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Abstract

We propose an Euclidean medial axis filtering method which generates sub-
sets of the Euclidean medial axis, where filtering rate is controlled by one
parameter. The method is inspired by Miklos’, Giesen’s and Pauly’s scale
axis method which preserves important features of an input object from shape
understanding point of view even if they are at different scales. Our method
overcomes the most important drawback of the scale axis: the scale axis is
not, in general, a subset of the Euclidean medial axis. It is even not nec-
essarily a subset of the original shape. Moreover we propose a new method
for the generation of a hierarchy of scale filtered Euclidean medial axes. We
prove the correctness of the method. The methods and their properties are
presented in 2D space but they can be easily extended to any dimension.
Moreover, we propose a new methodology for the experimental comparison
of medial axis filtering algorithms, based on five different quality criteria.
This methodology allows one to compare algorithms independently on the
meaning of their filtering parameter, which ensures a fair confrontation. The
results of this confrontation with related previously introduced methods are
included and discussed.

Keywords: Filtered medial axis, discrete scale axis, shape representation,
image analysis, stability, hierarchy

∗Corresponding author
Email address: janasz@kis.p.lodz.pl (Marcin Janaszewski)

Preprint submitted to Computer Vision and Image Understanding October 18, 2013



1. Introduction

The notion of medial axis has been introduced by Blum in the 60s [1].
The medial axis of an object X is composed by the centres of the balls which
are included in X but which are not fully included in any other ball included
in X. This set of points is, by nature, centred in the object with respect to
the distance which is used to define the notion of ball.

In the literature, different methods have been proposed to compute the
medial axis approximately or exactly, for instance methods relying on discrete
geometry [2, 3, 4, 5], digital topology [6, 7], mathematical morphology [8],
computational geometry [9, 10], partial differential equations [11], or level-
sets [12]. In this work we focus on the discrete medial axis in Zn based on
the Euclidean metric.

The medial axis is a very useful representation of the object and plays
a major role in shape analysis in numerous applications, for example object
recognition, registration or compression. From the medial axis points and
associated ball radii, one can exactly reconstruct the original shape. However
it can be hard or even impossible to use this tool effectively without first
dealing with some problems, especially in discrete spaces and with noisy
objects.

Firstly, the medial axis in discrete spaces has not, in general, the same
topology as the original object. Solutions to this problem have been proposed
by several authors, for instance [6, 7, 13]. They use discrete homotopic
transformations guided and constrained by the medial axis, to obtain an
homotopic skeleton which contains the medial axis (see, Fig. 1). We do not
consider these topological problems in the rest of the paper, and rely on this
solution.

The second problem is the sensitivity of the Euclidean medial axis to small
contour perturbations (see, for example, Fig. 1). In other words, the medial
axis is not stable under small perturbations of a shape: modifying a shape
slightly (for example in terms of Hausdorff distance) can result in substan-
tially different medial axes. This is a major difficulty when the medial axis is
used in practical applications (e.g. shape recognition). A recent survey which
summarises selected relevant studies dealing with this topic is presented in
[14]. This fact, among others, explains why it is usually necessary to add a
filtering step (or pruning step) to any method that aims at computing the
medial axis and when a nonreversible but simplified description of binary
objects is of interest.
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(a) (b) (c)

Figure 1: (a): a shape (in grey) and its Euclidean medial axis (in black); (b) the homotopic
skeleton of the shape constrained by its Euclidean medial axis; (c) the same shape, but
with small amount of noise added on the contour. The medial axis of the shape (c) is
much more complicated than the medial axis of the shape (a).

The simplest strategy to filter the medial axis is to keep only points which
are centres of maximal balls of at least a given diameter. Different criteria
can be used to locally threshold and discard spurious medial axis points or
branches: see [15, 16], for methods based on the angle formed by the vectors
to the closest points on the shape boundary, or the circumradius of these
closest points [17, 3].

In these methods, a local information (that is, geometric information ex-
tracted from a single medial ball) is compared to a global parameter value to
determine the importance of the corresponding medial axis point. However,
it is well known that this local filtering can lead to remove small branches
which might be important for the shape understanding (see Fig. 2) especially
for shapes with features at different scales [14].

A more complex criterion was proposed by [18]: the authors utilize infor-
mation about ball importance in the shape with respect to all other balls by
counting the number of object points inside a ball which are not covered by
other balls. The medial axis point will be removed if the uncovered area of
the corresponding ball is too small.

All these methods are based on a single parameter, furthermore they have
the property that any filtered medial axis of a shape X for a parameter value
λ is a subset of any filtered medial axis of X for parameter value µ, whenever
λ > µ. In other words, the set of all filtered medial axes of a shape forms a
hierarchy.

In [19], the authors address the scale dependency issue and propose an

3



(a) (b) (c)

Figure 2: (a): a shape X (in grey); (b): The filtered medial axis of X (in black) calculated
by using algorithm [5]. The medial axis is not sufficiently filtered in the middle of the
shape. However, we already start to lose the tail; (c) A more filtered medial axis of X.
Now, the middle of the shape is well filtered. However, we lost all information about the
tail.

approach that puts in relation local information and regional information,
that is, the status of a ball is only influenced by the one of neighbouring
balls. Their method is based on the theory of the scale axis transform [20],
which defines a whole family of medial representations at different levels of
abstraction, called scale axis representations (see Fig. 3). For objects or
scenes that include parts showing different scales, this method gives good
results in many cases.

Figure 3: Different scale axes of the same object (contoured), using different values of the
scale parameter. In pink, the part of the object reconstructed from the filtered axis.

However, the scale axis representation is not free of drawbacks. The
most important one is that the scale axis is not necessarily a subset of the
Euclidean medial axis (see Fig. 4), it is even not necessarily a subset of the
original shape.

In this paper we propose a new method for the Euclidean medial axis
filtering (see section 4). Our proposition is inspired by the scale axis method

4



(see section 3). However, as result we obtain a filtered Euclidean medial axis,
included in the exact one, instead of a set of points that is not necessarily a
subset of the latter. Furthermore, our method produces axes that preserve
important features for shape understanding, even if they are at different
scales. Therefore, our algorithm overcomes the most important drawbacks
noticed in previously presented methods following a similar approach. More-
over we propose a new, algorithm for the generation of a full hierarchy of
medial axes with a proof of its correctness and an analysis of its properties
(see section 5). The new algorithms work in arbitrary dimension. We eval-
uate experimentally their properties, and compare them with the previously
introduced methods [18, 16]. In addition, we propose a new methodology for
comparison of medial axis filtering algorithms, which solves the problem of
different interpretation of the algorithm parameters, and takes into account
five different quality criteria (see section 6).

This article extends the paper [21], which was limited to the algorithm
that computes a single filtered medial axis. Additionally, we introduce here
a method for the generation of full medial axes hierarchies, we prove its
correctness, we propose a new methodology for comparison of medial axis
filtering algorithms, we report more experiments and discuss some properties
of our new methods.

2. Basic notions

In this section, we recall some basic geometrical and topological notions
for binary images [22, 23].

We denote by Z the set of integers, by N the set of nonnegative integers,
and by N+ the set of strictly positive integers. We denote by E the discrete
space Zd. A point x in E is defined by (x1, . . . , xd) with xi in Z. Let
x, y ∈ E, we denote by d(x, y) the Euclidean distance between x and y,
that is, d(x, y) = ((x1 − y1)2 + . . . + (xd − yd)2)1/2. In practice, the squared
Euclidean distance is used in order to avoid floating numbers. Let Y ⊂ E,
we denote by d(x, Y ) the Euclidean distance between x and the set Y , that
is, d(x, Y ) = miny∈Y {d(x, y)}. Let X ⊂ E (the ”object”), we denote by
DX the map from E to R+ ∪ {0} which associates, to each point x of E,
the value DX(x) = d(x,X), where X denotes the complementary of X (the
”background”). The map DX is called the (Euclidean) distance map of X.
Let x ∈ E, r ∈ R+, we denote by Br(x) the ball of radius r centred on x,
defined by Br(x) = {y ∈ E, d(x, y) < r}. Notice that, for any point x in X,
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the value DX(x) is precisely the radius of a ball centred on x and included in
X, which is not included in any other ball centred on x and included in X.

Now, let us recall the notion of medial axis (see also [24, 7]). Let X ⊆ E.
A ball Br(x) ⊆ X, with x ∈ X and r ∈ N+, is maximal for X if it is
not strictly included in any other ball included in X. The medial axis of X,
denoted by MA(X), is the set of the all couples (x, r) such that Br(x) is a
maximal ball for X.

Let X ⊂ E, Y ⊂ X, we denote by REDTX(Y ) the reverse Euclidean
distance transform [18], defined by

REDTX(Y ) =
⋃
y∈Y

BDX(y)(y).

The exact and unfiltered medial axis permits the exact reconstruction of
the original object thanks toREDT , more precisely we haveX = REDTX(MA(X)).

3. Discrete scale axis

In this section, we adapt the notion of scale axis (see [19, 20]), originally
introduced in the continuous space and implemented in a framework of unions
of balls, to the case of discrete grids. We denote by R+ the set of strictly
positive real numbers. Let X ⊆ E, x ∈ X, r ∈ N+ and s ∈ R+. The
parameter s is called the scale factor. We denote by Xs the multiplicatively
s-scaled shape, defined by Xs =

⋃
(x,r)∈MA(X)Brs(x). For s > 1, we denote

by SATs(X) the s-scale axis transform of X, defined by

SATs(X) = {(x, r/s) | (x, r) ∈MA(Xs)}.

The original algorithm to compute discrete scale axis, given by [19] in the
framework of union of balls (UoBs), can be straightforwardly adapted to the
case of Zd as follows. First, calculate the Euclidean medial axis of X. To do
so, we use an efficient algorithm presented in [18]. Then multiply the radius
of each medial ball by the chosen scaling factor s.

In consequence, some small medial balls are covered completely by larger
nearby balls since they are not important. On the other hand, small balls
without larger balls in their neighbourhood are not covered and will be pre-
served.

The next step is to reconstruct the object Xs based on scaled radius
values. This reconstruction can be made efficiently by using the reverse
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Euclidean distance transform (see section 2). Computing the medial axis of
Xs achieves the simplification and MA(Xs) will be free of all covered balls,
since these do not touch the boundary any more and are thus no longer
maximal. For s = 1, the scale axis is identical to the unfiltered Euclidean
medial axis. With increasing s, the scale axis gradually ignores less important
features of X, leading to successive simplifications of Xs and the scale axis
structure.

The final step of the algorithm consists of rescaling the medial balls of
MA(Xs) by a factor 1/s to obtain the scale axis of X. Finally, a detailed
discrete scale axis algorithm is provided in Algorithm 1.

Algorithm 1 DiscreteScaleAxis(Input X,s Output SATs(X))

01. MA(X)← EuclideanMedialAxis(X)
02. MA′(X)← {(x, rs) | (x, r) ∈MA(X)}
03. Xs ← ReverseEuclideanDT(MA′(X))
04. MA(Xs)← EuclideanMedialAxis(Xs)
05. SATs(X)← {(x, r/s) | (x, r) ∈MA(Xs)}
06. return SATs(X)

All four steps of DiscreteScaleAxis algorithm can be calculated in linear
time in relation to #X (line 01), #MA(X) (line 2), #Xs (lines 03-04) and
#MA(Xs) (line 05) respectively, where #X stands for cardinality of X.
Therefore, the computational complexity of the algorithm is O(#Xs).

4. The scale filtered medial axis

The crucial part of the method presented in the previous section, which is
a source of problems (SATs(X) * MA(X)), is the reconstruction part after
medial balls scaling and the need for generating a new medial axis from the
scaled object (see Fig. 4). On the other hand, at first sight, this is the most
important part of the algorithm since the medial axis simplification occurs
in this part.

To filter MA(X) by removing centres of unimportant medial balls one
must avoid reconstruction and hold simplification property at the same time.
To solve this problem, we remark that an efficient filtration may be obtained
by only deciding which MA(X) points are not important and should be
removed. Therefore, we do not have to generate a new object Xs and its
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(a) (b) (c)

s = 1 s = 1.1 s = 1.3

Figure 4: (a): a shape X (in grey) and its Euclidean medial axis MA(X) (in black); (b):
the multiplicatively 1.1-scaled shape of X and its 1.1-scaled axis; (c): the multiplicatively
1.3-scaled shape of X and its 1.3-scaled axis. In (b, c) we can see that scale axes are not
subsets of MA(X). In both cases, an additional branch even appears.

MA(Xs). In this way we can obtain a filtered Euclidean medial axis of X
which is a subset of MA(X).

This informal discussion motivates the following definition of the Scale
Filtered Euclidean Medial Axis (SFEMA).

Let x ∈ X, r ∈ N+. We denote by BX
r (x) the intersection of Br(x) with

X, that is, BX
r (x) = {y ∈ X | d(x, y) < r}.

Definition 1. Let X ⊆ E, and s ∈ R, s > 1. We denote by SFEMAs(X)
the Scale Filtered Euclidean Medial Axis of X defined by

SFEMAs(X) = {(x, r) ∈MA(X) | BX
rs(x) *

⋃
(y,t)∈MA(X),t>r

BX
ts (y)}.

Examples of SFEMAs(X) for different scale factors si, are shown in
Fig. 5.

Below, we give an algorithm to compute SFEMAs(X) for a given object
X ⊆ E.

Theorem 1. Algorithm SFEMA computes exactly the s-Scale Filtered Eu-
clidean Medial Axis, as defined by Def. 1.

Proof. Consider any point p in X (after line 04). The assertion: “for
all k ∈ {1, . . . , i}, d(xk, p) > srk” holds true during the execution of the
loop at line 06. After execution of this loop (line 07) we know that for all
k ∈ {1, . . . , i − 1}, d(xk, p) > srk, and d(xi, p) 6 sri. Thus, at line 08,
we know that p belongs to BX(xi, ris) and that it does not belong to any
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Algorithm 2 SFEMA(Input X,s Output H)

01. H ← ∅
02. MA(X)← EuclideanMedialAxis(X)
03. Let (x1, r1), . . . , (xn, rn) denote the elements of MA(X)

sorted in decreasing order of radii, that is, r1 > . . . > rn
04. foreach p ∈ X do
05. i← 1
06. while d(xi, p) > sri do i← i+ 1 end
07. If i 6 n then
08. H ← H ∪ {(xi, ri)}
09. end
10. end
11. return H

ball BX(xk, rks), with rk > ri. From this we deduce that (xi, ri) belongs to
SFEMAs(X).

This proves that all detected pairs indeed belong to SFEMAs(X). Now
consider any pair (x, r) of SFEMAs(X), there exists at least one point p in
BX(x, rs) that is not included in

⋃
(y,t)∈MA(X),t>r B

X(y, ts)}. As all points p

of X are considered by the algorithm (line 04), the pair (x, r) will be detected.
�

The algorithm in line 02 performs sorting of medial axis elements, lin-
early in time using a counting sort [25]. In the following lines the algorithm
performs two loops. The first one starts in line 04 and does #X itera-
tions. The next, nested loop, starts in line 06 and in worst the case performs
#MA(X) iterations. Summarizing, computational complexity of SFEMA is
O(#X#MA(X)).

Let us analyse the properties and the major differences between the Mik-
los’s [19] s-scale axis and our s-scale filtered Euclidean medial axis. The
most important property is that SFEMAs(X) consists of MA(X) points
only, that is, for all s > 1: SFEMAs(X) ⊆ MA(X). This property (in-
clusion property, for short) is essential in many applications of the medial
axis. In Fig.4 we have shown an example of the Miklos’s scale axis where an
additional branch even appears after filtering. Fig.6 shows another problem.
The scale axis is too much simplified, loses important features of the object
and is not included in the object. However, s-scale filtered medial axis holds
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(a) (b)

(c) (d)

Figure 5: (a): a shape X (in grey) and its Euclidean medial axis (in black); (b, c, d): the
same shape and its SFEMA1.1(X), SFEMA1.4(X), SFEMA1.6(X), respectively. In all
cases the elephant’s tail, trunk, tusks and legs were considered as important and were not
removed.

inclusion property and permits to reconstruct most of the original object.
The second interesting property relies on the notion of s-scaled ball. If

we want to simplify the object, using Miklos’s scale axis, for example by
removing a medial ball Br(x), x ∈ X, the scale factor should be big enough
in order that ball Brs(x) is included in one of other medial balls, that is,
Brs(x) ⊂ Brs(y), y ∈ X (see Fig.7c), or in a union of such balls. In our
algorithm, since we use notion of s-scaled ball, we only test inclusion inside
X (see Fig.7b). This allows us to use a smaller scale factor. Therefore, we
have a better ability to control the resulting s-scale filtered Euclidean medial
axis.

5. Algorithm for computing the hierarchical scale medial axis

Intuitively, the greater the scale parameter s used in SFEMA, the smaller
the filtered axis. Moreover for each object X, SFEMA produces a family of
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(a) (b) (c)

original shape s = 1.3 s = 1.3

Figure 6: (a): a set X (in green) and its MA(X) (in black); (b): the 1.3-scale axis of X;
(c): the 1.3-scale filtered medial axis of X.

(a) (b) (c)

original object s = 1.1 s = 1.3

Figure 7: (a): a set X (in green) and its MA(X) (red dots); (b): multiplicatively scaled
medial balls. The smaller ball is not fully covered by the bigger one after scaling. In
scale axis representation both balls will be preserved. However, the bigger ball includes
the smaller one inside set X. Therefore, the smaller ball will not exist in SFEMAs(X);
(c): multiplicatively scaled medial balls. The smaller ball is included in the bigger one.
Therefore, it is neither in the scale axis nor in SFEMAs(X)

.

axes that are all subsets of MA(X). This suggests that these axes could be
nested into each other. In this section, we formalize this property, we show
that it is not always true with the axes defined by SFEMA, and we propose
a new algorithm to compute directly a family of nested filtered axes.
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Definition 2. We denote by MAs(X) the filtered medial axis of X ⊂ Zn for
s ∈ S ⊆ R+, where S represents the set of all possible values of parameter s
of the considered filtering algorithm. The family H = {MAs(X) | s ∈ S} is
a hierarchy if ∀s1, s2 ∈ S | s2 > s1 ⇒MAs2(X) ⊆MAs1(X) ⊆MA(X).

Unfortunately, SFEMA does not hold hierarchy property, it means that
there is X ⊂ Zn such that {SFEMAs(X) | s ≥ 1} is not a hierarchy. A
counter-example to the hierarchy property is presented in the Fig. 8. This
fact motivates the following definition:

Definition 3. Let X ⊂ Zn and (x, r) ∈MA(X). We denote by
ΨX : MA(X)→ [1,∞) ∪ {∞} the scale map of X defined by

ΨX(x, r) = min{t ≥ 1 | ∀s ≥ t, (x, r) /∈ SFEMAs(X)}

We see that thresholding the map ΨX at a given level s gives us a filtered
axis. By construction, all these axes form a hierarchy.

(a) (b) (c)

Figure 8: (a): a shape X (in grey) and two maximal balls B(x1, r1), B(x2, r2) ∈ X; (b):
dashed circles represent scaled balls by s = 1.4. One can observe that BX(x2, r21.4) ⊂
BX(x1, r11.4), so (x2, r2) /∈ SFEMA1.4(X); (c): dashed circles represent scaled balls by
s = 1.6, now p ∈ BX(x2, r21.6) and p /∈ BX(x1, r11.6), so (x2, r2) ∈ SFEMA1.6(X),
which finally leads to the conclusion that SFEMAs(X) does not hold hierarchy property.

Now, let us introduce algorithm 3, which calculates the scale map. It is
easier to understand and prove than our final one, but less efficient.

To facilitate the understanding of algorithm 3 we present its way of work-
ing based on fig. 5.

Before proving the validity of the algorithm, let us first remark that, in
the definition of Ψ, it is not necessary to consider all possible values of t or
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Figure 9: Presents the idea of the algorithm 3 way of working. Assume that the algorithm
calculates Ψ(x, r). For a point a it calculates tmin as a minimum of d(a, xi)/ri for all
balls B(xi, ri) (shortly Bi) greater than B(x, r) (shortly B) in lines 05-07. In our example
only two maximal balls are greater than B: B1 and B2. We have d(a, x1)/r1 = 2.097,
d(a, x2)/r2 = 1.34. So tmin = 1.34. It means that during scaling the ball B2 covers the
point a as the first of all maximal balls greater than B. Moreover the minimum cover
scale s such that a ∈ sB2 is equal to 1.34. Then the algorithm, in line 09, checks if
ball B reaches the point a for smaller scaling factor than B2 (smaller than tmin). In our
case d(x, a)/r = 1.06. So point a belongs to a sum of balls greater than B for minimum
cover scale s = 1.34 and it belongs to the ball B(x, r ∗ 1.34), thus if Ψ(x, r) < 1.34
the algorithm updates Ψ(x, r) in line 10. Similarly for the point b we have d(x, b)/r =
1.06, d(x1, b)/r1=2.39, d(x2, b)/r2 = 1.54, so tmin = 1.54 and Ψ(x, r) is set to 1.54 if less
than 1.54. The situation is different for the point c: d(x, c)/r = 2.64, d(x1, c)/r1=3.15,
d(x2, c)/r2=2.17, it means that tmin = 2.17 < d(x, c)/r so when the union of scaled by 2.17
balls greater than B reaches point c, it does not belong to B(x, r ∗ 2.17) so the algorithm
does not update Ψ(x, y). The same situation occurs for point d, when reached by scaled
B2 it does not belong to scaled B so Ψ(x, y) is not updated. In the example Ψ(x, y) = 2.17
and the maximum tmin over all points from X is obtained for b.

13



Algorithm 3 ScaleMap1(Input MA(X) Output ΨX)

01. foreach (x, r) ∈MA(X) do ΨX(x, r)← 0 end
02. foreach p ∈ X do
03. foreach (xi, ri) ∈MA(X) do
04. tmin ← +∞
05. for j = 1 to n do
06. t← d(xj ,p)

rj

07. If t > 1 and t < tmin and rj > ri then tmin ← t
08. end
09. If tmin ≥ d(xi, p)/ri then
10. If tmin > ΨX(xi, ri) then ΨX(xi, ri)← tmin

11. end
12. end
13. end

s, but only the ones of the form d(x,p)
r

, with p ∈ X and (x, r) ∈MA(X), and
+∞. Thus, we define:

Sp = {s =
d(xi, p)

ri
; (xi, ri) ∈MA(X) and s > 1} ∪ {+∞}

S =
⋃
p∈X

Sp

And we have:

ΨX(x, r) = min{t ∈ S | ∀s ∈ S, s ≥ t, (x, r) /∈ SFEMAs(X)} (1)

Let r1 be the radius of the biggest ball in MA(X), that is, r1 = max{ri |
(xi, ri) ∈ MA(X)}. Now, for any p in X and any (x, r) ∈ MA(X) let us
define

E(p, r) =

{
min{t ∈ Sp | ∀s ∈ S, s > t, p ∈

⋃
rj>r B(xj, srj)} if r < r1

+∞ otherwise
(2)
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For a point p and a radius r, E(p, r) is the minimum scale for which p
is covered by a scaled medial ball of radius greater than r (minimum cover
scale).

Moreover let us define:

X(x, r) = {p ∈ X : E(p, r) ≥ d(p, x)/r} (3)

For a medial ball (x, r), X(x, r) represents the set of all points p of X
such that the minimum cover scale E(p, r), applied to the ball (x, r), suffices
to cover p.

From the last definition we have:

X(x, r) = {p ∈ X : p ∈ BX(x, rE(p, r))} (4)

Proposition 1.
For any (x, r) in MA(X), we have ΨX(x, r) = maxp∈X(x,r)E(p, r).

Proof.
Let r = r1 = max{ri | (xi, ri) ∈ MA(X)}. Then we have X(x, r) = X,

E(p, r) = +∞ for any p ∈ X and ΨX(x, r) = +∞. From now on, we suppose
that r < r1.

Let us set p̂ = arg maxp∈X(x,r)E(p, r) and t̂ = E(p̂, r). Hence, we have

t̂ = maxp∈X(x,r)E(p, r). So, directly from (2) we have that ∀p ∈ X(x, r), p ∈⋃
rj>r B(xj, t̂rj), thus ∀s ∈ S, s ≥ t̂, X(x, r) ⊆

⋃
rj>r B

X(xj, srj). Moreover,

by the very definition of t̂, ∀s ∈ S, s < t̂ : p̂ /∈
⋃

rj>r B(xj, srj). Thus,
combining the last two expressions we obtain:

max
p∈X(x,r)

E(p, r) = min{t ∈
⋃

p∈X(x,r)

Sp | ∀s ∈ S, s ≥ t,

X(x, r) ⊆
⋃
rj>r

B(xj, srj)} (5)

From (4) and the definition of t̂, we have:

∀s ∈ S, s > t̂,X(x, r) ⊆ BX(x, sr) (6)

Now let us take any p ∈ X\X(x, r). From (3) we have E(p, r) < d(p, x)/r.
So, by definition of E(p, r), for any s ∈ S such that p ∈ BX(x, rs), we have
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p ∈
⋃

rj>r B
X(xj, srj). In other words:

∀s ∈ S,BX(x, rs) \X(x, r) ⊆
⋃
rj>r

BX(xj, srj) (7)

Finally from (5), (6) and (7) we have:

max
p∈X(x,r)

E(p, r) = min{t ∈ S | ∀s ∈ S, s ≥ t,

B(x, sr) ⊆
⋃
rj>r

B(xj, srj)} = Ψ(x, r) (8)

�

Theorem 2. Algorithm ScaleMap1 calculates exactly scale map, as defined
in the Def. 3

Proof. Algorithm ScaleMap1, for a medial ball B(xi, ri) and a point p ∈ X
in lines 05-07 calculates tmin equal to E(p, ri) defined by (2).

Then in line 09 it checks whether p belongs to X(xi, ri), see (3). Thus,
we have that the algorithm (line 10) calculates maxp∈X(xi,ri)E(p, ri).

By proposition 1, the algorithm calculates correctly Ψ(xi, ri), for each i.
�

Now, let us present a variant of the previous algorithm, that computes
the same result but with a lower time complexity.

Let us define a new medial axis filtering strategy, which holds hierarchy
property, based on the scale map calculated by algorithm 4.

Definition 4. Let X ⊂ Zn, s > 1 and ΨX is a scale map of X. We define by
HSMAs(X) the hierarchical scaled medial axis of X by the following formula:

HSMAs(X) = {(x, y) ∈MA(X) | ΨX(x, r) > s}

In conclusion, we have the following property, which is straightforwardly
consequence of definitions 2 and 4.

Theorem 3. Let X ⊂ E. The family H = {HSMAs(X) | s > 1} is a
hierarchy.
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Algorithm 4 ScaleMap(Input MA(X) Output ΨX)

01. foreach (x, r) ∈MA(X) do ΨX(x)← 0 end
02. Let (x1, r1), ..., (xn, rn) be elements in MA(X) sorted
03. such that ri > ri+1

04. foreach p ∈ X do
05. tmin ← +∞
06. for i = 1 to n do
07. t← d(xi,p)

ri
08. If i = 1 or ri 6= ri−1 then trmin ← tmin

09. If t > 1 and t < tmin then tmin ← t
10. If trmin ≥ d(xi, p)/ri and ΨX(xi, ri) < trmin then
11 ΨX(xi, ri)← trmin

12 end
13. end
14. end

The computational complexity of algorithm 4 is the same as algorithm
2, that is, O(|X||MA(X)|). The algorithm in line 02 performs sorting of
medial axis elements. It is possible to implement sorting algorithm in linear
time with the use of a counting sort. In the following lines the algorithm
performs two loops, the second nested in the first. The first one starts in
line 04 and does |X| iterations. The next nested loop starts in line 06 and
performs |MA(X)| iterations, where |MA(X)| � |X| (usually).

6. Experiment methodology and results

In this section, we compare qualitatively and quantitatively properties
of five medial axis filtering algorithms. In the comparison we include algo-
rithms that operate in the same framework as ours: discrete λ-medial axis
(DLMA) [5], the Euclidean medial axis filtered with the use of bisector func-
tion (BFMA) [16], filtering based on medial ball radius (RFMA) [18], filtering
based on ball covering (CFMA) [18] and a filtering method proposed in this
work: the hierarchical scaled medial axis (HSMA).

In this study, we do not consider the topology preservation issue, as none
of these methods provide a guarantee of preserving topology. A classical way
to obtain topologically correct skeletons from a sparse medial axis, consists

17



of performing an homotopic thinning of the shape with the constraint of
preserving the medial axis points [6, 7, 13].

In our experiments we use six selected shapes from the Kimia’s database
[26], that are representative of the whole set. Four of the selected objects:
”Ray”, ”Elephant”, ”Camel” and ”Fountain”, have many important features
at different scales, in contrast to the two other ones: ”Classic” and ”Misk”
(see Fig. 10).

(a) Ray (b) Elephant (c) Fountain (d) Camel

(e) Misk (f) Classic

Figure 10: The selected 6 representative shapes of Kimia’s database used in our experi-
ments.

It is difficult to compare methods, all based on a single filtering param-
eter, but with quite different meanings of this parameter. Due to this fact,
comparing the results of two methods for the same parameter value does
not make sense. Therefore, we have to find some strategies to ensure a fair
comparison between methods, based on criteria that do not depend on their
particular way of working. Furthermore, we want these criteria to be related
with actual concerns met in real-world applications.

Several criteria have already been proposed in the literature. Chaus-
sard [27] defined the so-called visual quality factor which is a combination
of reconstruction error with information derived from the skeleton of the
shape, namely, the number of skeleton points. Van Eede et. al [28] propose
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a solution based on weighted reconstruction error, combined with skeleton
complexity defined as number of skeleton branches. However, the quality of
the medial axis depends of the reconstruction weight which need to be set
arbitrarily. Setting this parameter properly is not obvious.

In the following subsections, we propose a comparison methodology that
is based on five different criteria. In each case, we give both the definition
and the intuitive meaning of the criterion, and we report the results of our
experiments.

6.1. The reconstruction error

Let X ⊂ Zn, Y ⊂ X, we denote by REDTX(Y ) the reverse Euclidean
distance transform [18], defined by

REDTX(Y ) =
⋃
y∈Y

B(y, r)

For the exact and unfiltered MA(X) we have X = REDTX(MA(X)).
However, this property is no longer true if we consider filtered medial axes
e.g. HSMA, DLMA, BFMA, RFMA or CFMA. Therefore, it is interesting
to measure how much information about the original object is lost when we
perform filtering. We define

RX(Y ) =
|(X ∪REDTX(Y ))\(REDTX(Y ) ∩X)|

|X ∪REDTX(Y )|
We call RX(Y ) the (normalised) residuals of Y . Residuals give us a

numerical evaluation of reconstruction error. Now we can set Y to different
filtered medial axes, e.g. by using different methods or filtering parameter
values, and then evaluate which one filtration is the best in respect of their
ability to allow for a faithful reconstruction of the object. The result RX(Y )
is a real value between 0 (perfect reconstruction) and 1 (bad reconstruction).

Figure 11 presents DLMA, BFMA, HSMA, RFMA and CFMA of a cho-
sen shape, extracted for several values of normalised residuals. Note that
we compare the results of methods for approximately equal values of their
residuals, rather than for equal values of their parameters.One can observe,
in figure 11, that DLMA loses representation of tail even for low values of
residuals. On the other hand, BFMA preserves representation of tail but it
also preserves unimportant balls on the border of the object. Such balls may
represent noise. HSMA preserves representation of tail even for high value of
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residuals. Moreover it successfully removes unimportant balls even for low
values of residuals. RFMA loses tail even for low value of residuals and it
preserves many unimportant balls. CFMA successfully removes unimportant
balls but loses some representation of tail for high residuals.

For the sake of paper size we have not included results for other objects
from figure 10. Interested reader can find the results in [29] and draw similar
conclusions as from Figure 11.

Figure 11: Medial axes (in black) superimpose to input object (in grey). Consecutive rows
(from up to the bottom) contain results for DLMA, BFMA, HSMA, RFMA and CFMA
respectively. Columns contain results for different values of normalised residuals: 0.01,
0.03, 0.05, 0.1 respectively.
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6.2. The normalised medial axis size

We call NSX(Y ) the normalised medial axis size, defined as the ratio of
the number of medial axis points to the number of object points:

NSX(Y ) = |Y |/|X|

Now we can compare the normalised residuals obtained for the same NS,
using different methods. Intuitively, this allows us to judge of the importance
(on average), with regard to reconstruction, of the medial axis points that
are kept by the filtering method.

In Fig. 12 we show the normalised residuals R as a function of normalised
medial axis size NS for different shapes and different filtering methods. The
results shows that the CFMA obtains the smallest residual values for the very
small normalised sizes of filtered medial axis. When the size of the medial axis
is large enough the CFMA behaves similarly to BFMA and HSMA. It means
that CFMA, BFMA and HSMA, at the first place remove points which not
affect the reconstruction error. In contrast, with RFMA and DLMA, some
important (for reconstruction) points are removed even for very large size of
medial axes.

6.3. The border dissimilarity

From the shape understanding point of view, preserving visually impor-
tant segments and removing unimportant ones, at the same time, is even more
important than achieving very good reconstruction property. Based on the
two previous criteria only, is hard to take into account the negative impact
of the removal of a visually important feature that has a relatively small
size. Therefore, in this section, we introduce another comparison strategy
which allows us to observe how different filtering strategies preserve visually
important features.

Globally, the filtering algorithms will be tested by measuring the ”differ-
ence” between the border of an object X, and the border of the reconstructed
shape after filtering. The ”difference” will be measured using the dissimilarity
measure commonly used in replacement of the Hausdorff distance, because
of its lower sensitivity to outliers, and defined as follows:

Let X, Y be two subsets of Rn. We set

D(X | Y ) =
1

|X|
∑
x∈X

miny∈Y {d(x, y)}

21



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.05

0.1

0.15

0.2

0.25

Normalised Size (NS)

N
or

m
al

is
ed

 R
es

id
ua

ls

 

 

DLMA
HSMA
BFMA
RFMA
CFMA

(a) Ray

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.05

0.1

0.15

Normalised Size

N
or

m
al

is
ed

 R
es

id
ua

ls

 

 

DLMA
HSMA
BFMA
RFMA
CFMA

(b) Elephant

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.05

0.1

Normalised Size

N
or

m
al

is
ed

 R
es

id
ua

ls

 

 

DLMA
HSMA
BFMA
RFMA
CFMA

(c) Fountain

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

Normalised Size

N
or

m
al

is
ed

 R
es

id
ua

ls
 

 

DLMA
HSMA
BFMA
RFMA
CFMA

(d) Camel

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.05

0.1

Normalised Size

N
or

m
al

is
ed

 R
es

id
ua

ls

 

 

DLMA
HSMA
BFMA
RFMA
CFMA

(e) Misk

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.05

0.1

Normalised Size

N
or

m
al

is
ed

 R
es

id
ua

ls

 

 

DLMA
HSMA
BFMA
RFMA
CFMA

(f) Classic

Figure 12: Residuals as a function of normalised medial axis size for different filtering
criteria. Results generated for 6 selected shapes (see Fig 10).

and d(X | Y ) = max{D(X | Y ), D(Y | X)} is the dissimilarity between
X and Y .

In Fig. 13 we show the dissimilarity as a function of normalised residuals
for different shapes and different filtering methods. The results shows that in
all cases BFMA produce lower dissimilarity than other filtering criteria for the
same number of normalised residuals. It means that BFMA preserves more
visually important features, on the negative side it also preserves some noise.
The HSMA produces results comparable to BFMA, but without the same
sensitivity to noise. We can also observe a good behaviour of the CFMA up
to some level of residuals. After reaching this level it starts removing features
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at low scale which cause dissimilarity to rapidly increase. On the other hand,
DLMA and RFMA gives comparable results for the objects without features
at different scales, and very poor results for the other ones.
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Figure 13: Dissimilarity as a function of normalised residuals for different filtering criteria.
Results generated for 6 selected shapes (see Fig 10).

6.4. The complexity of the skeleton

To evaluate the skeleton complexity, we have to consider skeletons that
have the same topological characteristics as the original objects. In order to
guarantee topology preservation, we perform an ultimate homotopic thinning
of X with the constraint of retaining the points of its filtered medial axis Y
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(constraint set), that is, we iteratively remove simple points from X that
do not belong to Y (see Fig. 14). A priority function is needed in order to
specify which points must be considered at each step of the thinning. In the
general case, the choice of this priority function is not obvious as reported in
[16, 7]. For example, taking the exact Euclidean distance map as a priority
function may cause ”extra branches” to appear which change the skeleton
complexity and bias the comparison. Taking this fact into consideration we
choose the function FX defined in [5] as priority.

(a) (b) (c)

Figure 14: (a): a set X (in white); (b): medial axis of X; (c): ultimate homotopic skeleton
of X constrained by the medial axis of X. In (b,c) the original set X appears in grey for
comparison.

Now, we define the complexity of the skeleton as the number of its end
points. Notice that, due to the preservation of the connectivity, any isolated
medial axis point that corresponds to unfiltered noise on the border of the
object, will generate a spurious branch of the skeleton (see Fig. 14).

We propose another comparison strategy which relies on this notion od
skeleton complexity. Quite often in applications, the desired degree of filter-
ing can be expressed in terms of skeleton complexity (for example, the shape
of a human silhouette should be represented by a skeleton of complexity five,
with end points in the head, the arms and the legs). To each number of end
points of the successive filtered skeletons, corresponds a degree of filtering
that we evaluate quantitatively by its reconstruction error.

For a given method we denote by Y (X, p) the filtered medial axis at value
p of the parameter. To each of the sets Y (X, p) corresponds a homotopic
skeleton S(Y (X, p)) that has a certain complexity. Note that, for a given
complexity c, there may exist several values of p, or none, such that the
complexity of S(Y (X, p)) is c.

Now for a given complexity c, we consider the largest (in the sense of
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the inclusion) set Y (X, p) such that the complexity of S(Y (X, p)) is c. We
denote by Yc(X) this set, or ∅ if it does not exist. The quality of this filtered
medial axis will be evaluated by computing RX(Yc(X)), that is, the residuals
of Yc(X).

Now we can simply compare medial axes at each complexity level inde-
pendently by changing the parameter c without caring about meaning of the
filtering parameter p. We could also make a comparison by focusing only on
the most suitable level for the shapes of interest. For example if we consider
shapes similar to the letters ”p”, ”b”, ”d”, etc., the most interesting com-
plexity level is one, because these shapes have one visually important branch.
Therefore, to compare filtered medial axes of such family of shapes we would
use the value of RX(Y1(X)).

Figure 15 shows the minimum residuals at different complexity levels.
We can notice that HSMA gives the lowest residual at the most suitable
complexity according to the shape. The HSMA gives poor results only for
very low complexity, since the method very well preserves features at different
scales. Comparable results are generated by CFMA. The BFMA has the
worst behaviour in this experiment, since it preserves many points which are
close to the border. Therefore, the BFMA is unable to generate medial axes
with low complexity. This strongly limits its practical application.

6.5. The richness of the multiscale representation

The last interesting criterion is related to the hierarchy property of the
medial axes (see definition 2 in section 5). In some applications, one can
be more interested in a filtering strategy which can not only remove large
amounts of points at once, but also allows one to produce some intermediate
results at different levels of hierarchy. Then, the different methods may be
compared on the basis of their ability to propose a rich set of hierarchy levels.
This is also an important criterion if, in the end, only one filtered axis is kept,
for its choice can be done more finely if the number of possibilities is larger.

Let us denote by MAs(X) the filtered medial axis of X ⊂ Zn for the
value s of the filtering parameter. Since all methods in our comparison hold
the hierarchy property, we know that s > t implies MAs(X) ⊆ MAt(X).
However, due to the discrete nature of the object X, there exists only a
finite set of values s0, . . . , sk yielding distinct filtered axes. More precisely,
we consider the set {si}ki=0 of positive real numbers such that:
i) MAs0(X) = X, and
ii) MAsi(X) 6= MAsi−1

(X), for any i ∈ {1, . . . , k}, and
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Figure 15: Normalized residuals in function of the complexity level, calculated for different
filtering methods. Results have been generated for the 6 selected shapes (see Fig 10). Each
marker (e.g. triangle, circle and square) represents a method. Lines have been added only
to emphasize the trend of measurements.

iii) MAsi(X) = MAs(X), for any i ∈ {0, . . . , k − 1} and any s ∈ [si, si+1[.
In the following, the indices i are called the hierarchy levels.

Then, we can evaluate the reconstruction error at each hierarchy level
independently. When we increase the hierarchy level, the filtering algorithm
removes a set of medial axis points with the same ”importance”. The ”impor-
tance” of the point depends on the filtering criterion. The filtering method
which removes a smaller amount of points at each change of hierarchy level,
can produce more different representations of the object.
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In Fig. 16, we show achieved numbers of normalised residuals at each
hierarchy level for all tested filtering methods and for different shapes. Based
on these results, we can observe how many different medial axes can be
produced by manipulating the filtering parameter and how the reconstruction
error evolves.
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Figure 16: Residuals as a function of the hierarchy level, for different filtering criteria.
Results were generated for the 6 shapes of Fig 10.

For the first four objects which have many features at different scales,
the HSMA generates the highest number of multiscale representations of
the object. For the last two classes of objects HSMA gives globally the
best result. In contrast, the CFMA yields globally the smallest number of
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hierarchy levels. RFMA and DLMA also generate a relatively small number
of medial axes. Indeed, the number of different filtered medial axes generated
with CFMA, RFMA and DLMA might be not enough in some applications.

6.6. Discussion

The usefulness of each filtering method is strongly application dependent.
Each of the presented experiments gives us some information about which
filtering method is best in respect to the evaluated property. However, each
experiment alone is not sufficient to clearly show which one filtering method
is the best one at a global scope. In addition, some of evaluated properties are
not compatible. For example, at the same time we would like to minimize the
reconstruction error, which at the extreme leads to keep most of the medial
axis points, but we also to get skeletons with a low complexity, and get rid of
points that correspond to noise or useless details. Such incompatibility is very
well visible on the results achieved by BFMA, where for medial axes of small
size BFMA gives the lowest dissimilarity. Unfortunately, the complexity of
the skeletons induced by BFMA is very high.

To objectively compare different filtering criteria at a global scope, we
need to look at results of all experiments at the same time. We can see
that HSMA yields the best or comparable results to the best one in all
experiments. Moreover, HSMA permits to produce a large set of hierarchy
levels, which makes it very flexible. We can say that HSMA give us the
best balance between the reconstruction error, the size of medial axis the
complexity, the richness of the multiscale representation, and allow one to
preserve features at different scales. Therefore, HSMA can be considered,
globally, as the best method in our comparison.

We can also notice the good behaviour of the CFMA. Only the lowest
number of possible hierarchy levels, and high dissimilarity for larger resid-
uals can limit its application. If such features are irrelevant according to
application, then CFMA is a good choice.

In our comparison, DLMA and RFMA give the worst results in our experi-
ments. This is not surprising for both methods, since the filtering parameter
is defined and acts globally. However, in contrast to RFMA, which is the
simplest method and in practice is used only as a supplementary criterion,
DLMA holds other interesting properties which are out of scope of this com-
parison. For example, stability to noise or rotation, makes DLMA very useful
in certain practical applications (see [27, 5] for a comprehensive evaluation
of different DLMA properties).

28



7. Conclusions

The main outcomes of the article are three contributions. The first con-
tribution is a new method for Euclidean medial axis filtering which possesses
the following properties:

• it generates subsets of the Euclidean medial axis,

• the filtering is based on only one parameter,

• it generates filtered medial axes which preserve important parts of an
input object at different scales,

• it allows for a better reconstruction of the input object, compared to
other related medial axis filtering algorithms,

• the computation complexity of the algorithm is O(#X#MA(X)),

• it extends trivially to any finite dimension.

The second and the most important contribution, is an algorithm which,
for any X ⊆ Z2, generates a full hierarchy of scale filtered medial axes
(HSMA) in time O(#X#MA(X)). This algorithm also trivially extends for
the case of Zn. We prove that the algorithm indeed computes the HSMA as
we defined it.

The third contribution consists of a new methodology which allows for
a fair comparison of medial axis filtering algorithms. The methodology is
based on five different quality criteria. Using this new methodology, one
can compare quantitatively properties of algorithms, independently of the
meaning of specific algorithm parameters. Following this methodology, we
made a series of experiments that show that our algorithm to compute the
HSMA gives better or similar results, compared to the best related methods.
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