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Abstract. The current paper introduces new prior distributions on the
zero-mean multivariate Gaussian model, with the aim of applying them
to the classification of covariance matrices populations. These new prior
distributions are entirely based on the Riemannian geometry of the multi-
variate Gaussian model. More precisely, the proposed Riemannian Gaus-
sian distribution has two parameters, the centre of mass Ȳ and the dis-
persion parameter σ. Its density with respect to Riemannian volume is
proportional to exp(−d2(Y ; Ȳ )), where d2(Y ; Ȳ ) is the square of Rao’s
Riemannian distance. We derive its maximum likelihood estimators and
propose an experiment on the VisTex database for the classification of
texture images.
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1 Introduction

In information geometry, a parametric family of probability densities is consid-
ered as a Riemannian manifold [1]. Precisely, the role of Riemannian metric is
played by the Fisher metric, and that of Riemannian distance by Rao’s distance.
Rao’s distance has been been widely used for several statistical applications
including object detection and tracking, shape classification, and image segmen-
tation [2–4]. Nevertheless, none of them have formulated it as a probabilistic
approach to clustering on Riemannian manifolds, which is the main contribu-
tion of the paper.

More precisely, this paper introduces new Riemannian prior (denotedG(Ȳ , σ))
as Gaussian distributions on the zero-mean multivariate Gaussian model. These
distributions have a unique mode Ȳ (the unique Riemannian centre of mass),
and its dispersion away from Ȳ is given by σ. In order to improve upon the per-
formance obtained in [5], the present paper uses mixtures of Riemannian priors
as prior distributions for classification. This allows for clustering analysis to be
carried out using an expectation-maximisation, or EM, algorithm, instead of the
essentially deterministic k -means approach of existing works, (e.g. [2–4]).

The paper is structured as follows. Section 2 recalls some definitions concern-
ing the Riemannian geometry of covariance matrices. Section 3 introduces the



proposed Riemannian Gaussian distributions. After having presented its max-
imum likelihood estimators and its extension to mixture models in Section 4,
an experiment on the VisTex database is proposed in Section 5 to evaluate the
potential of the proposed prior for the classification of texture images. Due to
the restriction length, all the mathematical proofs cannot be detailed here and
will be given in a forthcoming journal paper.

2 Riemannian geometry of covariance matrices

Let Pm denote the space of all m×m real matrices Y which are symmetric and
strictly positive definite,

Y † − Y = 0 x†Y x > 0 for all x ∈ Rm (1)

where † denotes the transpose. In many applications [6], Pm arises as a space
of tensors, such as structure tensors in image processing, or diffusion tensors
in medical imaging, (in these examples, m = 2, 3). In general, Pm may also be
thought of as the space of non-degenerate covariance matrices [7].

When thinking of the elements Y of Pm as covariance matrices, it is most
suitable to do so within the framework of the normal covariance model [7][8].
This model associates to Y ∈ Pm the normal probability density function P (x|Y )
on Rm, with mean 0 ∈ Rm and covariance Y . Recall that logP (x|Y ) = `(Y ),
where

`(Y ) = −1

2
log [det(2πY )]− 1

2
x†Y −1x. (2)

Let us now recall the definition of the Fisher information matrix [8]. Let
p = m(m+1)/2, the dimension of Pm , and Θ an open subset of Rp. Assume θ 7→
Y (θ) is a differentiable mapping from Θ to Pm , which is a diffeomorphism. One
refers to the mapping θ 7→ Y (θ) as a parameterisation of Pm , with parameters
θ = (θa ; a = 1, . . . , p). Let `(θ) stand for `(Y (θ)) where `(Y ) is the function
defined in (2). The Fisher information matrix I(θ) has matrix elements

Iab(θ) = Eθ
[
∂`(θ)

∂θa
× ∂`(θ)

∂θb

]
, (3)

where Eθ denotes expectation with respect to the normal probability density
function p(x|Y (θ)).

A Riemannian metric on Pm is a quadratic form ds2(Y ) which measures the
squared length of a small displacement dY , separating two elements Y ∈ Pm
and Y + dY ∈ Pm. Here, dY is a symmetric matrix, since Y and Y + dY are
symmetric, by (1). The Rao-Fisher metric is the following [9][8],

ds2(Y ) = tr
(
[Y −1dY ]2

)
, (4)

where tr() denotes the trace.
The Rao-Fisher metric, like any other Riemannian metric on Pm , defines a

Riemannian distance d : Pm × Pm → R+. This is called Rao’s distance, and is



defined as follows [9][10]. Let Y, Z ∈ Pm and c : [0, 1] → Pm be a differentiable
curve with c(0) = Y and c(1) = Z. The length L(c) of c is defined by

L(c) =

∫ 1

0

ds(c(t)) =

∫ 1

0

‖ċ(t)‖ dt, (5)

where ċ(t) = dc
dt . Rao’s distance d(Y,Z) is the infimum of L(c) taken over all

differentiable curves c as above.
A major property of the Rao-Fisher metric is the following. When equipped

with the Rao-Fisher metric, the space Pm is a Riemannian manifold of nega-
tive sectional curvature. One implication of this property, (called the Cartan-
Hadamard theorem [10]), is that the infimum of L(c) is realised by a unique
curve γ, known as the geodesic connecting Y and Z. The equation of this curve
is the following [9],

γ(t) = Y 1/2 (Y −1/2ZY −1/2)t Y 1/2. (6)

Given the expression (6), it is possible to compute L(γ) from (5). This is precisely
Rao’s distance d(Y, Z). It turns out,

d 2(Y,Z) = tr [log(Y −1/2ZY −1/2)]2. (7)

Since the Rao-Fisher metric gives a mean of measuring length, it can also be
used to measure volume. Indeed, (based on the elementary fact that the “volume
of a cube is the product of the lengths of its sides”), the Riemannian volume
element associated to the Rao-Fisher metric is defined to be [9]

dv(Y ) = det(Y )−
m+1

2

∏
i≤j

dYij . (8)

All matrix functions appearing in (6) and (7), (square root, power and loga-
rithm), should be understood as symmetric positive definite matrix functions.

3 Riemannian Gaussian distributions

The main theoretical contribution of the present paper is to give an original
exact formulation of Riemannian Gaussian distributions. These are probability
distributions on Pm , whose probability density function, with respect to the
Riemannian volume element (8), is of the form,

p(Y | Ȳ , σ) =
1

Z(σ)
exp

[
−d

2(Y, Ȳ )

2σ2

]
, (9)

where Ȳ ∈ Pm and σ > 0 are parameters, and where d(Y, Ȳ ) is Rao’s distance,
given by (7). For brevity, a Riemannian Gaussian distribution, with probability
density function (9), will be called a Gaussian distribution, and denoted G(Ȳ , σ).



The parameter Ȳ is called the centre of mass, and σ is called the dispersion, of
the distribution G(Ȳ , σ).

Distributions of the form (9) were considered by Pennec [11], defined on
general Riemannian manifolds. However, in existing literature, their treatment
remains incomplete, as it is based on asymptotic formulae, valid only in the
limit where the parameter σ is small, (see [11] (Theorem 5., Page 140) and [12]
(Theorem 3.1.1., Page 434)). In addition to being only approximations, such
formulae are quite difficult, both to evaluate and to apply. These issues, (lack
of an exact expression and difficulty of application), are fully overcome in the
following.

Note also that a more sophisticated description by means of a concentration
matrix instead of a scalar dispersion parameter σ is possible. This approach has
notably been introduced in [11].

3.1 Maximum likelihood estimation

Let Y1, . . . , YN be N independent samples from a Gaussian distribution G(Ȳ , σ).
Based on these samples, the maximum likelihood estimate of the parameter Ȳ is
the empirical Riemannian centre of mass ŶN of Y1, . . . , YN defined as the unique
global minimiser ŶN of EN : Pm → R,

EN (Y ) =
1

N

N∑
n=1

d 2(Y, Yn). (10)

Moreover, the maximum likelihood estimate of the parameter σ is the solution
σ̂N of the equation, (for unknown σ),

σ3 × d

dσ
logZ(σ) = EN ( ŶN ). (11)

Both ŶN and σ̂N exist and are unique for any realisation of the samples Y1, . . . , YN .
In practice, Ȳ is first estimated according to (10) then the estimation of σ is
proceed by (11).

3.2 Application to P2

In (9), the normalising factor Z(σ) can be expressed under an integral form as

Z(σ) =

∫
Pm

f(Y | Ȳ , σ) dv(Y ), (12)

where dv(Y ) is the Riemannian volume element (8). It is interesting to note that
Z(σ) is independent from the centre of mass Ȳ . For the space of 2×2 covariance
matrices (i.e. m = 2), the normalising factor admits the following close form
expression:

Z(σ) = 4π2σ2 exp(σ2/4) erf(σ/2), (13)

where erf() is the error function.



4 EM algorithm for mixture estimation

While successful in application to specific data sets, the Bayesian approach of [5]
summarised in the previous section fails to take into account the presence of
within-class diversity. Precisely, this approach assumes that the given learning
sequence is immediately subdivided into clusters, whose members display “ho-
mogeneous” properties, in the sense that they can be faithfully modelled as
belonging to the same Riemannian prior. Clearly, this is a restrictive assump-
tion. In the presence of within-class diversity, a learning sequence should be
subdivided into classes, whose members display “heterogeneous” properties, in
the sense that they may belong, within the same class, to different clusters, each
corresponding to a different Riemannian prior.

Here, this situation is formulated as follows. If a class C, whose members
are points Y1, . . . , YN ∈ Pm, is expected to contain K clusters, respectively
corresponding to Riemannian priors G(Ȳa, σa), where a = 1, . . . ,K, then C is
modelled as a sample of size N , drawn from the mixture of Riemannian priors

p(Y |Θ) =

K∑
a=1

$a p(Y |Ȳa, σa) (14)

where $1, . . . , $K are positive weights, with
∑K
a=1$a = 1, and each density

p(Y |Ȳa, σa) is given by (9).
Now, assume a training sequence is subdivided into classes, each containing

a known numbers of clusters. In order to implement a decision rule which asso-
ciates any test object, described by Yt ∈ Pm, to the most likely cluster within
the training sequence, it is necessary, for each class C, modelled by (14), to find
maximum likelihood estimates of the mixture parameters ϑ = ($a, Ȳ , σa). Here,
this task is realised using an expectation-maximisation (EM) algorithm. Fol-
lowing [13], the starting point for the EM algorithm is the introduction of the
following quantities

ωa(Yj) ∝ $a × p(Yj |Ȳa, σa) na =

N∑
j=1

ωa(Yj) (15)

where, ∝ denotes proportionality, so that
∑
a ωa(Yj) = 1. To emphasise the

fact that ωa(Yj) and na are computed for a given value of ϑ = ($a, Ȳ , σa),
they shall be denoted ωa(Yj , ϑ) and na(ϑ). The algorithm iteratively updates

ϑ̂ = ($̂a, Ŷa, σ̂a), an approximation of the maximum likelihood estimate of
ϑ = ($a, Ȳa, σa). Precisely, the update rules for $̂a, Ŷa, and σ̂a are repeated
as long as this introduces a sensible change in the values of $̂a, Ŷa, and σ̂a. As
this is a non convex problem optimization, we reach a local stationary point. It
is hence useful to run the algorithm several times, with different initialisations
to reach the global optimum. The update rules are the following,

I Update for $̂a: Based on the current value of ϑ̂, assign to $̂a the new value



$̂new
a =

na(ϑ̂)∑K
a=1 na(ϑ̂)

. (16)

I Update for Ŷa: Based on the current value of ϑ̂, compute Ŷa to be the global
minimiser of the following function,

V (Y |ϑ̂) =
1

2

N∑
j=1

ωa(Yj , ϑ̂)× d 2(Yj , Y ). (17)

Ŷa is the empirical Riemannian centre of mass which may be estimated by a
Riemannian gradient descent algorithm (See [12] for more details).

I Update for σ̂a: Based on the current value of ϑ̂, compute σ̂a to be the
solution of the following equation, for unknown σ,

F (σ) =
1

2na(ϑ̂)
V (Ŷa|ϑ̂) (18)

where F (σ) = σ3 × d
dσ logZ(σ). Practically, a Newton-Raphson procedure is

employed to solve (18).

These three update rules should be performed in the above given order.
Therefore, the “current value of ϑ̂ = ($̂a, Ŷa, σ̂a)” is different, in each one of
them. For instance, in the update rule of σ̂a, the current value of Ŷa is found
from the minimisation of (17), just before.

5 Application to texture image classification

The present section proposes a new decision rule, for the classification of co-
variance matrices, and applies it to texture classification, using the VisTex
database [14]. The following numerical experiment was carried out. Half of the
database was used for training, and the other half for testing. Each training im-
age was subdivided into 169 patches of 128× 128 pixels, with a 32 pixel overlap.
For each training patch, 6 wavelet subbands were computed using the stationary
wavelet decomposition (with 2 scale) with Daubechies’ filter db4. In texture clas-
sification, multivariate models were found very effective for modelling the spatial
dependency of wavelet coefficients. Hence, two spatial neighborhoods (horizontal
dH and vertical dV ) of one pixel were considered. Each subband s of patch n
gives two bivariate normal populations Πs,n,dH and Πs,n,dV , represented respec-
tively by a point Ys,n,dH and Ys,n,dV ∈ P2. The size of the feature space is hence
F = 12 (6 subbands times 2 spatial supports). For the sake of simplicity, let
say that the training patch n is represented by a set of F covariance matrices
denoted Yf,n.

For each training class, a set of N = 84 “arrays” are extracted. These arrays
Yj are a collection of F covariance matrices and are considered as multivariate



Prior Overall Accuracy

Riemannian prior on P2 (K=1) (9) 86.27± 0.45%
Mixture prior on P2 (EM, K=3, (14)) 94.31± 0.42%

Mixture prior on P2 (K-means, K=3) [15] 92.40± 0.46%

Riemannian prior on H [5] 83.29± 0.51%
Mixture prior on H [17] 88.50± 0.88%
Conjugate prior on H 83.48± 0.53%

Table 1. Classification performance on the VisTex database.

realisations of a mixture distribution (14), with independent components Yf,n
since wavelet subbands are assumed independent. Each class is assumed to con-
tain the same number K of clusters, and is modelled as a sample drawn from a
mixture distribution (14). First, the EM algorithm of Section 4 is applied to each
class, leading to maximum likelihood estimates ($̂a, Ŷf,a, σ̂a), for a = 1, . . . ,K
and f = 1, . . . , F .

Each triple of such estimates defines a cluster within the training sequence.
Denote the total number of clusters defined in this way L, and the corresponding
maximum likelihood estimates ($̂c, Ŷf,c, σ̂c), for c = 1, . . . , L and f = 1, . . . , F .
Then, a test population represented by Yt ∈ P2 is associated to the class of the
cluster C∗, realising the minimum over c of,

− log $̂c + logZ(σ̂c) +
1

2σ̂2
c

F∑
f=1

d 2(Yt, Ŷf,c). (19)

This is the new decision rule, proposed for use with the mixture model (14).
Note that the case K = 1 reduces to a Bayesian classifier with the proposed
Riemannian Gaussian distribution.

Table 1 displays the classification performance in terms of overall accuracy on
the VisTex database. The first two lines correspond to the proposed Riemannian
prior (9) on P2 with respectively K = 1 and K = 3. The third line corresponds to
a nearest centre of mass classifier classically employed in literature [15]. In such
case, the centres of mass Ŷf,c are estimated by using a K-means algorithm. Some
comparisons are also carried out with univariate normal populations where the
mean and standard deviation are computed on Gabor energy subbands (see [16]
for more details). In such case, a Riemannian prior on the Poincaré upper half-
plane H has been introduced in [5] and further extended to mixture models [17].
A conjugate normal-inverse gamma prior on H is also displayed on the last line
of Table 1

As observed in Table 1, the proposed Riemannian prior on P2 based on a
mixture model displays much better performance than other prior. A significant
gain of respectively 2% and 6% is observed when compared to a nearest centre
of mass classifier [15] and to a mixture prior on the Poincaré upper half-plane H.



6 Conclusion

This paper has addressed the problem of classification using Rao’s distance on
the space of covariance matrices. To this aim, a Riemannian Gaussian distri-
butions has been introduced. Analogous to the classical multivariate Gaussian
distribution, the proposed Riemannian Gaussian distribution has two parame-
ters, the centre of mass Ȳ and the dispersion parameter σ. The main difference
relies on the use of the Riemannian distance in the exponential of the pdf instead
of the Mahalanobis distance. After having presented its maximum likelihood es-
timators and its extension to mixture models, an experiment on the VisTex
database have shown the potential of the proposed model for the classification
of texture images.
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