

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12627

Official URL: http://dui.uclm.es/2013/Proceedings-DUI-2013.pdf

To cite this version : Albertos Marco, Félix and Penichet, Victor and Gallud, José
and Winckler, Marco Antonio Making Distributed User Interfaces Interruption-
Resistant : A Model-Based Approach. (2013) In: 3rd Workshop on Distributed
User Interfaces (DUI 2013) part of the 5th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems conference (EICS 2013), 24 June
2013 (London, United Kingdom).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Making Distributed User Interfaces Interruption-Resistant:
A Model-Based Approach

Félix Albertos, Víctor Penichet, José Gallud

Computer Systems Department
University of Castilla-La Mancha

Albacete, Spain
{victor.penichet,jose.gallud,felix.albertos}@uclm.es

Marco Winckler

ICS-IRIT team
Université Paul Sabatier

Toulouse, France
winckler@irit.fr

ABSTRACT

Distributed User Interfaces (DUIs) have gone beyond the
fact that traditional user interfaces run on the same
computing platform in the same environment. This new
interaction paradigm affects the way these novel systems
are designed and developed. New features need to be taken
into account from the very beginning of the development
process and new models and tools need to be considered for
the correct development of interactive systems based on
DUIs. The starting point of this paper is that DUI-based
systems are susceptible of being interrupted in several ways
as they are dependent on connectivity. In this proposal this
issue is assessed from a conceptual point of view, asking
the question of what new features should be considered and
how should they be included within the development
process? The model-based approach presented provides
developers with means to make DUIs resilient or resistant
to interruptions.

Author Keywords

Work interruption, caching modeling, model-based
approach, distributed user interface.

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION

Connectivity is one assumption that in the last years has
been commonly assumed. But there are a lot of scenarios
where this assumption may not be totally guarantee.
Travelling by flight, natural disasters, areas where the
connection is not available or limited, are only a small set
of scenarios where the lack of connection has to be taken
into account. When developing systems connected through
the Internet, deal with disconnection problems is an open
issue, and have to be included when modeling these
systems. Some examples of systems susceptible of being

interrupted are those based on the Distributed User
Interfaces paradigm.

A DUI is a user interface whose components are distributed
across one or more of the dimensions input, output,
platform, space, and time [2]. The interface may be
restricted to the same physical (and geographic) space, or
can be distributed geographically. In the last scenario,
interfaces may use the client-server paradigm to get
connected. This paradigm is followed by the web-based
distributed user interface [6], where Internet is used to
connect the DUIs. Following the paradigm of the web, a
connection to the server must exist in order to interact with
the system. But, what happen if there is no connection to
the server? In this scenario, an interruption due to the lost of
connectivity to Internet arises this question: are users able
to continue interacting with the system without being
affected by the system interruptions? Our aim is to make
DUIs resilient to interruptions, providing continuity of
service for DUIs connected over the Internet, dealing with
the problematic of interruptions, as shown in the Figure 1.
The term resilient is often used to address systems that are
able to recover from failures, but in the present context it is
used to qualify systems that can prevent from the
occurrence of interruptions, help users to resume from
interrupted tasks, and/or ensure a minimum level of service
for performing a task despite of the interruption [8] in DUIs
environments.

Figure 1: Providing Continuity of Service.

STATE OF ART

McFarlane [7] proposed a general, interdisciplinary, theory-
based definition of human interruption, which says that
human interruption is “the process of coordinating abrupt
changes in people’s activities.” Interruptions occur when a

person is working on a primary task (usually long-lasting)
and an alert for a secondary task occurs.

There are previous works to systematically detect and deal
with interruptions when doing task on interactive systems
[8]. They try to model and to predict the impact of
interruptions on those systems.

There are some DUIs approaches susceptible of being
interrupted due to the lack of connectivity. In [4] is
presented DUIs to enhance decision making in disaster
situations. One of its main goals is to be fault-tolerant and
to take into consideration the requirements from all
stakeholders. Therefore, a lot of devices and architectures
must be supported, and the following of international
standards may be welcomed to design the system that
supports them, such us the HTML standards, widely
adopted.

HTML5 is the latest version of the HTML standard. One of
the new ideas present in the Web development on these
days is a set of specifications known as “Web Applications”

[9]. The goal of this specification is to enable improved
client-side application development on the Web. Due to the
variety of scenarios where Web Applications can be used,
new ways are needed to support the development of
applications. One of the aspects to take into account is the
network connection availability or the interruptions while
using Web Applications. In order to enable users to
continue interacting with Web Applications and documents
even when their network connection is unavailable authors
can provide a manifest that lists the files needed for the
Web Application to work offline and which causes the
user's browser to keep a copy of the files for use Offline
Web Applications [10]. Other set of technologies allows
Web Applications to store locally information. Keeping a
copy of the files used in Web Applications is not always
enough to make them interruptions resilient. Webstorage
introduces two related mechanisms for storing name-value
pairs on the client side. However, it does not provide in-
order retrieval of keys, efficient searching over values, or
storage of duplicate values for a key.

Earlier works has identified the problem of disconnection in
Web environments. They proposed models to deal with this
issue, such us [1, 3, 5]. The main drawbacks on these works
are that most of them don’t use standard technologies,

restricting the target platforms to use, and the difficulties or
the impossibility to be adapted to existent Web
Applications. Also, the main functionalities are focused in
only catching the information locally, not to deal with the
consequences of the interruption. Finally, most of them are
hard to implement and involve the programmatically
implementation of the provided features.

MAKING WEB APPLICATIONS RESILIENT TO
INTERRUPTIONS

When designing Web Applications there are several model-
based approaches, as aforementioned. But our proposal

deals with an issue that has been neglected when modeling
Web Applications: how the application behaves when it is
interrupted and how to recover from interrupted work. The
proposed conceptual model-based approach combines
explicit representation of end-user navigation and local
information storage. It provides users with information
about which Web site’s contents are available when they

are interrupted and how they can get easy access to local
cache content.

The proposed model represents the static properties of a
Web site, as well as it behavior. The static properties define
the structure of the Web site. The behavior defines how the
system will react to the events and how it will change over
the time. Web pages are the basic elements in the World
Wide Web. They are also the basic elements in the offline
model. They are defined as nodes. A node is an element in
the model that may be connected to other nodes. They are
connected to each other to conform what is known as Web
projects. A Web project is a superset of nodes and it is the
upper level of abstraction in the model. We can refer Web
projects as Web sites.

The model shows both the static properties as well as the
behavior of the Web site. To represent these properties,
nodes have associated properties, represented as node

states. We propose three state levels for nodes: static,
navigational and data. Static state is defined according to
the requirements of the site and the site structure. Static
states are normal, precacheable, nocacheable, initial and
external. Navigational state changes over the time when
users use the Web site. Navigational states are novisited and
visited. Data states are the result of the combination of the
two previous states. Possible values for data states are
cached and nocached. Static states are defined to answer
the following questions. The first question is: is the node
internal or external? External nodes are set to external state.
This state excludes other static states for the node. The
second question is: is the node initial? Initial node is set to
initial state. It will be always accessible in offline mode and
precacheable. Initial nodes are unique within the Web
project. The third question is: will be the node cached when
the Web site is visited? Precacheable nodes will be always
cached when the Web site is visited, but nocacheable nodes
will not be cached ever. Navigational state is set when
users navigate through the site. It changes when the site is
used. It is a dynamic state. Have been defined two states:
novisited and visited. The question answered with this state
is: has been the node visited? When a node has been visited,
it is set to visited. Meanwhile, the node is set to novisited.
Data state is the result of the combination of the two
previous states. As a result, a node can be cached or
nocached. When a node is cached, it will be available when
the site is interrupted. When a node is nocached, it wouldn’t

be available when the site is interrupted.

The model introduces means to deal with interruptions due
to offline navigation. One of the mechanisms used to

support offline navigation is the transformation of the
elements of Web pages. These transformations may act
removing or altering the content of Web pages. Available
transformations are element disabling and alternative link

destinations.

When using Web pages, some of the elements may not be
available for users in offline mode. This restriction may be
due to several reasons. One of the reasons could be that part
of the Web page requires a connection with some external
resource. Since the fact that there is no connection to the
server, the element wouldn’t work. An example of this
scenario is when a form is used to send information to a
remote server. Other scenario is when linking to an external
resource. Since the site is in offline mode, the action
couldn’t be performed. Another reason for disabling an

element is when it shows information retrieved from an
external server. An example of this scenario is when using
Web pages to show online maps or Facebook walls. To
overcome these situations, the model allows element

disabling. Through this technique, any element in the Web
page could be disabled, belonging it to our server or to an
external server, preventing it to be presented in the Web
page when it is in offline mode. Since Web pages are
described in HTML and most elements can be nested, when
disabling an element, all the elements enclosed within this
element will be disabled too. Another available
transformation is the alternative link destination. When
using the Web in offline mode, some destination will not be
reachable due to lack of connectivity or for design
constraints. To prevent the problems associated with the
lack of connectivity and to support the design constraints,
the model allows giving an alternative destination to any
link in Web pages. As a result, when in offline mode,
alternative links will work instead of the original.

INTERRUPTION-RESILIENT DUI APPROACH

In the Web Application’s Offline Model the properties of
the system define the behavior of Web Applications. The
main elements are the Web pages that form the Web site
and the HTML elements that describe those Web pages.
They are independent of each other. Links are the only
connection between Web pages. But within DUIs, there is
an important issue to be addressed. When an interruption
occurs on DUIs environment, it is not only affected the
actual interface being displayed, a DUI, but also is affected
the overall DUI system. For example, it is not the same a
DUI that only show information than other DUI that is used
to input important data within the Web Application. The
first one may not be critical for the overall system;
meanwhile the second may be vital for the overall system
task. Therefore, new mechanisms have to be introduced to
deal with this kind of scenarios.

To make DUIs resilient to interruptions we have included in
the Web Applications Offline Model the DUI Offline
Model. In this Model, DUI-based systems have two kinds
of elements, soft and strong. A soft element in a DUI

system is a non-critical element of the UI (called soft DUI).
A strong element in a DUI system is an element that host
critical information (input or output) and interruptions can
affect the system (called strong DUI). Each type of DUI
behaves depending of it connection status: online (non-
interrupted) or offline (interrupted), and specific
mechanisms are provided to deal with interruptions. These
mechanisms, allow users to interact with interrupted DUIs
and to synchronize offline work. Mainly these mechanisms
provide caching features, content removal and
transformation and change link destinations.

The first type of DUIs is the Soft DUI. These DUIs do not
have a special behavior in the model. From the point of
view of the overall system, when they are not connected is
assumed that they have been disconnected from the system.
From the point of view of these kinds of DUIs, they do not
provide any special mechanism to deal with the
interruption. These DUIs are represented in the model with
dotted lines, as depicted in the Figure 2.

Figure 2: Content transformation on strong DUIs

The second type of DUIs is the strong DUI. These DUIs are
provided with mechanism for offline operation when they
are interrupted. They are represented in the model with
solid lines, as depicted in the Figure 2. From the point of
view of the overall system, the connection interruption with
a strong DUI doesn’t means that the DUI has been
disconnected from the system. To disconnect the DUI there
must be an explicit disconnection operation. As a
consequence, within the status of this type of DUIs, the
connection status must be represented in the model. When
the strong DUI is created, it is represented within the
system with two possible statuses: online or offline. Online

indicates that the DUI has not been interrupted meanwhile
the offline status shows that the DUI is interrupted, but has
not been an explicit disconnection from the overall system.
From the point of view of strong DUIs, they are always
cached for offline operation. The mechanisms involved in
this task have been described previously in the Offline
Model for Web Applications. When an interruption arises,
end users can use the DUI and the mechanisms for offline
work have to be defined, as follows. During the
interruption, the content is susceptible of been transformed
for its operation, as depicted in the Figure 2. Available

transformations are element disabling and alternative link

destinations. These transformations have been described
within the Offline Model for Web Applications.

The architecture of the offline model approach for DUI
Web Applications is depicted in the Figure 3. The
architecture includes the DUI Offline Model. It contains
information about the DUIs elements, such us the type of
DUIs that conform the system and the content
transformation policies.

CONCLUSION AND FUTURE WORK

In this proposal, interruptions of DUIs in Web Applications
are assessed since a modelling perspective, which
constitutes an extension of the aforementioned Offline
Model. The main goal is to provide with means to make
DUIs resilient to interruptions. The provided conceptual
mechanism includes the definition of two types of DUI
elements, soft and strong for dealing with interruptions.
Also, useful information is presented to describe the
behavior of DUIs in Web Applications. As future work, we
are working on the creation of a proxy server to annotate
web applications on the fly. With this feature, the Offline
Model will be included without modifying the original Web
Application, simplifying the Offline Model management.

ACKNOWLEDGMENTS

This research has been partially supported by the CICYT
TIN2011-27767-C02-01 project and the regional project
with reference PPII10-0300-4174.

REFERENCES

1. Bret Cannon. 2011. Minimizing Resource Access and
Management Disparities Between Desktop and Web
Applications. PhD thesis, January 2011.

2. Elmqvist, N. Distributed User Interfaces: State of the
Art. Workshop on Distributed User Interfaces 2011
(DUI) at the 29th ACM CHI Conference on Human
Factors in Computing Systems 2011, ISBN: 978-84-
693-9829-6, Vancouver, Canada, May 7--12, 2011.

3. E. Goncalves and A. M. Leitao, “Implementing offline

work in web applications for rich domains,” in Proc. of

the 11th Int’l Symposium on Web Systems Evolution
(WSE). IEEE, 2009, pp. 79–82.

4. M. Heupel, M. Bourimi, D. Kesdogan, T. Barth, P.
Schwarte and P. G. Villanueva. Enhancing security and
usability of DUI based collaboration with proof based
credential systems. Proceedings of the Distributed User
Interfaces 2012 CHI Workshop, held in conjunction
with 2012 CHI conference, 23-26, ISBN-10: 84-695-
3318-5.

5. Yung-Wei Kao, ChiaFeng Lin, Kuei-An Yang, and
Shyan-Ming Yuan. 2012. A Web-based, Offline-able,
and Personalized Runtime Environment for executing
applications on mobile devices. Comput. Stand.
Interfaces 34, 1 (January 2012), 212-224.
DOI=10.1016/j.csi.2011.08.006
http://dx.doi.org/10.1016/j.csi.2011.08.006.

6. C. Lee, F. A. Musyaffa, Y.-M. Kwon, "Collaborative
Social Authoring Technology Using Web-based
Distributed User Interface (DUI)," Int'l Conf. CHI 2012,
Workshop on DUI (Distributed User Interfaces), May
2012.

7. McFarlane, D. C. (1997). Interruption of people in
human-computer interaction: A general unifying
definition of human interruption and taxonomy (NRL
Formal Report NRL/FR/5510–97–9870): Naval
Research Laboratory, Washington, DC.

8. Philippe Palanque, Marco Winckler, Jean-François
Ladry, Maurice H. ter Beek, Giorgio Faconti, and Mieke
Massink. 2009. A formal approach supporting the
comparative predictive assessment of the interruption-
tolerance of interactive systems. In Proceedings of the
1st ACM SIGCHI symposium on Engineering
interactive computing systems (EICS '09). ACM, New
York, NY, USA, 211-220.
DOI=10.1145/1570433.1570473
http://doi.acm.org/10.1145/1570433.1570473

9. W3C. Web Applications Working Group Charter.
http://www.w3.org/2012/webapps/charter/ (Last access
Apr. 2013).

10. WHATWG. Offline Web applications.
http://www.whatwg.org/specs/web-apps/current-
work/#offline (Last access Apr. 2013).

Figure 3: Overall architecture of the offline model approach for DUI Web Applications.

