and X2, the covariance matrix is estimated

according to the maximum likelihood principle by using the

SCM estimates. The significance level α is set to 0.05 and

104 Monte Carlo iterations are considered. Fig. 1 draws the

evolution of the estimated p-value as a function of the dataset

size (m = n in this experiment) for the SCM estimate with

ρ = 0.5. The solid line corresponds to the geodesic distance

while the dashed line corresponds to the Kullback-Leibler di-

vergence. As expected, the estimated p-value converges to

the significance level α for sufficiently large m. In addition, it

can be observed that the convergence is faster for the geodesic

distance than for the Kullback-Leibler divergence. In the fol-

lowing, only the geodesic distance will be considered.

In the next section, we propose an extension of this hy-

pothesis test to robust covariance matrices estimators.

3. EXTENSION TO ROBUST ESTIMATORS

3.1. Robust M-estimators

The M-estimators, a family of estimators, have been intro-

duced in the context of robust theory to tackle the presence of

outliers in the dataset or errors in the model. For zero-mean

observations, the M-estimator of the covariance matrix is de-

fined as the solution of [13, 14]:

M̂ =
1

N

N∑
i=1

u(xT
i M̂

−1
xi) xix

T
i . (6)

where u( · ) is a positive-valued function which gives a weight

to each observation xi in the computation of the covariance



matrix. Obviously the weight function u( · ) should decrease

to zero to ensure that outliers have a smaller contribution to

the covariance matrix estimate than other observations. Note

that the SCM estimator gives an uniform weight (i.e. u( · ) =
1) to each observations, hence confirming its non robustness.

In literature, this family of M-estimators has been exten-

sively studied and found to be a generalization of covariance

matrix ML estimates for the family of elliptical distribu-

tions. Many authors have focused to the particular case

where u(t) = 1/t. In such case, the M-estimator of covari-

ance reduces to the so-called fixed point (FP) estimator given

by [15, 16]:

M̂it+1 =
1

N

N∑
i=1

xix
T
i

x
T
i M̂

−1

it xi

, (7)

with it being the iteration. Practically, this recursive algo-

rithm can be initialized with the identity matrix and converges

in about 10 iterations [16, 17].

The FP estimator has a unique solution M̂ up to a scale

factor. Indeed, for any positive scalar c �= 0, if M̂ is a solution

of (7), cM̂ is also a solution of (7). In the following, the co-

variance matrix is normalized such that tr(M̂) = d. This

FP estimator can be interpreted as the ML estimate of the

normalized covariance matrix for a Gaussian scale mixture

model1 where the multipliers τi are assumed to be unknown

deterministic parameters [15].

In [16], Pascal et al. have analyzed the properties of the

FP estimator. In particular, the FP estimate is the unique so-

lution of (7) and it is an unbiased and consistent estimate.

Moreover, the FP estimate has a Wishart distribution behav-

ior with (d/(d+1))N degrees of freedom. This latter is used

in the hypothesis given in (3) to adapt the degrees of freedom

M of the statistic’s asymptotic distribution.

3.2. Classification efficiency

Here, the proposed hypothesis test based on the statistics SGD

is used for implementing a two-classes classification algo-

rithm for simulated data. The experiment consists in defin-

ing two independent and identically distributed random set of

vectors X1 and X2 of size m1 and m2 distributed accord-

ing to the MGD and having the covariance matrices M1 and

M2. A third dataset Xt of size mt and covariance matrix Mt

has been defined in the same manner. The implemented algo-

rithm has to classify Xt in one of the two available groups,

by choosing the one with the most similar covariance matrix.

Here, we consider that Xt should be of class 2, by gener-

ating it using the same parameters as for X2. Under these

assumptions, the hypothesis test consists in verifying if the

1Recall that a Gaussian scale mixture model admits the stochastic repre-

sentation x =
√
τz where τ is a scalar random variable called multiplier

(τ ∈ R
+) and z a Gaussian random vector with zero-mean and covariance

matrix M.
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Fig. 2. Correct classification rate of Xt in class 2 by using

the SGD with the SCM and FP estimates, if m1 = 100, 1000,

10000, and m2 = mt = 1000.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

Noise variance σ2

C
la

ss
ifi

ca
tio

n 
ra

te

ρS
GD−SCM

 =0.25

ρS
GD−SCM

 =0.5

ρS
GD−SCM

 =0.75

ρS
GD−FP

 =0.25

ρS
GD−FP

 =0.5

ρS
GD−FP

 =0.75

Fig. 3. Evolution of the performances of SGD as a function of

the noise variance σ2, by using the SCM and FP estimate for

various covariance matrices: ρ = 0.25, 0.5, 0.75 and d = 3.

distribution Xt has the same parameter vector as X2, or in

other words, if Xt is of class 2.

Fig. 2 draws the influence of the estimation algorithm and

the influence of datasets’ size on the classification perfor-

mance. The simulations are carried out for a 3-dimensional

dataset (d = 3) with m1 = 100, 1000 and 10000 and m2 =
mt = 1000. Several values for the covariance matrix M are

tested (ρ2 and ρt ranging from 0.1 to 0.7, while ρ1 is fixed to

0.1). Each time M is estimated by the SCM (dashed lines)

and FP (solid lines) algorithms. 104 Monte Carlo iterations

are performed to obtain average performances.

As observed, the best performances are obtained for the

SCM estimate compared to the FP one, illustrating the effi-

ciency of this former. This observation is natural since this

experiment has been carried out in a purely Gaussian context.

The next subsection will analyze the robustness by consider-

ing some noisy data.



3.3. Noise robustness

The performances of the SCM and FP estimates are now com-

pared in terms of noise robustness for the statistic SGD. Here,

two datasets X1 and X2 are generated as independent and

identically distributed random vectors distributed according

to a zero-mean MGD of covariance matrix M. The set X2

is next corrupted by an independent additive white Gaussian

noise of covariance matrix σ2
Id, σ2 being the noise variance

and Id is the identity matrix.

The significance level α is set to 0.05 and several values

for the covariance matrix M are tested (ρ = 0.25, 0.5, and

0.75). 103 Monte Carlo iterations are considered to estimate

the classification rate. Results are displayed in Fig. 3. The

dashed and solid lines corresponds respectively to the SCM

and FP estimates. Clearly, the FP estimator is much more ro-

bust than the SCM, especially for smaller values of ρ. For

example, at a recognition rate of 60%, the FP estimate pro-

vides a gain of 9.4 dB for ρ = 0.5.

4. APPLICATION ON SAR IMAGERY

Covariance matrix estimators are used for a wide variety of

applications in signal and image processing, including direc-

tion of arrival and number of signals estimation for multi-

antenna receiver algorithms [18], segmentation of medical

images [19], . . . In this section, we present an application of

the proposed statistic to the classification of maritime pine

forests SAR images according to the stand age. More experi-

ments can be found in [20].

For this experiment, the database contains 350 complex L-

band simulated polarimetric SAR images of pine tree forests

grouped in four classes according to the stand age (less than

10 years, between 10 and 20 years, between 20 and 30 years,

over 30 years). The dataset is obtained by using the Pol-

SARproSim software [21] for a platform situated at 3580 me-

ters and having an incidence angle of 45◦ with several resolu-

tions: 0.5, 1, 2, 3 and 5 meters. For each image, three polar-

izations (HH, HV and VV) are considered and merged to form

a 3-dimensional array. This array is then filtered using the sta-

tionary wavelet transform with the Daubechies’ db4 wavelet.

Let Nsc and Nor be respectively the number of scales and ori-

entations of the wavelet decomposition. Since the subbands

of the wavelet decomposition are assumed independent, the

geodesic distance between two images I1 and I2 can be ex-

pressed as a function of the geodesic distance computed on

each subbands as:

GD2(I1||I2) =

Nsc∑
s=1

Nor∑
o=1

GD2(θ̂1,s,o||θ̂2,s,o) (8)

where θ̂1,s,o corresponds to the maximum likelihood estimate

of θ1 for the subband at scale s and orientation o.

To model the wavelet subband, various stochastic mod-

els have been proposed in the literature. Among them, the
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Fig. 4. Classification results by using the SGD along with the

SCM and FP estimates for simulated SAR data with wavelet

coefficients modeled by MGDs.

univariate generalized Gaussian distribution (GGD) has been

found to accurately model the empirical histogram of wavelet

subband [3]. More recently, many authors have proposed to

model the spatial dependency of wavelet coefficients. To this

aim, the wavelet coefficients located around the spatial neigh-

borhood 3 × 3 of the current spatial position are clustered in

a random vector x. The realizations of those vectors x can

further be modeled by elliptical distributions [4, 5], copula

based models [6, 7], etc. In this paper, we focus on the MGD

model which admits a close-form expression for the geodesic

distance recalled in (4) and the SCM and the FP estimates are

analyzed for the estimation of the covariance matrices.

For the classification purpose, the database is divided into

a training and testing set by a cross validation procedure.

The retrieve performances are computed by using a k Nearest

Neighbor classifier, with k = 5 and the results are shown in

Fig. 4. As observed, for very high resolution images, the per-

formance are the highest. Note also that, for high resolution

images, the FP estimate improves the classification results

over the SCM estimate.

5. CONCLUSION

In this paper, a statistical hypothesis test based on the

geodesic distance and on the FP estimate has been intro-

duced for image classification. Various experiments have

been proposed to analyze this statistical test in the case of

zero-mean MGDs on both simulated dataset and synthetic

SAR images. A comparison between the SCM and the FP

estimates has been performed. First, simulation results have

shown that the dataset should contain at least 50 observations

to ensure that the statistic follows a chi-squared distribution

under the null hypothesis H0, when using the SCM estimate.

Second, the noise robustness has been analyzed as a function

of the noise variance σ2. Finally, an image processing ap-

plication for the classification of SAR images has illustrated

the potential of the proposed classifier. Further works will

include the extension of the statistical hypothesis test to other

multivariate models.
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