
HAL Id: hal-01228715
https://hal.science/hal-01228715v1

Submitted on 13 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discovering Model Transformation Pre-conditions using
Automatically Generated Test Models

Jean-Marie Mottu, Sagar Sen, Juan Cadavid, Benoit Baudry

To cite this version:
Jean-Marie Mottu, Sagar Sen, Juan Cadavid, Benoit Baudry. Discovering Model Transformation Pre-
conditions using Automatically Generated Test Models. IEEE International Symposium on Software
Reliability Engineering, ISSRE 2015, Nov 2015, Washington DC, United States. �hal-01228715�

https://hal.science/hal-01228715v1
https://hal.archives-ouvertes.fr

Discovering Model Transformation Pre-conditions
using Automatically Generated Test Models

Jean-Marie Mottu
Université de Nantes, LINA

Nantes, France
Email: mottu-jm@univ-nantes.fr

Sagar Sen
Simula Research Laboratory

PB 134, 1325 Lysaker, Norway
Email: sagar@simula.no

Juan Cadavid
CEA, LIST

Gif-sur-Yvette, France
Email: Juan.Cadavid@cea.fr

Benoit Baudry
INRIA

Rennes, France
Email: Benoit.Baudry@inria.fr

Abstract—Specifying a model transformation is challenging as
it must be able to give a meaningful output for any input model
in a possibly infinite modeling domain. Transformation pre-
conditions constrain the input domain by rejecting input models
that are not meant to be transformed by a model transformation.
This paper presents a systematic approach to discover such pre-
conditions when it is hard for a human developer to foresee
complex graphs of objects that are not meant to be transformed.
The approach is based on systematically generating a finite
number of test models using our tool, PRAMANAto first cover
the input domain based on input domain partitioning. Tracing a
transformation’s execution reveals why some pre-conditions are
missing. Using a benchmark transformation from simplified UML
class diagram models to RDBMS models we discover new pre-
conditions that were not initially specified.

Keywords: Model transformation, Testing, Model Generation,
Pre-condition, Incomplete Domain Specification

I. INTRODUCTION

Model transformations are core Model Driven Engineering
(MDE) components that automate important steps in soft-
ware development such as refinement of an input model, re-
factoring to improve maintainability or readability of the input
model, aspect weaving into models, exogenous/endogenous
transformations of models, and the classical generation of text
such as code from models. Transformations are different from
general-purpose languages such as Java as they raise the level
of abstraction to facilitate the processing of models which
are graphs of interconnected objects specified by an input
metamodel. Examples of transformation languages include
those based on graph rewriting [5], imperative execution (e.g.
Kermeta [27]), and rule-based transformation (e.g. ATL [18]).

Testing model transformations presents several new chal-
lenges [6]. Model transformation testing ensures that the im-
plementation is correct w.r.t a specification. The tester should
first consider the correctness of the specification, i.e. the trans-
formation produces the expected output model from a given
input model. In this paper, we consider the case in which the
specification is possibly incomplete, i.e. there are missing pre-
conditions. The execution of such an incompletely specified
transformation can lead to its computation not finishing or
producing incorrect output models. Ideally we must specify
a model transformation such that it can appropriately handle
all models in its input modeling domain. This means that a
model transformation must correctly transform models that it
is supposed to transform and reject those it is not designed
to transform. For instance, the input domain for an object

persistence transformation [7] comprises of UML class models
(UMLCD) and output domain of entity-relationship (RDBMS)
models. Classes must have at least one primary attribute (an
unique identifier) for it to be transformed to entities in the
RDBMS model. Any model in the input domain with a class
that does not have a primary attribute is not eligible for
transformation and must be rejected.

A model transformation’s specification entails pre-
conditions as contracts on the input domain of a model
transformation to prevent it from processing ineligible models.
However, pre-conditions can be notoriously hard to foresee
and specify for a model transformation given that the input
domain is a set of infinite objects (for example, due to 0..*
multiplicities in a metamodel) with potentially infinite ways
of being interconnected. Our hypothesis is that a finite
representative subset of models in the input domain can help
improve the specification of a model transformation’s pre-
condition. How can we automatically generate this finite set
of models and consequently discover new pre-conditions for
a model transformation? This is the question that intrigues us
and we present an approach to address it.

Incremental Pre-condition Discovery: Our approach consists
of (1) Automatic generation of a finite set of input test models I
for a transformation based on input domain partitioning in the
current specification (consisting of input metamodel, invariants
on it, and initial set of pre-conditions) of the input domain. We
use the tool PRAMANA based on previous work [30] that solves
an ALLOY specification A of the input domain to generate
these models. (2) We dynamically analyze the execution of a
transformation using test models in I. Test models that either
run into an infinite loop transformation resulting in a stack
overflow, or, transform to an output model not in the specified
output domain are deemed as failed inputs. Either those failed
inputs are out of the input domain, or the transformation is
unable to correctly transform them. In both cases, the spec-
ification is possibly incomplete, and it should be completed
with new pre-conditions. For every failed input we produce
an execution trace to identify the modeling pattern (objects
and relationships) that leads to failure. (3) We introduce a
human-in-the-loop to transform the modeling patterns to new
pre-conditions and repeat the generation and test process until
all generated test models in are executed correctly by the
transformation. New pre-conditions are represented as new
ALLOY facts in A. They are also represented by the human
expert as OCL constraints (the classical constraint modeling
language) to improve the specification of the input domain.

1

Fig. 1. A Model Transformation

We apply our approach to discover new pre-conditions
for the benchmark model transformation of simplified Uni-
fied Modelling Language Class Diagram (UMLCD) to Rela-
tional Database Management Systems (RDBMS) models called
class2rdbms. The transformation class2rdbms was initially
specified by a panel of experts at the MTIP workshop in
Models 2005 [7] with one pre-condition. We discover 12 new
pre-conditions for class2rdbms. This discovery of knowledge
can be seen as valuable gems added to the initial specification
of class2rdbms. The new pre-conditions also illustrate the
fact that some modeling patterns have a potentially complex
structures that cannot be foreseen by a human modeler. For
instance, we discovered a pre-condition that rejects an input
model for class2rdbms because it contains a class A which
inherits from a persistent class B and has an attribute with
the same name and type of an attribute in persistent class
B. A model like this cannot be persisted into an RDBMS
model because the columns will conflict. The discovery of
pre-conditions was based on executing upto 13 series of 1890
automatically generated test models in each iteration and
several hours of computation on two high-end computers.

We summarize our contributions as follows:
Contribution 1: A systematic approach to discover new model
transformation pre-conditions
Contribution 2: Discovery of a set of 12 new pre-conditions
for the benchmark transformation class2rdbms [7].

The paper is organized as follows. In Section II we present
the transformation case study class2rdbms as a running exam-
ple and we use it to describe the problem. In Section III, we
present foundational ideas to understand the paper. In Sec-
tion IV, we present our approach for pre-condition discovery
based on automatic test model generation and input domain
partitioning. In Section V, we present the experimental setup
to generate models and present the discovered pre-conditions.
In Section VII we present threats to validity. In Section VII
we present related work. We conclude in Section VIII.

II. CASE STUDY AND MOTIVATION

Our general objective is to discover novel pre-conditions
pre(MT) for a model transformation MT (I,O). MT (I,O) is a
program applied on a set of input models I to produce a set
of output models O as illustrated in Figure 1. The set of all
input models is specified by a metamodel MMI (For example,
simplified UMLCD in Figure 2). The set of all output models
is specified by metamodel MMO. Post-conditions post(MT)
constrains MT (I,O) to producing a subset of all possible
output models. The model transformation is developed based
on a set of textual specification of requirements MTRequirements.

A. Transformation Case Study

Our case study is the transformation from simplified UML
Class Diagram models to RDBMS models called class2rdbms.

In this section we briefly describe class2rdbms.

In Figure 2, we present the simplified UMLCD input
metamodel for class2rdbms. The concepts and relationships
in the input metamodel are stored as an Ecore model [10]
(Figure 2 (a)). Four invariants among a total of ten on the
simplified UMLCD Ecore model, expressed in Object Constraint
Language (OCL) [29], are shown in Figure 2 (b). The Ecore
model and the invariants together represent the input domain
for class2rdbms. The Ecore and OCL are industry standards
used to develop metamodels and specify different invariants
on them. OCL is not a domain-specific language to specify
invariants. However, it is designed to formally encode nat-
ural language requirements specifications independent of its
domain.

The input metamodel MMI gives an initial specification of
the input domain. In addition, the model transformation itself
has a set of pre-conditions pre(MT) that input models need
to satisfy to be correctly processed. Constraints in the pre-
condition for class2rdbms include: (a) All Class objects must
have at least one primary Property object. (b) The type of a
Property object can be a Class C, but finally the transitive
closure of the type of Property objects of Class C must end
with type PrimitiveDataType. In our case we approximate this
recursive closure constraint by stating that Property object can
be of type Class up to a depth of 3 and the 4th time it should
have a type PrimitiveDataType. This is a finitization operation
to avoid navigation in an infinite loop. (c) There are no
associations between class in an inheritance hierarchy. The first
pre-condition (a) was in the initial specification of MTIP [7]
and the two other ones (b and c) have been added when the
transformation has been implemented and previously studied.
We use the implementation written in Kermeta. Kermeta [20]
is a language for specifying metamodels, models, and model
transformations that are compliant to the Meta Object Facility
(MOF) standard [28].

We choose class2rdbms as our representative case study
to address our problem of pre-condition discovery. It serves
as a sufficient case study for several reasons. The transfor-
mation is the benchmark proposed in the MTIP workshop
at the MoDELS 2005 conference [7] to experiment and
validate model transformation language features. The input
domain metamodel of simplified UMLCD covers all major
metamodeling concepts such as inheritance, composition, finite
and infinite multiplicities. The constraints on the simplified
UMLCD metamodel contain both first-order and higher-order
constraints. There also exists a constraint to test transitive
closure properties on the input model such as there must be
no cyclic inheritance (Figure 2 (b)). class2rdbms is not just
a refactoring, it is an exogenous transformation: input and
output metamodels are different. The class2rdbms exercises
most major model transformation operators such as navigation,
creation, and filtering (described in more detail in [25]) en-
abling us to find loops due to several transformation operators.
Among the limitations the simplified UMLCD metamodel does
not contain Integer and Float attributes. There are also no inter-
metamodel references in the metamodel.

B. Motivation

Any computer program has limitations on what it can
process: e.g. a division of integers is not supposed to divide per

2

zero. Programs have a limitation on memory and computation
capacity for any given algorithm. Design by contracts [16],
[23] is a programming paradigm that emerged at the turn
of the 21st century as an effective and practical means to
prevent programs from processing faulty inputs and producing
faulty outputs due to specification of pre and post conditions.
However, specifying contracts from model transformations in
the form of pre-conditions is more complex. The input domain
of a model transformation for instance is a set of potentially
infinite graphs of interconnected objects (for instance, due to
multiplicities 0..*). It is hard to foresee graph like patterns that
could crash a model transformation and subsequently become
pre-conditions.

The specification provided in [7] specifies how several
structures in the models have to be transformed. For instance,
it is specified that the “recursive nature of the drilling down”
should be considered. Therefore, the initial specification con-
tains a pre-condition (b) ensuring that the type of a Property
object can be a Class C, but finally the transitive closure of
the type of Property objects of Class C must end with type
PrimitiveDataType. And the model transformation is able to
process models with such structures. However, some model
structures allowed by the input metamodel are not specified
in the class2rdbms specification. The consequence is that the
implementation of class2rdbms fails processing them. For in-
stance, it fails when attributes are typed with their containment
class. This failure leads the implementation of class2rdbms
to loop infinitely. Therefore, we have to complete the spec-

(a) Ecore Meta-model

context Class

 inv noCyclicInheritance: not self.allParents()->includes(self)
 inv uniqueAttributesName: self.attrs->forAll(att1, att2 |
 att1.name=att2.name implies att1=att2)

context ClassModel

 inv uniqueClassifierNames: self.classifier->forAll(c1, c2 |
 c1.name=c2.name implies c1=c2)

 inv uniqueClassAssociationSourceName :
 self.association->forAll(ass1, ass2 | ass1.name=ass2.name
 implies (ass1=ass2 or ass1.src != ass2.src))

(b) OCL Invariants

name: String

Classifier

name: String
Association

is_primary: Boolean

name: String

Att ribute

is_persistent: Boolean

Class

 PrimitiveDataType

ClassModel

type

1

classifier

*

dest

 1

 src

 1

association
*

parent

0..1

1.. *

 attrs

Fig. 2. (a) Simplified Class Diagram Ecore Meta-model (b) OCL constraints
on the Ecore metamodel

:Attribute
attrs

:Class

type

Fig. 3. Input model structure unspecified in the class2rdbms specification

ification to consider that structure (illustrating Figure 3), for
instance preventing it in the input models.

Another motivating sample with class2rdbms is that an
input model could be transformed into an output model with
two identical columns which is incorrect as it violates an output
model invariant.

Our challenge is to focus on discovering pre-conditions that
ensure that:

• A model transformation does not loop infinitely and
consequently leading to a stack overflow.

• Output models are correct, i.e., they always conform to
the output metamodel and do not violate a post-condition
in the set post(MT).

III. FOUNDATIONS

This section presents foundational ideas used by the
methodology for generating models to discover pre-conditions
in Section IV. We briefly describe PRAMANA for automatic
test model generation in Section III-A. Test model generation
in this paper is guided by coverage criteria based testing
strategies, which are input domain independent. These testing
strategies are described in Section III-B.

A. PRAMANA: A Tool for Automatic Model Generation

We use the tool PRAMANA previously introduced (with the
name CARTIER) in our paper [30] to automatically generate
test input models (test models in the rest of the paper since
we do not consider output models). PRAMANA transforms
the input domain specification of a model transformation to
a common constraint language ALLOY. Solving the ALLOY
model gives zero or more models in the input domain of a
transformation. PRAMANA first transforms a model transfor-
mation’s input metamodel expressed in the Eclipse Modeling
Framework [10] format called Ecore using the transformation
rules presented in [30] to ALLOY. Basically, classes in the
input metamodel are transformed to ALLOY signatures and
implicit constraints such as inheritance, opposite properties,
and multiplicity constraints are transformed to ALLOY facts.

Second, PRAMANA also addresses the issue of transform-
ing invariants on metamodels and pre-conditions expressed in
Object Constraint Language (OCL) to ALLOY. The automatic
transformation of OCL to ALLOY presents a number of chal-
lenges that are discussed in [1]. We do not claim that all
OCL constraints can be manually/automatically transformed to
ALLOY for our approach to be applicable in the most general
case. The reason being that OCL and ALLOY were designed
with different goals. OCL is used mainly to query a model
and check if certain invariants are satisfied. ALLOY facts and
predicates on the other hand enforce constraints on a model.
This is in contrast with the side-effect free OCL. The core
of ALLOY is declarative and is based on first-order relational

3

TABLE I. MAPPINGS FROM OCL TO ALLOY

Let v be a variable, col a collection, expr an expression, be an expression
that returns a boolean value, o an expression that returns an object, T a type,
propertyCallExpr an expression invoking a property on an object
OCL Expression Type ALLOY Abstract Syntax Type

context T inv expr sig T{. . .}{expr}
col→ f orAll(v : T | be) all v : T | be
col→ f orAll(v : col | be) all v : col | be
expr1andexpr2 expr1 && expr2
expr1orexpr2 expr1 || expr2
not be !be
col→ size() #col
col→ includes(o : T) o in col
col→ excludes(o : T) o !in col
col1→ includesAll(col2) col2 in col1
col1→ excludesAll(col2) col2 !in col1
col→ including(o : T) col + o
col→ excluding(o : T) col − o
col→ isEmpty() no col
col→ notEmpty() some col
expr.propertyCallExpr expr.propertyCallExpr
i f be then expr1 else expr2 be⇒ expr1 else expr2
expr.oclIsUnde f ined #expr = 0
expr→ oclIsKindO f (o : T) expr in o
col1→ union(col2) col1+ col2
col1→ intersection(col2) col1 & col2
col1→ product(col2) col1→ col2
col→ sum() sum col
col1→ symmetricDi f f erence(col2) (col1+ col2)− (col1&col2)
col→ select(be) v : col | be
col→ isUnique(propertyCallExpr) no dis j v1, v2 : col |

v1.propertyCallExpr =
v2.propertyCallExpr

logic with quantifiers while OCL includes higher-order logic
and has imperative constructs to call operations and messages
making some parts of OCL more expressive. In our case study,
we have been successful in transforming all meta-constraints
on the UMLCD metamodel to ALLOY from their original OCL
specifications. Nevertheless, we are aware of OCL’s status as
a current industrial standard and thus provide an automatic
mapping to complement our approach.

Previous work exists in mapping OCL to ALLOY. The tool
UML2Alloy [1] takes as input UML class models with OCL
constraints. The authors present a set of mappings between
OCL collection operations and their ALLOY equivalents. Here
we present our version of such transformation derived from [1]
and written in Kermeta.

The context of an OCL constraint (which is what defines
the value of the self function) determines the place of the
constraint within the generated ALLOY model. It is added as an
appended fact. The mappings in Table I (taken in part from [1])
show the set of transformation rules that can be implemented.
OCL constraints in this article were transformed manually to
ALLOY due to their complexity.

However, some classes of OCL invariants cannot be au-
tomatically transformed to ALLOY using the simple rules in
Table I. For example, consider the invariant for no cyclic
inheritance in Figure 2(b) [4]. The constraint is specified as
the fact in Listing 1. This is an example in which the richness
of the ALLOY language overcomes OCL - it is not possible to
specify this constraint in OCL without using recursive queries
since there is no transitive closure operator.
f a c t n o C y c l i c I n h e r i t a n c e {

no c : C l a s s | c in c . ˆ p a r e n t
}

Listing 1. ALLOY Fact for No Cyclic Inheritance

B. Test Selection Strategies

We guide automatic model generation to select test models
that cover the input domain of a model transformation follow-
ing our previous works [15], [30]. We define a strategy as a
process that generates ALLOY predicates which are constraints
added to the ALLOY model synthesized by PRAMANA as
described in Section IV. This combined ALLOY model is
solved and the solutions are transformed to model instances of
the input metamodel that satisfy the predicate. We guide model
generation based on input-domain partition based strategies
where we combine partitions on domains of all properties of a
metamodel (cardinality of references and domain of primitive
types for attributes). A partition of a set of elements is a
collection of n ranges A1,..., An such that A1, ..., An do not
overlap and the union of all subsets forms the initial set. These
subsets are called ranges. We use partitions of the input domain
since the number of models in the domain are infinitely many.
Using partitions of the properties of a metamodel we define
two coverage criteria that are based on different strategies for
combining partitions of properties. Each criterion defines a set
of model fragments for an input metamodel. These fragments
are transformed to predicates on metamodel properties by
PRAMANA. For a set of test models to cover the input domain
at least one model in the set must cover each of these model
fragments. We generate model fragment predicates using the
following coverage criteria to combine partitions:

• AllRanges Criteria: AllRanges specifies that each range
in the partition of each property must be covered by at
least one test model.

• AllPartitions Criteria: AllPartitions specifies that the
whole partition of each property must be covered by at
least one test model.

The notion of coverage criteria to generate model fragments
was initially proposed in our paper [15]. The accompanying
tool called Meta-model Coverage Checker (MMCC) [15] gen-
erates model fragments using different test criteria taking any
metamodel as input. Then, the tool automatically computes the
coverage of a set of test models according to the generated
model fragments. If some fragments are not covered, then the
set of test models should be improved in order to reach a better
coverage.

In this paper, we use the model fragments generated by
MMCC for the UMLCD Ecore model (Figure 2). We use the
criteria AllRanges and AllPartitions. For example, in Table II,
mfAllRanges1 and mfAllRanges2 are model fragments gener-
ated by PRAMANA using MMCC for the name property of
a classifier object. The mfAllRanges1 states that there must
be at least one classifier object with an empty name while
mfAllRanges2 states that there must be at least one classifier
object with a non-empty name. These values for name are
the ranges for the property. The model fragments chosen
using AllRanges mfAllRanges1 and mfAllRanges2 define two
partitions partition1 and partition2. The model fragment mfAll-
Partitions1 chosen using AllPartitions defines both partition1
and partition2. The Table II lists the 27 consistent model
fragments used in our experiments. Several model fragments
are inconsistent with respect to the input metamodel and
other fragments. In [26] we discuss why fragments such as
mfAllRanges7 are inconsistent.

4

TABLE II. CONSISTENT MODEL FRAGMENTS GENERATED USING
ALLRANGES AND ALLPARTITIONS STRATEGIES

Model-
Fragment

Description

mfAllRanges1 A Classifier c | c.name =“”
mfAllRanges2 A Classifier c | c.name! =“”
mfAllRanges3 A Class c | c.is persistent = True
mfAllRanges4 A Class c | c.is persistent = False
mfAllRanges5 A Class c | #c.parent = 0
mfAllRanges6 A Class c | #c.parent = 1
mfAllRanges8 A Class c | #c.attrs = 1
mfAllRanges9 A Class c | #c.attrs > 1
mfAllRanges10 An Attribute a | a.is primary = True
mfAllRanges11 An Attribute a | a.is primary = False
mfAllRanges12 An Attribute a | a.name =“”
mfAllRanges13 An Attribute a | a.name! =“”
mfAllRanges14 An Attribute a | #a.type = 1
mfAllRanges15 An Association as | as.name =“”
mfAllRanges16 An Association as | as.name! =“”
mfAllRanges17 An Association as | #as.dest = 1
mfAllRanges18 An Association as | #as.src = 1
mfAllRanges24 An ClassModel cm | #cm.association > 1
mfAllPartitions1 Classifiers c1,c2 | c1.name =“” and c2.name! =“”
mfAllPartitions2 Classes c1,c2 | c1.is persistent = True and

c2.is persistent = False
mfAllPartitions3 Classes c1,c2 | #c1.parent = 0 and #c2.parent = 1
mfAllPartitions5 Attributes a1,a2 | a1.is primary = True and

a2.is primary = False
mfAllPartitions6 Attributes a1,a2 | a1.name =“” and a2.name! =“”
mfAllPartitions7 An Attribute a | #a.type = 1
mfAllPartitions8 Associations as1,as2 | as1.name =“” and

as2.name! =“”
mfAllPartitions9 An Association as | #as.dest = 1
mfAllPartitions10 An Association as | #as.src = 1

These model fragments are transformed to ALLOY pred-
icates by PRAMANA. For instance, model fragment mfAll-
Ranges8 is transformed to the predicate in Listing 2.

pred mfAllRanges8 {
some c : C l a s s | # c . a t t r s =1

}

Listing 2. ALLOY Predicate for mfAllRanges8

IV. APPROACH

In this section we present a methodology to discover
pre-conditions for a given model transformation. We use
class2rdbms as a running example to illustrate the method-
ology. The process is divided into 8 steps as illustrated in
Figure 5. Section IV-A describes how we detect that an input
model is outside the input domain of the model transformation
(in steps 3 and 4). The Section IV-B describes the identification
of incorrect input excerpts based on transformation traces (in
steps 2, 5, and 6). The Section IV-C describes how the tester
can write a new pre-condition (in step 8) based on incorrect
input model pattern obtained by generalizing a set of incorrect
input excerpts (in step 7).

:Attribute

:Class

destsrc

type

name = 7
is_persistent = False

:Class

name = 12
is_persistent = False

:Association

name = 15

name = -16
is_primary = False

attrs

Fig. 4. Sample of an input model excerpt causing transformation loop

A. Detecting incorrect input models

We identify two reasons why an input model should not
be selected as a model transformation entry: when the trans-
formation is unable to transform it, and when it is transformed
into an incorrect output model.

1) Non-transformable input model (Step 3): In Step 3, of
Figure 5, we find out why an input model is non-transformable.
For this, we consider a fundamental characteristic of model
transformations: they are designed to navigate through the
model and find modeling elements to transform. Navigation
is one of the three main operations performed by a model
transformation [25]. When it navigates a model it can enter
into navigation loops and no output will never be returned.
The transformation can run infinitely but most of the time it
will crash (in particular once the memory stack is full, or if a
time limit is reached). We detect that a transformation loops
when our experiments return stack overflow errors.

In the Figure 4, we present a model excerpt extracted from
an input model that loops when executed by class2rdbms.
The transformation hence never returns an output model. This
input model contains an association named “15” (names in
generated models have a string type but have an integer
value to simplify solving with Alloy) which is supposed to be
transformed into a column in an output RDBMS model. This
association has a destination non persistent class named “7”.
The attributes of this class need to be transformed into columns
in the output RDBMS model. The attribute of this class “7”
named “-16”, is supposed to be transformed to a column typed
with the non persistent class named “12” which in turn is the
source class for the association named “15”. The Figure 4
illustrates a closed loop and the transformation will infinitely
navigate via the association named “12”. Loops such as this
will not allow the transformation class2rdbms to terminate.

Identifying the problematic input excerpt is complicated
as a tester should identify the model excerpt that loops in
a potentially large input model. This particular excerpt in
Figure 4 contains 4 objects (2 classes, 1 association, and 1
attribute). However, the excerpt was found in an input model
containing 50 objects and their properties (names, etc.).

2) Transformed into an incorrect output model (Step 4):
Output models are incorrect when they do not conform to
the output metamodel+invariants or when they do not satisfy
the transformation’s post-conditions. For instance, an RDBMS
model should not have a table with several identical columns
(same name and type). This is an invariant that must be
satisfied by any RDBMS model. This invariant, written in OCL,
is:

c o n t e x t Table
cols ->forAll(c1, c2 | (c1.name = c2.name

and c1.type = c2.type) implies c1=c2)

When an input model produces an incorrect output model,
the constraint checking mechanism in Kermeta identifies the
incorrect part in the output model by raising an exception. For
instance, if an input model CD is transformed to an RDBMS
model with two identical columns with the same name and
type then it will violate the post-condition above.

In the Figure 6, we present the incorrect excerpt from
an output model. Both columns have identical names and

5

Input Metamodel
MM_in

Invariants on
Metamodel I_in

Initial Preconditions
pre(MT)

Test Strategy and
partitioning T

New Preconditions pre(MT)

Step 1: Automatic Test Model Generation
with Pramana

Step 2: Execute Model Transformation with
each test models

Trace

Step 3: Output
model produced?

Step 4: Output
model correct?

END

YES

YES

NO

NO

Step 5: Identify non
transformable input excerpt

Step 6: Identify input
excerpt transformed into
incorrect output model

Incorrect output model excerpt

BEGIN

Step 7: Refine input excerpts

Incorrect input model pattern

Step 8: Create Alloy predicates and
OCL constraints of pre-conditions

Incorrect input excerpts
Incorrect input excerptsIncorrect input excerpts

Fig. 5. Methodology for Pre-condition Discovery

:Table :Column :Column

name = -4 name = -15
type = -14

name = -15
type = -14

cols cols

Fig. 6. Incorrect excerpt of an output model

types. This incorrect excerpt has been identified when the
invariant is unsatisfied on an RDBMS model returned by the
transformation.

The difficulty to create a pre-condition from an incorrect
output model is harder than the previous point in Section IV-A1
since we have to consider an output excerpt. This excerpt has
only 3 objects, whereas the entire output model has 67 objects
and its input model has 40 objects with their properties making
it hard to discover the problematic excerpt.

When an input model (i) cannot be transformed or when (ii)
its output model is incorrect, we know that the input model is
incorrect and the model transformation’s specification should
prevent it from being processed. At the end of those steps 3
and 4, we identify incorrect input models, and we know when
the output model is produced which output excerpt is incorrect.
But in both cases, we still have to study entire incorrect input
models (at this point due to space limitations we use the
Figure 4 to illustrate only an excerpt of an entire incorrect input
model; entire input models are referred in the appendix A)

B. Identifying incorrect input excerpt

Incorrect input models are identified in the previous Sec-
tion IV-A. We need to precisely identify the concerned ele-
ments in each incorrect input model. Finding these incorrect

input excerpts can be hard as these models can be quite large.
We will use them as an incorrect input excerpt to create new
pre-conditions. That identification is made easier thanks to
traceability in a model transformation.

1) Creating Trace (Step 2): While executing the model
transformation, we collect a trace linking input elements with
output elements. We also collect the transformation rules
involved in each link, but it is not used in this work for the
moment.

Various traceability approaches have been developed, but
they are dedicated to a specific transformation language
e.g. [14] or they take into account only classes and not their
attributes [17]. A traceability approach has been developed [2]
that is transformation language independent. We successfully
used it previously considering test model improvement [3].
Each creation/modification of an element by a rule leads
to the creation of a unique traceability link. Each link is a
relation of three sets of elements referring to (i) a set of
source elements (attribute or class instances), (ii) a set of target
elements and (iii) the transformation rule that leads to this
creation/modification. Each link corresponds to an execution
of a rule, that may be executed several times on different input
elements. Figure 8 illustrates an example. Link1 indicates that
the output instance of Table has been created from one input
instance of Class. Moreover, Link1 specifies that the instances
it binds have been read and created by the trans f orm rule.

Each trace captures relations between input/output models
and the transformation. Traces can be analyzed independently
and are not transformation language dependent.

2) Identifying non-executable input excerpt (Step 5): The
trace produced from a non-executable input model is incom-
plete since no output model is produced. At the moment,
we model a trace from a textual output of the trace in the

6

:Class type

attrsname = 12

:Class

name = -4
is_persistent = True

:Attribute

name = -15

:Attribute

name = -15

:PrimitiveDa
taType

name = -14

type

attrs

parent

Fig. 7. Excerpt of an input model transformed into an incorrect output model
(whose an excerpt is illustrated Figure 6)

console of the model transformation (such as the one of the
Figure 8) to obtain an analyzable trace model. In this trace,
we identify the loop, which is a series of identical links. These
links refer the input model elements which are involved in the
loop. Therefore, we can extract from the non transformable
input model an excerpt which is incorrect, such as the one
illustrated Figure 4.

3) Identifying out of the scope input excerpt (Step 6):
Combining the trace and the incorrect excerpt of an output
model, we identify incorrect excerpt in the input model. Input
excerpt of the Figure 7 corresponds to the output excerpt of
the Figure 6.

C. Creating new pre-condition

Once we detect one or more input excerpt, we generalize
from it an input pattern which is finally used to create a pre-
condition.

1) Generalizing input excerpts identifying incorrect input
pattern (Step 7): The input excerpts are extracted from con-
crete input models that may contain several other elements not
all useful to help us make new pre-conditions. For instance,
the values of name in the Figure 4 are not important: the
transformation will still loop even if they are different. In other
excerpts, the values of name are important like in the sample
of the Figure 6: columns are identical when their names are
identical (and their types are identical).

There are many properties in a model, therefore the
excerpts could be all different with potentially one unique
incorrect excerpt per incorrect model. We will see in the next
section V that they can be numerous input excerpts. Moreover,
it would be ineffective to create a pre-condition for each one
of them. For example, considering the excerpt of the Figure 7,
it is useless to create a pre-condition preventing the creating
of a model with a class exactly named “-4”, with an attribute
exactly named “-15”, and so on.

Therefore, we generalize the input excerpts, rejecting use-
less properties and producing input patterns. For this, we
develop the two-pass step 7. The first pass creates a pattern
following two methods, the second pass controls pattern ac-
curacy since too many properties could be rejected.

First method: We merge similar input excerpts keeping their
similarities and rejecting their differences. We select subset
of input excerpts to be merged based on the class and their
assembly. We can use a tool such as EMF Compare which
can be specialized to compare only what we are interested in.

Then each set of similar excerpts is merged, the result is a
generalized pattern.

Second method: When an input excerpt doesn’t have similar
excerpts to be merged with, we generate additional models.
Since the objective here is to reject useless properties, we
should compare several models with different properties’ val-
ues. We apply the same technique than when generating test
models at the step 1. Partitioning each properties domain, we
generate additional input models. Therefore they are trans-
formed, and those which are incorrect are analyzed identifying
incorrect excerpts to be merged following the first method of
the previous paragraph.

For instance, we produce the incorrect input pattern il-
lustrated Figure 9 merging the excerpts of the Figure 4 with
similar incorrect patterns. We keep only the two useful proper-
ties is persistent = False: they are always false in the merged
excerpts. We identify that names and is primary properties
should not been considered since they differ in the different
model excerpts which have been refined creating this input
pattern.

Once we get an incorrect pattern, we should control its
accuracy in a second pass. It is accurate when it contains all
the necessary properties to create an effective pre-condition.
Indeed, it is possible that merging rejects too many properties.
One reason is that the number of generated models is limited,
then useful properties combinations can be missing. Moreover,
correctness of a model can depend on several properties of
one model at the same time This is the case in the excerpt of
the Figure 7: RDBMS invariant is violated only if both names
of two different attributes are equal. However, merging this
excerpt with similar excerpts would reject the properties name
of Attribute, since their values are not equal between different
models randomly generated per PRAMANA.

Therefore, we introduce a second pass which systematically
modified in the incorrect input model the values of the proper-
ties that were in the excerpt and are no more in the pattern. The
altered input models are executed, and step 3 and 4 are used to
control if they are still incorrect models. Otherwise it means
that the pattern is not accurate, and needs improvements.

This control is useful with the excerpt of the Figure 7.
In that case, at the first pass, the merged pattern won’t
consider that the attributes’ names in a model should be equals.
During the control pass, the top attribute name is changed
into “-15aa”, and the bottom attribute name is changed into
“-15ab”. Therefore, the output model satisfies the invariant,
and the input model is not incorrect anymore. A human can
easily understand the problem reading the output invariant, and
correct the pattern as illustrated Figure 10.

2) Writing new pre-condition (step 8): The incorrect input
pattern is manually re-written to an ALLOY predicate. For
instance, writing the predicate for the pre-condition G1, from
the input pattern of the Figure 9:

f a c t noChainAssoFromClassTypeLevel1 {
a l l c1 : Class , a s s o c 1 : A s s o c i a t i o n |
a l l a1 : c1 . a t t r s | (a1 . t y p e == a s s o c 1 . s r c and

a s s o c 1 . d e s t == c1) => (c1 . i s p e r s i s t e n t =
True or a1 . t y p e . i s p e r s i s t e n t =True)

}

7

Excerpt of Input Model Sample

: Class
name = Person
is_persistent = false : Class

name = Address
is_persistent = true

parent

src

dest
attrs

: Column
name =
type = String

Link1

: Class
name =
is_persistent = true

Student

Link2

: Table
name =

Student

:Association
name =

address

: Attribute
name =
is_primary = true

street address_street

cols

Excerpt of
Output Model Sample

Model transformation

transform

createColumns

Excerpt of Local Trace

Link3

Fig. 8. Example of a trace between one input class model and its corresponding rdbms model

:Class

destsrc

type

attrsis_persistent
= False

:Class

is_persistent
= False

:Association :Attribute

Fig. 9. Incorrect input pattern to prevent non-transformable models

:Class
type

attrs

:Attribute

name = x

:Attribute

name = x

:PrimitiveDa
taType

typeattrs

:Class

parent

is_persistent = True

Fig. 10. Incorrect input pattern to prevent models to be transformed into
incorrect output model

With this constraint, we prevent the creation of any input
model containing such non transformable input pattern. This
constraint identifies transitive closure through the type of an
attribute a1, and an association assoc1 in any input model. If
this transitive closure exists, then the involved classes can’t
be both non persistent. This ALLOY predicate will then be
used in PRAMANA generating test models for testing the model
transformation. We can also add into the specification the pre-
condition written in OCL:

c o n t e x t A s s o c i a t i o n
d e s t . a t t r s −>f o r A l l (a | a . t y p e == s e l f . s r c

i m p l i e s (c1 . i s p e r s i s t e n t =True o r a1 . t y p e .
i s p e r s i s t e n t =True))

V. EVALUATION

We applied the proposed methodology on class2rdbms to
discover new pre-conditions. The experiments are performed
as an iterative process. During each iteration, we apply our
methodology and discover one new pre-condition. We could
detect several pre-conditions per iteration, however during the
experiments we wanted to measure the improvement between
two successive iterations. An improvement occurs when the
number of incorrect input models decreases thanks to a new
pre-condition. The first iteration has an initial set of three
pre-conditions.

We applied the methodology twelve times, obtaining twelve
new pre-conditions. Synthetically, as illustrated Figure 11 we
rejected 580 models at the first iteration and only 22 after the
last one.

30 36
54 61 66

27 24 31 23 25 20 22 19

550 540

45

13 0 18 3
37 33

16 2 4 3
0

50

100

150

200

250

300

350

400

450

500

550

StackOverflowError

Incorrect Output

Fig. 11. Number of input models non-transformable or transformed into
incorrect output models depending on the pre-conditions

A. Experiments set-up

We generate test models for class2rdbms using PRAMANA.
We generate 10 non-isomorphic CD models (using symmetry
breaking [33]) for each one of the 27 predicates. This give us
a set of 270 test models.

We replicate the generation 7 times obtaining 7 sets of test
models. Each set is generated using different factorial design
parameters, as summarized in Table III. For each set we ask
ALLOY to find models made of a different number of Class-
Model, Classes, Associations, Attributes, PrimitiveDataTypes,

8

TABLE III. GENERATION DESIGN PARAMETERS FOR TEST MODEL
GENERATION

Factors: Sets: 1 2 3 4 5 6 7
#ClassModel 1 1 1 1 1 1 1
#Class 5 5 10 10 5 10 5
#Association 5 10 5 10 5 5 10
#Attribute 25 25 25 25 30 30 30
#PrimitiveDataType 4 4 4 4 4 4 4
Bit-width Integer 5 5 5 5 5 5 5
#predicates 23 23 23 23 23 23 23
#models/predicates 10 10 10 10 10 10 10

and we give a specific range for the integer values of the
properties. We obtained 1890 input models per iteration with
diversity governed by the design parameters. We generate a
total of 24,570 model, applying our methodology for pre-
condition discovery 12 times and generating a final set to
measure the final number of incorrect models (1890 * (12+1)).

B. Discovered Pre-conditions

We discovered 12 input patterns that lead to failure of
execution of a transformation and we created 12 new pre-
conditions, one in each iteration. We already explained in
the Approach Section IV how we create the pre-condition G1
(Section IV-C2) which was the fourth one we made.

The appendix A of the paper synthesizes the creation of
two pre-conditions among the twelve ones we created. All the
experimental material is available online [24].

C. Improvements

We drove the experiments trying to reduce the number
of non-transformable models first, then the number of input
models transformed into incorrect output models.

Thanks to the constraint G1, we had no more non-
transformable models and the dashed curve is at 0. However,
we observe that new non-executable models appear then. This
is due to side effect of the new pre-condition created. It is
dedicated to consider one incorrect input pattern, and once
the new pre-condition is applied, this pattern does not get
generated anymore. But preventing such pattern, it allows
PRAMANA to explore into generating other “structures” in the
models using the symmetry breaking scheme in ALLOY [33].
This leads to discovery of new incorrect patterns that we have
to consider for newer pre-conditions.

While the 4 first pre-conditions (C, F1, F2, G1) (Fig-
ure 11 and Appendix A) reduces the number of non-executable
models, they increase the number of incorrect output models.
And when the 5th pre-condition (D1) reduces the number of
incorrect output models, then the number of non-transformable
models increases a bit.

If we consider globally the number of incorrect models,
10 among 12 pre-conditions improve the set of test models.
The pre-condition A2 and C2 are the only ones which increase
the number of non transformable models. However, they fully
achieve their own objectives, because each one removes the
incorrect pattern they were considering.

We observe that the addition of new pre-conditions con-
tinually leads to discovery of newer modeling patterns that
are not handled by the initial specification [7] of class2rdbms

produced by a group of human experts. However, we are
unsure if this process of creating pre-conditions will terminate.
We stop at 12 pre-conditions at the current state we still
have 22 models that are not transformable correctly. Will
extracting more pre-conditions from these models lead to pre-
conditions that in turn lead to other types of strange and
unforeseen patterns? Will this process every terminate? This
is our challenge for the future.

VI. THREATS TO VALIDITY

Our framework for creating pre-conditions has 8 steps
(Figure 5). While the first step is completely automatic, during
our experiments the other steps still need human interaction.
As explained before, generating a trace is complicated when
the transformation crashed. The automation of the Step 5
and 6, identifying non transformable input excerpts, is in
progress, without major difficulties. The refinement of the
Step 7, producing incorrect input model patterns, can be done
using EMF Compare, specializing the comparison. This step
can be considered as automatic, even if we don’t yet have
a framework that would launch all those comparisons. Finally
the Step 8 is manual now since if require domain and modeling
experts contribution. However, since those pre-conditions will
be part of the specification, it is better to ensure that they are
validated by a tester.

Today there is no guarantee for the minimality and gen-
eralizability of the set of all pre-conditions. However, we
empirically control pattern accuracy in the second pass of
Step 7. Moreover, we can test that known correct models from
previous iterations of pre-condition improvement to ensure that
all models that were transformed into correct output models
earlier always are in the new formulation of a pre-condition.

At the end of the 13 iterations, 22 input models are still
incorrect. We could have continued to iterate. However, the
transformation is complex (this is the reason why we use it
as a running example), and could potentially involve chains of
navigation through several different classes creating complex
recursive closures. In our case we approximate this recursive
closure constraint by stating a maximum depth considered in
the pre-conditions. For instance, F1 and F2 constraints have
depth 1 and 2 (Appendix A): when F1 prevents the creation
of a cycle with one association, F2 prevents the creation of a
cycle with two associations. It is not possible to use the Alloy
transitive closure, such as the one of the Listing 1, because
an Association is a class linked to the class Class through its
two properties src and dest (Figure 2(a)). Another example is
the 3 input models still non transformable at the end of the
experiments. They require two new pre-conditions which are
evolutions of the constraint C2.

Pre-conditions discovery is done in our experiments assum-
ing a correct model transformation. In that case, every new
pre-condition rejects failed inputs as being out of the input
domain. When a new pre-condition completes the specification
by more precisely specifying the transformation behavior is
not yet considered. First, it implies considering the testing
and debugging of the transformation. Second, it is more
complicated to create a pre-condition in Alloy or OCL when it
should describe a transformation behavior depending on input
model properties. Both these cases will be considered in future
work.

9

This difficulty to create some pre-conditions can be circum-
vented by implementing the pre-condition into the transforma-
tion as a rule/operation. Using an imperative language such as
Kermeta allows it. Moreover, this limitation will complicate the
testing, preventing it’s automation, but the tester can consider
those constraints as soon as they are described textually even
if they are not implemented. For this reason, we believe that
our contribution is achieved as soon as the pre-condition is
described, and even further when we can implement it.

We considered a model transformation implemented in
Kermeta, nevertheless the approach is not language dependent.

VII. RELATED WORK

We have considered the testing of model transforma-
tions previously. After identifying its challenges [6], we have
listed model transformations’ main operations that should be
tested [25]. We successfully considered the partitioning of
its input domain when testing [15]. In [9] we present an
automated generation technique for models that conform only
to the Ecore diagram of a meta-model specification. Finally,
the tool PRAMANA consider the meta-model specification with
all its constraints [30]. We have already used PRAMANA to test
model transformation based on static analysis [26].

Accurately specifying the input domain of a model trans-
formation is the problem addressed in this paper. The object
constraint language (OCL) [12] is the standard to specify
model transformation pre-conditions to prevent it from pro-
cessing input models outside its true input domain. Model
transformation developers find it intuitive to transform specific
patterns in an input model to elements of the output model
such as by example [35] or demonstration [34]. In [36], the
authors go a step further and automate model transformation
by example using inductive logic programming. In [21] the
authors use a search-based technique to find transformations
(from a repository) for example input models. Model trans-
formation executability has also been explored in [11], where
the authors verify transformation executability by solving pre
and post conditions as a constraint program. Deciding on
correct transformation rules for an input model such that its
transformation is efficient and does not appear to loop is a
challenge addressed in [19]. The authors present an approach
based on dynamic scope discovery using a naive bayes clas-
sifier trained with rules mapped to input modeling patterns.
To the best of our knowledge, the literature on specifying
model transformations discusses little about identifying and
handling modeling patterns that may not have been foreseen by
a transformation developer. This set of input models is infinite
and its impact on the transformation is unknown.

In this article, we systematically explore the potentially
infinite input domain to specify a model transformation’s
contracts (pre-condition in particular). We generate models that
can break a model transformation’s execution by running into
an infinite loop or violating a post-condition. Model generation
is more general and complex than generating integers, floats,
strings, lists, or other standard data structures such as dealt
with in the Korat tool of Chandra et al. [8]. Korat is faster
than ALLOY in generating data structures such as binary trees,
lists, and heap arrays from the Java Collections Framework
but it does not consider the general case of models which

are arbitrarily constrained graphs of objects. The constraints
on models makes model generation a different problem than
generating test suites for context-free grammar-based soft-
ware [22] which do not contain domain-specific constraints.
Test models are complex graphs that must conform to an input
meta-model specification, a transformation pre-condition and
additional knowledge such as model fragments to possibly
reveal violation of a post-condition or run into an infinite
loop. Such a methodology using graph transformation rules is
presented in [13]. Generated models in both these approaches
do not satisfy the constraints on the meta-model. In [31] we
presented a method to generate models given partial models by
transforming the meta-model and partial model to a Constraint
Logic Programming (CLP). We solve the resulting CLP to give
model(s) that conform to the input domain. However, the
approach does not add new objects to the model. We assume
that the number and types of models in the partial model is
sufficient for obtaining complete models. The constraints in
this system are limited to first-order horn clause logic.

VIII. CONCLUSION

In this paper we presented an approach to discover new pre-
conditions completing a model transformation’s specification.
We use traceability from automatically generated test models
to identify such pre-conditions. The eight-step approach helps
identify incorrect input patterns in numerous and large input
models. Those patterns are transformed into pre-conditions
preventing input models to loop infinitely or to be transformed
into incorrect output models. The experimental results show
that this semi-automated approach produces pre-conditions
drastically reducing the number of incorrect input models. The
paper can be also interpreted as evidence of the fact that the
specification of a model transformation is quite complicated
to write completely, and that such a dynamic approach helps
improve its completeness.

The new pre-conditions are added to the specification of a
model transformation. This has helped improve specification
to help a tester find bugs in the implementation and improve
it. He/she can choose how the pre-conditions are used:

• He/she can choose to use the pre-condition to reduce the
input domain, rejecting input models not supposed to be
transformed.

• He/she can embed the pre-condition in the implemen-
tation with a behavior considering the input models’
incorrectness. For instance, it can raise an exception
which will be caught properly without crashing the
transformation (e.g. division by zero should raise an
ArithmeticException), or implement transformation rules
to process this incorrect part of an input model (e.g.
ignoring this part in the output model for instance).

In future, we plan to automate generation of concise and
effective ALLOY predicates directly from traces to feedback
the model generation process itself. For instance, in [32],
the authors have automated the completion of partial models
specified in a model editor by generating ALLOY predicates
from a partial model. Finally, we explore a general completion
criteria to discover all possible pre-conditions in a transforma-
tion given a set of trace links as input (Figure 8) in a feedback
loop of executing a transformation with every refinement of
its input domain.

10

REFERENCES

[1] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray.
On challenges of model transformation from uml to alloy. In Software
and Systems Modeling, volume 9, pages 69–86, December 2009.

[2] Vincent Aranega, Anne Etien, and Jean-Luc Dekeyser. Using an
alternative trace for qvt. In Workshop on Multi-Paradigm Modeling,
2010.

[3] Vincent Aranega, Jean-Marie Mottu, Anne Etien, Thomas Degueule,
Benoit Baudry, and Jean-Luc Dekeyser. Towards an automation of the
mutation analysis dedicated to model transformation. Software Testing,
Verification and Reliability, 25(5-7):653–683, 2015.

[4] Thomas Baar. The definition of transitive closure with ocl-limitations
and applications. In Proceedings of Fifth Andrei Ershov Interna-
tional Conference, Perspectives, of System Informatics, pages 358–365.
Springer, 2003.

[5] R. Bardohl, G. Taentzer, and A. Schurr M. Minas. Handbook of Graph
Grammars and Computing by Graph transformation, vII: Applications,
Languages and Tools. World Scientific, 1999.

[6] Benoit Baudry, Sudipto Ghosh, Franck Fleurey, Robert France, Yves
Le Traon, and Jean-Marie Mottu. Barriers to systematic model trans-
formation testing. Communications of the ACM, 53(6), 2010.

[7] Jean Bezivin, Bernhard Rumpe, Andy Schurr, and Laurence Tratt.
Model transformations in practice workshop, october 3rd 2005, part
of models 2005. In Proceedings of MoDELS, 2005.

[8] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat:
automated testing based on java predicates. In Proceedings of the
2002 ACM SIGSOFT international symposium on Software testing and
analysis, 2002.

[9] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. Le Traon. Metamodel-
based test generation for model transformations: an algorithm and a tool.
In Proceedings of ISSRE’06, Raleigh, NC, USA, 2006.

[10] Frank Budinsky. Eclipse Modeling Framework. The Eclipse Series.
Addison-Wesley, 2004.

[11] Jordi Cabot, Robert Clarisó, and Daniel Riera. Verifying UML/OCL
operation contracts. In Integrated Formal Methods, pages 40–55.
Springer, 2009.

[12] Eric Cariou, Raphaël Marvie, Lionel Seinturier, and Laurence Duchien.
OCL for the specification of model transformation contracts. In OCL
and Model Driven Engineering, UML 2004 Conference Workshop,
volume 12, pages 69–83, 2004.

[13] K. Ehrig, J.M. Küster, G. Taentzer, and J. Winkelmann. Generating in-
stance models from meta models. In FMOODS’06 (Formal Methods for
Open Object-Based Distributed Systems), pages 156 – 170., Bologna,
Italy, June 2006.

[14] Jean-Rémy Falleri, Marianne Huchard, and Clémentine Nebut. Towards
a traceability framework for model transformations in kermeta. In
ECMDA-TW Workshop, 2006.

[15] Franck Fleurey, Benoit Baudry, Pierre-Alain Muller, and Yves Le Traon.
Qualifying input test data for model transformations. Software &
Systems Modeling, 8(2):185–203, 2009.

[16] Jean-Marc Jézéquel and Bertrand Meyer. Design by contract: The
lessons of ariane. Computer, 30(1):129–130, 1997.

[17] Frédéric Jouault. Loosely coupled traceability for ATL. In ECMDA
Workshop on Traceability, Germany, 2005.

[18] Frédéric Jouault and Ivan Kurtev. On the Architectural Alignment
of ATL and QVT. In Proceedings of ACM Symposium on Applied
Computing (SAC 06), Dijon, FRA, April 2006.

[19] Māris Jukšs, Clark Verbrugge, Dániel Varró, and Hans Vangheluwe.
Dynamic scope discovery for model transformations. In Software
Language Engineering, pages 302–321. Springer, 2014.

[20] Kermeta. http://www.kermeta.org/.
[21] Marouane Kessentini, Houari Sahraoui, Mounir Boukadoum, and

Omar Ben Omar. Search-based model transformation by example.
Software & Systems Modeling, 11(2):209–226, 2012.

[22] Hennessy M and J.F. Power. An analysis of rule coverage as a criterion
in generating minimal test suites for grammar-based software. In Proc.
of the 20th IEEE/ACM ASE, NY, USA, 2005.

[23] Bertrand Meyer. Applying’design by contract’. Computer, 25(10):40–
51, 1992.

[24] Jean-Marie Mottu. ISSRE 2015 experiments material. http://pagesperso.
lina.univ-nantes.fr/∼mottu-jm/development-en.html, 2015.

[25] Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. Mutation anal-
ysis testing for model transformations. In Proceedings of ECMDA’06,
Bilbao, Spain, July 2006.

[26] Jean-Marie Mottu, Sagar Sen, Massimo Tisi, and Jordi Cabot. Static
analysis of model transformations for effective test generation. In IEEE
International Symposium on Software Reliability Engineering, ISSRE
2012, Dallas, USA, November 2012. IEEE.

[27] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving
executability into object-oriented meta-languages. In MODELS/UML,
volume 3713, pages 264–278, Montego Bay, Jamaica, October 2005.
Springer.

[28] OMG. Mof 2.0 core specification. Technical Report formal/06-01-01,
OMG, April 2006. OMG Available Specification.

[29] OMG. The Object Constraint Language Specification 2.0, OMG
Document: ad/03-01-07, 2007.

[30] Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. On combining multi-
formalism knowledge to select test models for model transformation
testing. In IEEE International Conference on Software Testing, Lille-
hammer, Norway, April 2008.

[31] Sagar Sen, Benoit Baudry, and Doina Precup. Partial model completion
in model driven engineering using constraint logic programming. In
International Conference on the Applications of Declarative Program-
ming, 2007.

[32] Sagar Sen, Benoit Baudry, and Hans Vangheluwe. Towards domain-
specific model editors with automatic model completion. Simulation,
86(2):109–126, 2010.

[33] Ilya Shlyakhter. Generating effective symmetry-breaking predicates for
search problems. Discrete Applied Mathematics, 155(12):1539–1548,
2007.

[34] Yu Sun, Jules White, and Jeff Gray. Model transformation by demon-
stration. In Model Driven Engineering Languages and Systems, pages
712–726. Springer, 2009.

[35] Dániel Varró. Model transformation by example. In Model Driven
Engineering Languages and Systems, pages 410–424. Springer, 2006.

[36] Dániel Varró and Zoltán Balogh. Automating model transformation
by example using inductive logic programming. In Proceedings of the
2007 ACM symposium on Applied computing, pages 978–984. ACM,
2007.

APPENDIX

All of the experiments material is available online [24].
Here we list 2 new Alloy Preconditions F1 and F2, used
to illustrate the Section VI. We also illustrate 2 iterations
among the 12 ones that we processed producing 12 new pre-
conditions.

A. Pre-conditions F1 and F2 illustrating transitive closure of
different depths

/ / F1 . No a s s o c i a t i o n loop between one non−
p e r s i s t e n t c l a s s

f a c t n o 1 C y c l e N o n P e r s i s t e n t {
a l l a : A s s o c i a t i o n | (a . d e s t == a . s r c) => a .

d e s t . i s p e r s i s t e n t = True
}

/ / F2 . No a s s o c i a t i o n loop between 2 non−
p e r s i s t e n t c l a s s e s

f a c t n o 2 C y c l e N o n P e r s i s t e n t {
a l l a1 : A s s o c i a t i o n , a2 : A s s o c i a t i o n | (a1 . d e s t

== a2 . s r c and a2 . d e s t ==a1 . s r c) => a1 . s r c .
i s p e r s i s t e n t = True or a2 . s r c . i s p e r s i s t e n t
=True

}

11

http://pagesperso.lina.univ-nantes.fr/~mottu-jm/development-en.html
http://pagesperso.lina.univ-nantes.fr/~mottu-jm/development-en.html

B. Fourth Iteration: creating pre-condition G1

1) Identified non-transformable input models: Here is part
of the list of the non-transformable models which have been
identified during the fourth iteration.

i. model 7 created with the 4th predicate, using AllRanges
strategy (mfAllRanges4), in the set 1

ii. model 4 created with the 4th predicate, using AllRanges
strategy (mfAllRanges4), in the set 4

iii. model 9 created with the 3rd predicate, using AllRanges
strategy (mfAllRanges3), in the set 6

iv. etc.

2) Model of the trace: We used the trace illustrated Fig-
ure 12 to identify the non-transformable excerpt from the
model iii. The bottom part of the model is the LocalTrace [2].
It lists traceabilityLinks referring the sourceElements which
are transformed. We do not illustrate the transformation rules
(not used in this work) and the output model element since the
transformation doesn’t return any. The transformation loops on
a series of two links (two on the left, then two on the right,
etc.). We used them identifying the non-transformable excerpt
of the Figure 4, p.5.

:Class

destsrc

type

attrs

name = 7
is_persistent = False

:Class

name = 12
is_persistent = False

:Association

name = 15

:Attribute

name = -16
is_primary = False

:Link :Link :Link :Link

:LocalTrace

...links

srcElementssrcElementssrcElementssrcElements

Fig. 12. Part of the model of the trace used to identify non-transformable
input excerpt from a non-transformable input model

3) Identified non-transformable input excerpt: Illustrated
Figure 4, p.5.

4) Refined incorrect input pattern: Illustrated Figure 9, p.8.

5) New pre-condition G1 preventing non-transformable in-
put models: The pre-condition G1 specifies that it should be
no loop type - association between 2 non-persistent classes. It
is listed in Section IV-C2

C. Fifth Iteration: creating pre-condition D1

1) Identified incorrect output models: During the fifth
iteration, we identified a set of incorrect output models which
have been generated from incorrect input models:

I. model number 4 created with the Predicate 3, using
AllPartitions strategy (mfAllPartitions3), in the set 1

II. model number 2 created with the Predicate 3, using
AllPartitions strategy (mfAllPartitions3), in the set 1

III. model number 4 created with the Predicate 6, using
AllRanges strategy (mfAllRanges6), in the set 6

IV. etc.

2) Model of the trace: We used the trace illustrated Fig-
ure 13 to identify the non-transformable input excerpt from
the incorrect output model I.

:Class

parent

type

attrsname = 12

:Class

name = -4
is_persistent = True

:Attribute

name = -15

:Attribute

name = -15

cols

:Table

name = -4

:Column

name = -15
type = -14

cols

:Column

name = -15
type = -14

:PrimitiveDa
taType

name = -14

type

attrs

:Link :Link :Link

:LocalTrace

...links

srcElementssrcElementssrcElements

destElements

destElements destElements

Fig. 13. Part of the model of the trace used to identify the incorrect input
excerpt from an incorrect output model

3) Identified incorrect input excerpt producing incorrect
output model: Illustrated Figure 6, p.6.

4) Refined incorrect input pattern: Illustrated Figure 10,
p.8.

5) New pre-condition D1 preventing generating incorrect
output models: Listed in in Alloy and in OCL:

/ / D1 . A c l a s s A which i n h e r i t s from a
p e r s i s t e n t c l a s s B can ’ t have an a t t r i b u t e
wi th t h e same name and t y p e t h a t one
a t t r i b u t e o f t h a t p e r s i s t e n t c l a s s B

f a c t c l a s s I n h e r i t s O u t g o i n g N o t S a m e N a m e A t t r i b
{

a l l A: C l a s s | a l l B :A . ˆ p a r e n t | B .
i s p e r s i s t e n t == True i m p l i e s (no a1 : A.
a t t r s , a2 : B . a t t r s | (a1 . name=a2 . name and
a1 . t y p e =a2 . t y p e))

}

c o n t e x t C l a s s
s e l f . a l l P a r e n t s () −> i n c l u d e s (c1 | c1 .

i s p e r s i s t e n t) i m p l i e s s e l f . a t t r s −> f o r A l l
(a1 | c1 . a t t r s −> s e l e c t (a2 | a1 . name = a2 .
name) −> i sEmpty ())

12

	Introduction
	Case Study and Motivation
	Transformation Case Study
	Motivation

	Foundations
	Pramana: A Tool for Automatic Model Generation
	Test Selection Strategies

	Approach
	Detecting incorrect input models
	Non-transformable input model (Step 3)
	Transformed into an incorrect output model (Step 4)

	Identifying incorrect input excerpt
	Creating Trace (Step 2)
	Identifying non-executable input excerpt (Step 5)
	Identifying out of the scope input excerpt (Step 6)

	Creating new pre-condition
	Generalizing input excerpts identifying incorrect input pattern (Step 7)
	Writing new pre-condition (step 8)

	Evaluation
	Experiments set-up
	Discovered Pre-conditions
	Improvements

	Threats to validity
	Related Work
	Conclusion
	References
	Appendix
	Pre-conditions F1 and F2 illustrating transitive closure of different depths
	Fourth Iteration: creating pre-condition G1
	Identified non-transformable input models
	Model of the trace
	Identified non-transformable input excerpt
	Refined incorrect input pattern
	New pre-condition G1 preventing non-transformable input models

	Fifth Iteration: creating pre-condition D1
	Identified incorrect output models
	Model of the trace
	Identified incorrect input excerpt producing incorrect output model
	Refined incorrect input pattern
	New pre-condition D1 preventing generating incorrect output models

