
HAL Id: hal-01228709
https://hal.science/hal-01228709

Submitted on 13 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing the exact worst-case End-to-end delays in a
Spacewire network using Timed Automata

Jérôme Ermont, Christian Fraboul

To cite this version:
Jérôme Ermont, Christian Fraboul. Computing the exact worst-case End-to-end delays in a Spacewire
network using Timed Automata. 19th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2013), Apr 2013, Philadelphie, PA, United States. pp. 5-8. �hal-01228709�

https://hal.science/hal-01228709
https://hal.archives-ouvertes.fr


  
   

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 12637 

 
The contribution was presented at RTAS 2013 : 

http://www.cister.isep.ipp.pt/rtas2013/wip 
 

To cite this version : Ermont, Jérôme and Fraboul, Christian Computing the exact 
worst-case End-to-end delays in a Spacewire network using Timed Automata. (2013) 
In: 19th IEEE Real-Time and Embedded Technology and Applications Symposium 
(RTAS 2013), 9 April 2013 - 11 April 2013 (Philadelphie, PA, United States). 

Any correspondance concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



Computing the exact worst-case End-to-end delays

in a Spacewire network using Timed Automata

Jérôme Ermont, Christian Fraboul

Université de Toulouse - IRIT - INPT/ENSEEIHT

{jerome.ermont, christian.fraboul}@enseeiht.fr

Abstract—Spacewire is a real-time communication network
for use onboard satellites. It has been designed to transmit
both payload and control/command data. To guarantee that
communications respect the real-time constraints, designers use
tools to compute the worst-case end-to-end delays. Among these
tools, recursive flow analysis and Network Calculus approaches
have been studied. This paper proposes to use the model-checking
approach based on timed automata to compute the exact worst-
case end-to-end delays and two case studies are presented.

I. INTRODUCTION

SpaceWire [1] is a communication network for use onboard

satellites which has been developed by the European Space

Agency and the University of Dundee. It provides high-speed

data exchanges, from 2Mbps to 200Mbps, between sensors,

memories, processing units and downlink telemetry.

One goal of SpaceWire is to carry both the payload and

the command/control traffic instead of using dedicated buses,

as MIL-STD-1553 buses, for both of them. These two char-

acteristics need different requirements: low throughput and

very strict time constraints for command/control traffic and

a sustained high bandwidth for payload. Using point-to-point

SpaceWire links, both characteristics are easily satisfied. But

SpaceWire is based on a part of the IEEE-1355 standard [2]

and is defined to connect several equipments. So SpaceWire

is a packet switching network.

Due to the space requirements (an important one is the

radiation tolerance), routers have to store a minimal amount of

data. To ensure this ability, SpaceWire uses wormhole routing:

packets are not stored completely but can be forwarded as

soon as the output port is free. If the output port is not

free, the packet is blocked. In that case, the packet cannot be

transferred from the upstream router blocking other packets.

The consequence is a variation of the end-to-end (ETE) delays

for the packets. A method to verify that the time constraints

are guaranteed must be defined.

A similar problem arises in the context of avionics where an

upper bound has to be computed in respect to the certification.

For this, different solutions exist. Two of them are based

on Network Calculus ([3], [4]) and Trajectories ([5], [6]).

However, the obtained upper bounds are pessimistic due to

the assumptions made by these two approaches.

Other works have been devoted to compute the exact

ETE delays of an AFDX network. Existing model checking

approaches ([4], [7]) implement an exhaustive analysis of all

the possible scenarios. However, it cannot be applied to AFDX

Blocked

R1 R2

R3

A1

A2 A3 A4

A6

A7 A8 A9

A5

Fig. 1. Wormhole routing

configurations with more than 10 flows (a real one is more

than 1000 flows) because of the well-known combinatorial

explosion problem. In [8], the authors extend the study by

considering the scheduling of the flows in the network. This

drastically reduces the number of considered scenarios.

As said before, in SpaceWire, the command/control mes-

sages have to be delivered before their deadlines. In [9], the

authors propose to compute an upper bound of the worst case

ETE delay of each message. Two methods have been studied:

one based on Network Calculus and one based on a recursive

flow analysis.

Because the size of a SpaceWire architecture is limited, this

paper proposes to compute the exact worst case ETE delays

using the timed automata theory.

The wormhole routing mechanism is reviewed in Section

II. Then, we give the timed automata model of the SpaceWire

network in Section III. Two case studies are described in

Section IV.

II. WORMHOLE ROUTING

Memory consumption is an important challenge of space

systems because radiation tolerant memories are very expen-

sive. Furthermore, classical routing policies, such as store and

forward policy, need to buffer data and cannot be used. In

a wormhole routing system, packets are not totally stored in

buffers but transmitted, item by item, as soon as the output

port is free.

To explain the behavior, let us consider the network ar-

chitecture in Figure 1. When receiving the first character of a

packet sent by the application A1, the router R1 determines the

appropriate output port. If the output port is free, the packet is



immediately transmitted to the router R3 and the output port

is marked as occupied. The router R3 receives the packet,

transmits it to the destination A7 marking the output port as

occupied.

Suppose now that the application A4 sends a packet to the

application A7 too. The output port of the router R2 is free,

the packet is sent to the router R3, marking the output port

the router R2 as occupied. The output port of the router R3 is

occupied. The packet is then blocked in a small input buffer,

64 bytes in Spacewire, of R3.

And, suppose that the application A5 sends a packet to the

application A9. The packet is blocked in the router R2, waiting

to the output port occupied by the packet sent by A4.

When the packet from A1 is totally received by A7, the

output port of R3 becomes free and the packet from A4 is

transmitted to A7. When the output port of R2 becomes free,

the packet from A5 will be transmitted.

If two packets are waiting for the same output port, two-

level priority queueing is used to reduce the blocking duration

of urgent packets. For packets with the same priority level, a

simple round-robin procedure is executed to determine which

one has to be transmitted as soon as the output port becomes

free. This mechanism allows a fair access to the output port

but does not guarantee a bounded delay for the transmission

of the packets.

In the next section, these characteristics will be modeled in

the timed automata theory.

III. MODELING USING TIMED AUTOMATA

This section proposes a review of the timed automata theory.

Then, the modeling of the Spacewire architecture is given.

Finally, the method used to compute the worst-case ETE delay

is explained.

A. Timed automata

Timed automata have been first proposed by Alur and Dill

[10] in order to describe systems behavior with time.

A timed automaton is a finite automaton with a set of clocks,

i.e. real and positive variables increasing uniformly with time.

Transitions labels can be a guard, i.e. a condition on clock

values, actions, updates, which assign new value to clocks.

The composition of timed automata is obtained by a syn-

chronous product. Each action a executed by a first timed

automaton corresponds to an action with the same name a

executed in parallel by a second timed automaton. In other

words, a transition which executes the action a can be fired

only if another transition labelled a is possible. The two

transitions are performed simultaneously. Thus communication

uses the rendez-vous mechanism.

Performing transitions requires no time. Conversely, time

elapses in nodes. Each node is labelled by an invariant,

that is a boolean condition on clocks. The node occupation

is dependent of this invariant: the node is occupied if the

invariant is true.

Several extensions of timed automata have been proposed.

One of these extensions is timed automata with shared integer

Ask_to_forward

Forward_granted

At_least_one_message

Transmission

t<=delay[idRouter_current][idPort]*L[idMes]

Packet_blocked

No_message

idApp : t_idApp
ask_transmit[idApp][idPort][idRouter_current]?
push(idApp), nbAccess++

ask_transmit[idMes][tableRoute[idMes][idRouter_next]][idRouter_next]!

ok_to_transmit[idMes][idPort][idRouter_current]!
t=0

ok_to_transmit[idMes][tableRoute[idMes][idRouter_next]][idRouter_next]?

nbAccess>=1
idMes=chosen_mess(), t=0

idApp : t_idApp
ask_transmit[idApp][idPort][idRouter_current]?

push(idApp), nbAccess++

idApp : t_idApp
ask_transmit[idApp][idPort][idRouter_current]?

push(idApp), nbAccess++

nbAccess>1 && t==delay[idRouter_current][idPort]*L[idMes]
pop(), nbAccess--

nbAccess==1 && t==delay[idRouter_current][idPort]*L[idMes]
t=0,pop(), nbAccess--

idApp : t_idApp
ask_transmit[idApp][idPort][idRouter_current]?

push(idApp), nbAccess++

Fig. 2. Timed automaton of an outport of a router

variables. The principle consists in defining a set of integer

variables which are shared by different timed automata. Con-

sequently, the values of these variables can be consulted and

updated by the different timed automata [11].

A system modeled with timed automata can be verified

using a reachability analysis which is performed by model-

checking. It consists in encoding each property in terms of

the reachability of a given node of one of the automata. So, a

property is verified by the reachability of the associated node if

and only if this node is reachable from an initial configuration.

The approach that is considered in this paper is based

on timed automata with shared integer variables which are

represented by nodes of a timed automaton. The modeling of a

Spacewire architecture with timed automata is now presented.

It is based on Uppaal [11].

B. Modeling a Spacewire architecture

A Spacewire architecture is composed of periodic functions

and routers. The timed automata system is then composed of:

• one automaton per periodic function, which generates

periodically a packet;

• one automaton per router output port, which models the

transmission of packets on the output link, considering

the blocking mechanism, the capacity of the link and the

length of the message.

Figure 2 is the timed automata model of an output port.

When a packet is received by the output port, it is pushed in

an input queue corresponding to its priority level. Then, the

modeled behavior is as follow:

1) when the output port is free, a packet is chosen consid-

ering the policy as explained in Section II. The output

port of the router is then blocked for other packets;

2) the system immediately asks to transmit the packet to

the next router. This simulates the transmission of the

head of the packet to the next router;

3) while the signal ok to transmit is not received by the

automaton, the packet is blocked. In the next router,

three cases are possible:

• the output port is free and the considered packet is

chosen, the router sends the signal ok to transmit

and the packet is released;



bound_exceeded

transmitting

waiting_transmission

end_transmission[idApp]? start_transmission[idApp]?

t>bound[idApp]

t<=bound[idApp]

end_transmission[idApp]?
start_transmission[idApp]?
t=0

Fig. 3. Test automaton to compute the ETE transmission delay

• the output port becomes free and another packet is

chosen, the considered packet is still blocked in all

the upstream routers.

• the output port is waiting for the signal

ok to transmit from a downstream router. So,

the packet is blocked in the router and all its

upstream routers.

This behavior is generalized for all the routers and

simulates the progress of the packet item by item in

the network;

4) finally, when receiving the signal, the path to the destina-

tion is free and the packet is transmitted. The automaton

waits for a transmission duration corresponding to the

length of the packet (L[idMes]) times the capacity of

the output link (delay[idRouter][idPort]).

The global model is obtained by combining timed automata

modeling periodic functions, which are not presented here, and

timed automata representing output ports of the routers.

Finally, the worst-case ETE transmission delays can be

computed using the model-checking approach.

C. Computing the worst-case ETE transmission delay

The worst-case ETE delay is obtained by model checking.

The method consists in verifying that all the packets are

received before a bounded delay. The test automata method

is used to help the verification process. It consists in verifying

if the rejected node of this automaton is reachable or not.

When sending a packet, applications send immediately

a signal start transmission, which indicates the beginning

of the transmission. The test automaton of the worst-case

ETE transmission delay is depicted in Figure 3. The sig-

nal end transmission needs to be received before a delay

bound started when the test automaton receives the signal

start transmission. If not, the rejected node bound exceeded

is reached and the property is false.

IV. CASE STUDIES

In this section, we will present two case-studies.

The first architecture shows the impact of crossed flows and

slow links while using recursive flow analysis and Network

Calculus (NC) in [9]. We can compare the results obtained

by these methods with the exact worst-case ETE transmission

delays obtained by model-checking.

S12

S34

R

D13

D24

L1

L2

L3

L4

f2

f3

f1

f4

Fig. 4. A first SpaceWire architecture

Flow Scenario 1 Scenario 2

L4 (Mbps) 50 0.2

Size Period Size Period

f1 4000 20 4000 20
f2 500 8 20 32
f3 5000 20 5000 20
f4 400 8 20 32

TABLE I
DIFFERENT SCENARIOS OF THE SECOND CASE STUDY

The second architecture is close to a real industrial

Spacewire network which can be used in an observation

satellite and shows the limitations of the method.

A. A first architecture: comparison of model-checking with

recursive flow analysis and Network Calculus

In Figure 4, the network architecture is composed of 4

applications and a router [9]. The bound of the worst-case

ETE delays is computed considering the crossed paths and

by varying the capacity of the link L4. Table I shows the

configuration of different studied scenarios and Table II gives

the computed ETE delays in ms of the different methods.

In the first scenario, following the remarks in [9], the

recursive flow analysis gives the optimal bound but not the

NC. And in the second scenario, the capacity of the link L4

is set to 0.2 Mbps and f2 and f4 sends small sized packets. In

this situation, NC gives better results than the recursive flow

analysis.

For the two scenarios, model-checking gives the exact

worst-case ETE transmission delays. They are close to those

computed by the recursive analysis in the first scenario.

The difference is due to the numeric approximations of the

methods. The pessimism of recursive flow analysis and NC

can be determined for the second scenario.

The verification of the worst-case ETE delays of each flow

fi takes about 2 minutes on a Macbook with 2.2 GHz Intel

Core i7 processor having 8 GB RAM.

B. A second architecture: an industrial-close architecture

A second case study is given in Figure 5. It is composed

of 7 sending applications and 3 routers. This is close to

an industrial architecture such as the one shown in [9] (9

application units and a processor module which send data and

a memory unit and 2 telemetry units which receive data).

In the system of Figure 5, every application Ai sends a

packet fi to the application AD (destination). The capacity of

the links is constant and equal to 50 Mbps. The configuration

and the computed worst-case ETE delays in ms are given in

table III.



Scenario 1 Scenario 2

Rec. Analysis f1 1.99 10
f2 1.99 16.2
f3 1.99 10
f4 1.99 16.2

NC f1 2.08 3.8
f2 2.26 4.6
f3 2.06 3.8
f4 2.06 3.8

MC f1 1.98 2.8
f2 1.98 3.8
f3 1.98 2.8
f4 1.98 3.8

TABLE II
RESULTS FOR THE DIFFERENT SCENARIOS

A0

A1

A2

A3

A4

A5

A6

R1

R2

R3 AD

f0

f1

f2

f3

f4

f5

f6

Fig. 5. An industrial-close architecture

The main goal of this architecture is to show the impact of

the number of transmitting functions in the system.

The evaluation of the worst-case ETE transmission delays

takes about 10 min to be computed on a Macbook with 2.2

GHz Intel Core i7 processor having 8 GB RAM. However, by

adding only one more application, the evaluation cannot be

performed.

For this architecture, flows fi arrive synchronously at the

output port of routers R1 and R2. Model-checking performs

an exhaustive analysis of the arrival orders. The number of

scheduled transmissions is then too huge to be computed and

leads to the well-known combinatorial explosion problem.

But, the timed automata modeling considered here does not

take into account the real scheduling of the packets according

to the periods of the functions. By doing this, the number of

possible scenarios should be reduced and a bigger architecture

could be evaluated.

Application A0 A1 A2 A3 A4 A5 A6

Period 20 20 20 20 20 20 20

Flow f0 f1 f2 f3 f4 f5 f6
Length (bytes) 4000 200 5000 200 4000 5000 4000

WC ETE delay 4.44 4.44 4.48 4.48 3.86 4.48 3.86

TABLE III
CONFIGURATION OF AN INDUSTRIAL-CLOSE ARCHITECTURE AND

COMPUTED WORST-CASE ETE DELAYS

V. CONCLUSION

The paper proposes a model-checking approach to compute

the exact worst-case ETE delays of Spacewire periodic flows.

Spacewire standard uses wormhole routing to share commu-

nications on the network. This mechanism has been modeled

using timed automata theory.

The paper proposes then two first case studies to show the

feasibility of the computation of the worst-case ETE delays

on a Spacewire architecture.

However, even if a Spacewire network architecture is quite

small, the well-known combinatorial problem arises: a system

with more than 7 sending applications and 3 routers cannot

be analyzed due to:

• the scale of time units: few milliseconds for the periods

of applications and few nanoseconds for the transmission

delays;

• the real number of messages in the network: several

packets of a same application can be present in the

network due to the period value.

Thus, the number of states considered by the model-

checking approach increases with the different possible val-

uations of clocks and the different possible packet scheduling.

A possible solution to reduce this number could be the one

used in [8]. The approach consists in considering only the

possible scenarios leading to the worst-case ETE delays. This

approach allows to verify AFDX networks with up to 20 flows

and should be applied to an industrial Spacewire architecture

such as the one presented in [9].

REFERENCES

[1] S. Parkes and P. Armbruster, “SpaceWire: a spacecraft onboard network
for real-time communications,” in Real Time Conference, 2005. 14th

IEEE-NPSS, june 2005, pp. 6 –10.
[2] “IEEE Standard for Heterogeneous Interconnect (HIC) (Low-Cost, Low-

Latency Scalable Serial Interconnect for Parallel System Construction),”
IEEE Std 1355-1995, p. i, 1996.

[3] J.-Y. Le Boudec and P. Thiran, Network Calculus, ser. Lecture Notes in
Computer Science (LNCS). Springer Verlag, 2001.

[4] H. Charara, J.-L. Scharbarg, J. Ermont, and C. Fraboul, “Methods for
bounding end-to-end delays on an AFDX network,” Real-Time Systems,

Euromicro Conference on, vol. 0, pp. 193–202, 2006.
[5] S. Martin and P. Minet, “Schedulability analysis of flows scheduled

with FIFO: application to the expedited forwarding class,” Parallel and

Distributed Processing Symposium, International, vol. 0, p. 167, 2006.
[6] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Improving the Worst-Case

Delay Analysis of an AFDX Network Using an Optimized Trajectory
Approach,” Industrial Informatics, IEEE Transactions on, vol. 6, no. 4,
pp. 521 –533, nov. 2010.

[7] M. Lauer, J. Ermont, C. Pagetti, and F. Boniol, “Analyzing End-to-End
Functional Delays on an IMA Platform,” in ISoLA, ser. LNCS, vol. 6415.
Springer, 2010, pp. 243–257.

[8] M. Adnan, J. Scharbarg, J. Ermont, and C. Fraboul, “An improved timed
automata approach for computing exact worst-case delays of AFDX
sporadic flows,” in Emerging Technologies and Factory Automation

(ETFA), 2012 IEEE 17th Conference on. IEEE, September 2012.
[9] T. Ferrandiz, F. Frances, and C. Fraboul, “A Sensitivity Analysis of Two

Worst-Case Delay Computation Methods for SpaceWire Networks,” in
Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on, july
2012.

[10] R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theoretical

Computer Science, vol. 126, pp. 183–235, 1994.
[11] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nutshell,”

International Journal on Software Tools for Technology Transfer, vol. 1,
no. 1–2, pp. 134–152, 1997.




