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Abstract

The study is devoted to the monitoring of a geothermal reservoir by hybrid
gravimetry combining different types of instruments (permanent superconducting
gravimeter, absolute ballistic gravimeter, and micro-gravimeters) and different
techniques of measurements (both time-discrete and recording data collection).
Using a micro-gravimetric repetition network around a reference station, which is
regularly measured, leads to the knowledge of the time and space changes in surface
gravity. Such changes can be linked to the natural or anthropic activities of the reservoir.
A feasibility study using this methodology is applied to two geothermal sites in the
Alsace region (France) of the Rhine graben. We show the results in terms of gravity
double differences from weekly repetitions of a network of 11 stations around the
geothermal reservoir of Soultz-sous-Forêts, separated into 5 loops during July–August
2013 and 2014 as well as preliminary results from 2 stations near Rittershoffen (ECOGI).
We point out the importance of a precise leveling of the gravity points for the control of
the vertical deformation. A first modeling of surface gravity changes induced by realistic
geothermal density perturbations (Newtonian attraction) is computed in the frame of the
existing geological model and leads to gravity changes below the μGal level being
hence undetectable. However, and for the same case, borehole gravity modeling showed
a significant anomaly with depth that can be used as a complementary monitoring
method. We show that in the limit of our uncertainties (SD ~ 5 μGal), we do not detect
any significant gravity change on the geothermal site of Soultz in agreement with the
fact that there was indeed no geothermal activity during our analysis period. On the
contrary, the measurements near Rittershoffen show a signal above the noise level which
correlates in time with a production test but cannot be explained in terms of Newtonian
attraction effects according to our basic numerical simulation.
Background
Gravimetry is generally used as a prospecting method for underground structures at

various scales (volcanoes, geothermal, gas and oil reservoirs, mineral resources, stratig-

raphy) and contributes to the static imagery in addition to other methods like

magneto-tellurics (e.g., Volpi et al. 2003, Newman et al. 2008; Geiermann and Schill

2010) or seismics (Concha et al. 2010; Sanjuan et al. 2010). Time-lapse gravimetry can
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also be a monitoring tool of any underground or surface mass redistribution and has

many applications in volcanology (magmatic chamber evolution), hydrology (water

storage changes in the critical zone), and geothermics.

Gravity has the potential to obtain valuable information on water storage changes

and water flows using non-destructive observations of a geothermal reservoir with

spatial resolution ranging from meter to kilometer.

Moreover, new instruments are available, like the portable superconducting gravim-

eter iGrav (Warburton et al. 2010) or will be available soon, like the cold atom absolute

gravimeter (Bidel et al. 2013; Wu et al. 2014; Merlet et al. 2010) that will even improve

in the near future this potentiality.

Several studies have introduced the concept of hybrid (resp. super-hybrid) grav-

imetry (Okubo et al. 2002; Sugihara and Ishido 2008; Hector et al. 2015) that is

the optimal combination of two (resp. three) types of gravimeters (see Fig. 1 and

Table 1):

– a permanent gravimeter which allows a precise continuous monitoring of the

time-varying gravity at a reference station located on the investigated site; in order

to be able to retrieve the long-term behavior, one uses generally a superconducting

gravimeter (SG) rather than a spring meter because of its very small instrumental drift

(a few μGal/year) and better precision (0.1–0.01 μGal) (Hinderer et al. 2007);

– a ballistic absolute gravimeter (AG) that allows to control the long-term gravity

changes by repeated parallel recording over short periods of time with the SG

(Sugihara and Ishido 2008; Jacob et al. 2008), as well as to check the calibration

stability of the SG;

– a spring relative gravimeter (RG) to repeat observations on a micro-gravimetric

network around the reference station by successive loops in order to gain more

insight into the space-time changes in the investigated region (Naujoks et al. 2008;

Gehman et al. 2009; Jacob et al. 2010; Hare et al. 2008; Davis et al. 2008).

In this feasibility study, we do not have any SG measuring continuously on site but

rather use a link to a SG in operation in the Strasbourg Gravimetric Observatory

40 km away. This impacts clearly the absolute accuracy of our local network even if we

performed two AG measurements on our reference station GPK1 showing no gravity
Fig. 1 The concept of hybrid gravimetry to investigate an underground reservoir (a) with the
combination of superconducting gravimeter (SG) (b), absolute gravimeter AG (c), and relative spring
meter RG (d) (adapted from Sugihara et al. 2013)



Table 1 Characteristics of the different gravimeters involved in hybrid gravimetry

Gravimeter Precision Stability Use

Superconducting (SG) <0.1–0.01 μGal Small drift (1–2 μGal/year) High-precision continuous monitoring

Absolute (AG) 1–2 μGal No drift Absolute reference + long-term evolution

Relative spring (RG) 5 μGal Large drift (tens or hundreds
of μGal/day)

Prospection + repetition network
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variation over a period of about 6 months (see “Absolute gravity measurements at the

reference site GPK1” section).

Hybrid gravimetry is often coupled to other types of measurements like precise po-

sitioning, hydrometeorology (rain), or hydrology (piezometry, soil moisture) and

brings new insights in several research topics. Progress has been made in hydrogravi-

metry in the study of water storage changes using mainly SG and RG measurements

(Longuevergne et al. 2009; Creutzfeldt et al. 2010; Naujoks et al. 2010; Pfeffer et al.

2011; Hinderer et al. 2012; Hector et al. 2015). Similarly, new results were obtained

from hybrid gravimetry in volcanology using mostly AG and RG measurements

(Greco et al. 2012; Hautmann et al. 2010; Bataglia et al. 2008) that allow to determine

also absolute changes in the local network which were unknown in previous studies based

only on RG observations (e.g., Jousset et al. 2000). Finally, many studies in geothermics

are now available using the concept of hybrid or super-hybrid gravimetry (Nishijima et al.

2000; Oka et al. 2010; Sofyan et al. 2010; Sugihara and Ishido 2008; Takemura et al. 2000).

There are several causes leading to density changes of geothermal origin like pore

space opening/closing in hydrofracturing or hydroshearing, fluid infiltration, heating/

cooling, as well as mineralization (De Vivo et al. 1989; Schultz et al. 2012) but the main

causes for gravity changes are due to fluid injection and/or withdrawal (Allis et al.

2001; Hunt and Bowyer 2007; Hunt and Graham 2009).

Hence, it is expected that surface gravity observations can be sensitive to these

changes provided that the data are corrected for body and ocean tides, air pressure ef-

fect and hydrogravimetric effects due to aquifers, and water content in the vadose zone

(cf. Fig. 2).

In Fig. 2, the conical shape of influence (footprint) is due to the fact that the lateral

extension of a layer has to increase with depth to produce the same surface gravity ef-

fect (Hector et al. 2014).

The density (and mass) changes of geothermal origin will then alter surface gravity by

direct Newtonian attraction but also possibly indirectly via the vertical surface displace-

ment generated by poro-elasticity. It is therefore of primary importance to always com-

bining gravity observations with precise geodetic measurements (leveling, GPS, and

SAR); in principle, the best option is to co-locate both gravity and leveling stations,

simultaneously measured for the control of the vertical deformation and the study of

the time variable vertical gravity gradient which is highly sensitive to the sub-surface

mass redistribution (Hunt et al. 2002).

Time-lapse gravimetry helps to monitor the behavior of a geothermal reservoir, in its

natural state with no anthropic perturbation but mostly when transient effects due to

stimulation by injection/withdrawal occur. One key point is the long-term evolution of

the reservoir (Sofyan et al. 2011).



Fig. 2 Schematics of surface gravity changes of geothermal origin. A gravimeter located at the Earth’s
surface will be sensitive to effects coming from the above atmosphere and from different underground
contributors (vadose zone, aquifer, geothermal reservoir)
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In this paper, we present the first monitoring results obtained for the Soultz and

Rittershoffen (NE Alsace, France) geothermal sites. The methodology, the data pro-

cessing, and forward modeling as well as the results obtained between July 2013 and

August 2014 are mainly presented and discussed. The PyGrav code we developed to

optimize the data processing and to reduce the data uncertainties is also presented.

Methods
In this section, we first introduce the micro-gravimetric network that was set up on the

Soultz and Rittershoffen geothermal sites as well as the measurement protocol. We

present then the absolute gravity observations, which were done with FG5#206 AG at the

reference site of the network, as well as the continuous series at the same site obtained

from a Scintrex CG5 gravimeter during a 34-day time span. We introduce also the precise

geodetic positioning we use to control the vertical deformation. We finally discuss the ap-

proach we follow to model the gravity effects of any geothermal reservoir.

Micro-gravimetric network

The location of the stations used in our gravimetric hybrid approach is schematically

shown on Fig. 3. STJ9 is the site of the Strasbourg Gravimetric Observatory, north of

Strasbourg city, where a superconducting gravimeter (SG GWR C026) belonging to the



Fig. 3 The three main locations of our hybrid gravity approach. STJ9 is the Strasbourg Gravimetry
Observatory where both a superconducting gravimeter (GWR C026) and an absolute gravimeter (Micro-g
Solutions FG5#206) are available. There are 11 micro-gravity stations in the Soultz network (GEIE) and 2
stations close to Rittershoffen (ECOGI)
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GGP (Global Geodynamics Project) is continuously recording since 1996; in this sta-

tion, there are also regular absolute gravity observations done in parallel with an abso-

lute gravimeter (AG) FG5#206. In the lack of a SG being present on site, we will use

this station to tie our network.

The Soultz geothermal site is the first EGS (Enhanced Geothermal System) demon-

stration site producing electricity in France. Several wells from 2200- to 5000-m depth

have been drilled, stimulated, and circulated within deep naturally fractured granite

(Genter et al. 2010). The injection well (GPK1) was drilled to a depth of 3600 m and

production well (GPK2) even deeper (5000 m) allowing initially two-well hydraulic cir-

culation. Later on, other injection wells were added to form a multi-well system to monitor,

measure, and manage the geothermal system during exploitation (Genter et al. 2013).

The network around the Soultz-sous-Forêts geothermal site is composed of 11 sta-

tions where the reference station is GPK1 (close to the injection borehole of the same

name) (see Fig. 4).

The 11 stations were selected around the geothermal site to surround the injection

and extraction boreholes (GPK1 and GPK2) within 4–5 km range; only stable locations

like forecourts of churches or concrete paving stones are kept. These 11 stations are

measured with a Scintrex CG5 gravimeter in 5 different loops starting and ending at

the reference station GPK1 and having 4 or 5 stations each one with the constraint of 1

or 2 stations common to two loops (cf. Table 2). In this way, only 3 stations (excluding

the base station) are repeated in different loops which give only 30 % of redundancy of

the (Soultz) network. It would be better to repeat more stations but this would be more

time-consuming since the present protocol already requires 2 and half days of measure-

ments per weekly survey.

At each measurement point, the CG5 is first leveled and the operator waits 15 min to

allow the instrument to become quiet after transportation. If needed, it is again pre-

cisely leveled before a sequence is launched of 5–10 consecutive cycles of 90-s duration

each depending on the convergence of the results of each cycle (mean gravity after 90 s).



Fig. 4 Location of the micro-gravimetric stations in the network around the Soultz-sous-Forêts and Rittershoffen
geothermal sites. The gravity stations are indicated by red triangles. The two black triangles (GPK1 and GPK2) are
respectively the injection and production boreholes where co-located GPS and gravity measurements are done.
The other permanent GPS stations are indicated in black circles. The background shows the topography with a
color scale ranging from 50 to 250 m

Hinderer et al. Geothermal Energy  (2015) 3:16 Page 6 of 19
Prior to the measurements, the long-term drift is removed with a linear fitting, and the re-

sidual drift is checked to be less than 4 μGal/h. Thus, if 3 consecutive measurements are

within a 1–3 μGal range and no residual drift is observed, the measurements are stopped.

An example of a station (Pyr 3) of this network is given in Fig. 5 where the tripod

uses a concrete floor built around a pyramidal protection of a borehole. The location
Table 2 Description of the loops of the Soultz gravity network

Loop 1

GPK1 – Pyr1 – Pyr2 – Kutzenhausen church – GPK1

Loop 2

GPK1 – Kutzenhausen church – Pyr3 –Soultz church – GPK1

Loop 3

GPK1 – Soultz church – Pyr4 – farm – GPK1

Loop 4

GPK1 – chapel – farm – GPK2 – GPK1

Loop 5

GPK1 – Soultz church – Hohwiller church – GPK1



Fig. 5 The station Pyr3 and the ground marks for precise repetition of the gravity measurements
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for the gravimeter tripod is indicated by marks on this concrete to ensure a precise

repetition of the gravity measurements.

In 2014, being informed that a production test would occur in August 2014, we have

added 2 more stations around the Rittershoffen geothermal site where the ECOGI ex-

periment takes place. With a geological context similar to the Soultz-sous-Forêts pro-

ject, this geothermal project is dedicated to an industrial use for heat application

(24 MWth at 160 °C). The first well was drilled in 2012 and a second one in spring

2014, both to a depth close to 2500 m.

One station is very close to the site (old bridge) and the second one in the nearby vil-

lage (Betschdorf ). A denser network like the Soultz one with 10–15 stations will be

established in the future (still this year) for a better monitoring of the ECOGI site.

Each survey starts and ends from Strasbourg Gravimetric Observatory enabling us to

connect the local network of Soultz and Rittershoffen to a known reference which is

monitored by both continuous (SG) and absolute (AG) instruments. There is hence

one tie per survey (i.e., per week) between Strasbourg and Soultz. There is a weekly

repetition of this survey during the summer months (July and August) in 2013 and

2014 leading to 14 surveys over a period of 4 months. The variability of the 2014 weekly

amplitude of the J9-GPK1 ties using CG5 RG is found to be of the order of 5–7 μGal; this

value has to be compared to the difference in the absolute values at GPK1 using FG5 AG

between April and October 2013 which is 0.3 ± 3.4 μGal (see “Absolute gravity mea-

surements at the reference site GPK1” section). In fact, since we have continuous SG

measurements at our reference station J9, we also computed the difference between

the April and October 2013 J9-GPK1 ties using both SG and AG measurements

which leads to a value of 3.7 ± 3.4 μGal since there is a 4.0-μGal gravity increase at J9

station from the SG data corrected for the same effects (tides, air pressure, polar mo-

tion) as the FG5.
Absolute gravity measurements at the reference site GPK1

The first determination of the absolute gravity at the reference site GPK1 of the Soultz

network was done in April 2013 and repeated in October 2013. An example of the scat-

ter of the drop values (every 10 s) and of the set values (mean values of 100 successive

drops every hour) is shown on Fig. 6. The results of the two measurement campaigns

are given in Table 3.



Fig. 6 Drop and set scatter of the absolute gravity observations at GPK1 in October 2013
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It turns out that our reference site GPK1 seems to be very stable with no significant

change in gravity in the 6-month interval (within the uncertainty of 3.4 μGal inferred

from our two AG observations). This stability has to be checked again in the future.

The measurement of the absolute gravity at Soultz and Strasbourg Observatory led

also to establish a quick calibration line between these two points which helps to

control the calibration factor of the Scintrex gravimeter over time. The amplitude of

this calibration line is however modest (26.746 mGal) and smaller than the line of

323.170-mGal amplitude between Chelmos (1740-m altitude) and Temeni (sea level) in

the Gulf of Corinth (Greece) which was measured in December 2013 by our FG5 AG.

The CG5 gravimeter which was available for our 2013 study was calibrated using this

line to a precision slightly better than 10−4. The CG5 used in 2014 is a new instrument

acquired a few months before the summer surveys and calibrated by the manufacturer.

It is also important to point out here that the repetition of a micro-gravimetric net-

work has to be done with a calibrated instrument (if possible always the same). Calibra-

tion accuracy can be better than 10−4 when a large amplitude absolute baseline is used

(Debeglia and Dupont 2002) and this is in general enough for micro-gravimetric sur-

veys; in our network, the largest gravity difference between two stations is about

16 mGal and the calibration error leads then to 1.6-μGal gravity change which is

smaller than the mean network loop uncertainty of 5 μGal discussed in “Data process-

ing” section. However, calibration changes with time and can reach 10−3 over a 2-year

period (Jacob et al. 2010) emphasizing the fact that a regular check of the stability of

the calibration factor is needed.
Continuous relative measurements at GPK1

In order to obtain local tidal parameters for solid Earth and ocean loading tides, a con-

tinuous record at GPK1 was collected GPK1 with a Scintrex CG5 gravimeter. The time

span covers the period from 16 April 2013 to 21 May 2013 (Fig. 7).

The analysis of the data set using ETERNA 3.4 (Wenzel 1996) shows that the deter-

mination of large tides in the semi-diurnal and diurnal bands is satisfactory with
Table 3 Absolute gravity determinations at the reference site GPK1

Date Duration (hours) Gravity (μGal) Uncertainty (μGal)

22/10/2013 11 9 80 910 145.0 2.7

16/04/2013 5 9 80 910 145.3 2.1



Fig. 7 Time-varying gravity recorded with a Scintrex CG5 at the base station (GPK1) of the Soultz network.
Long-term drift and linear approximation (left); tidal fluctuations after drift removal (right)
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results in close agreement with those obtained from the superconducting gravimeter

C026 in Strasbourg (cf. Fig. 8). However, the determination of smaller amplitude tides

shows more discrepancies. Notice also the strong differences in the tidal uncertain-

ties with respect to the SG observations for the same time period. We also found

a factor close to 35 in the standard deviation (SD) of the Scintrex CG5 and the

GWR C026 gravity residuals. A tidal prediction shows that the gravity difference

between Strasbourg and Soultz (40-km distance) leads to a very small residual tidal signal

with a standard deviation of 0.45 μGal. We decided to use in our corrections tidal param-

eters for the solid Earth and ocean loading tides that originate from the analysis of long

record of the Strasbourg SG (see e.g. Calvo et al. 2014).

Precise geodetic positioning

Gravity changes δg due to underground mass redistribution must be corrected for any

vertical height change h since we have the following relationship:

δg ¼ −
2g0
a

hþ 2πGρh ð1Þ

where g0 is the mean surface gravity, a the mean Earth’s radius, ρ the mean density of

the crust, and G the gravitational constant.

The first term in right hand side of Eq. 1 is usually called the free air correction and

amounts to about – 0.31 μGal/mm; the second term is the effect of an infinite Bouguer
Fig. 8 Gravimetric amplitude factors in the semi-diurnal and diurnal frequency bands
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slab of density ρ. The sum of the two effects is – 0.2 μGal/mm assuming a mean crustal

density of 2670 kg m−3.

This is why a precise control of the station elevations is required. This is achieved in

our project by high-precision geodetic leveling which should lead to a few millimeter

precision on all the points of the network.

To perform a rigorous vertical control, all gravimetric sites are equipped with a level-

ing benchmark. During May 2014, a large leveling network (~40 km long) connecting

the 13 gravimetric sites was observed in 4 main loops and a small loop around ECOGI

site (Ferhat et al. 2014). The closure loops show an equivalent precision of 1.5 mm/km

for the main loops and 0.5 mm/km for the small loops (Ferhat et al. 2014). This accur-

acy is large enough to guarantee a vertical precision better than a few millimeter re-

quired for gravimetric variation interpretation. From a preliminary investigation based

on a repetition of the leveling network 3 times in 2014 on the small loop around

ECOGI, it turns out that most of the height changes are less than 1 or 2 mm. More-

over, 2 continuous GPS (cGPS) stations have been installed within the leveling network

and 4 cGPS stations around ECOGI site (cf. Fig. 4) to insure long-term stability ana-

lysis. Again, the analysis of the vertical component does not show any significant mo-

tion exceeding 1 or 2 mm (Heimlich et al. 2013).

Gravity modeling of geothermal effects

Besides our observational approach, we also wanted to estimate the surface gravity

changes that might be expected from any deep geothermal activity. If the density

changes linked to such an activity are spatially known, one is then able to predict if the

surface gravity effects are detectable and even to set up the optimal station positioning.

Unfortunately, we do not have here this knowledge and must rely on very simple (sim-

plistic) approximations to compute the order of magnitude of the gravity effects.

Classically, two main formulas are used to compute the surface gravity change as a

function of the mass change:

Δg ≈ G ΔM=d2 ð2Þ

assuming that all the mass anomaly ΔM is concentrated at a point with depth d (Mogi

approach), or:

Δg ¼ B ΔM = A; ð3Þ

Assuming now that the mass anomaly is spread over a surface A (Bouguer slab ap-
proach); B is equal to 42 μGal m2 T−1. The gravity change is expressed in μGal (B = 42)

if the mass is expressed in tons (T) and the surface in square meters (m2) (Allis and

Hunt 1986). In this latter case, as can be proven most simply with Gauss’s law for grav-

ity (La Fehr 1965), the gravity change is independent on the depth but this is only valid

if the lateral extension is much larger than the depth.

As these two approaches are oversimplified, we choose to use more realistic ap-

proach. The purpose is to use the 3D geological model for the investigated zone, which

is meshed with finite element method (tetrahedrons) and then compute the gravity ef-

fect at the surface resulting from this discrete model (Fig. 9). This reference model is

then perturbed by locating specific density changes in depth according to realistic stim-

ulations of the geothermal reservoir (flow rate, total period of injection, depth of



Fig. 9 Geological model for Soultz-sous-Forêts from (Baillieux 2012) showed without tertiary layer and without
bedrock. The tetrahedron meshing is achieved using GMSH tool of Geuzaine and Remacle (2009)
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injection, etc.). Then, the misfit between the new resulting gravity and the reference

one is computed, leading to the gravity change of geothermal origin.

The 3D forward modeling for tetrahedron geometry is achieved using following for-

mulae (e.g., Pohanka 1988):

g r; εð Þ ¼ −Gρ
XK

k¼1

nk
XL kð Þ

l¼1

Φk; l ð4Þ

with

Φk;l ¼ ϕ Uk;l rð Þ;Vk;l rð Þ;Wk;l rð Þ; zk rð Þ; ε� �

where r is the distance between the gravity station and the element unit, ρ is the dens-

ity value of the element, nk is the normal vector to the surface k formed by l edges. U,

V, and W are the geometrical function in the x, y, and z directions. The value ε is an in-

finitesimal number (ε ≤ 10−6) to avoid some singularities; it represents at the maximum

only 1 μGal in the total gravity values. Additional information on the forward modeling

and sensitivity analysis as well as the computed data uncertainty can be found in

Abdelfettah et al. (2014).

The possible gravity effect caused by geothermal utilization is assessed using 3D for-

ward modeling and then the misfit is computed between before and after geothermal

events (e.g., hydraulic stimulation, production, water injection, etc.). In our approach

and in order to simulate the real conditions, the measurement stations are located on

the real topography and the reference model is of any 3D complexity. More important,

our formalism can be applied to any geothermal context.

As an example, we located at a depth of 2 km a mass excess of 0.173 megatons (MT)

which would result from a continuous water injection at a rate of 20 l/s during 100 days.

This injection rate is comparable to what was indeed used in hydraulic tests done in

2010 and 2011 in Soultz during periods of several months (Genter et al. 2013) but, in

standard operation, the circulation of Soultz HDR reservoir is balanced between injec-

tion and production (Baumgärtner et al. 1998). Note that this mass change is much

smaller than the 1200 MT value quoted in Allis et al. (2001) for the Geysers geothermal

reservoir in several years leading to several hundreds of μGal gravity changes. The mass

excess was distributed inside a prism of dimension 100 × 100 × 100 m located and cen-

tered at a depth of 2 km. This leads to a density increase of 173 kg m−3 (6.65 % in pro-

portion) generating a surface gravity variation of 0.6 μGal which is maximal at the
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center above the mass anomaly (Fig. 10). The black square represents the projection at

the surface of the perturbed deep volume, and the points are the stations where the

gravity change has been computed.

The geological model (Fig. 9) for our study zone extracted from Baillieux

(2012) is derived from seismic and borehole data and consists in a 6 layer model

with dimension ~30 × 20 × 5 km. The geological stratigraphy is simplified to model only the

Tertiary, Jurassic, Keuper, Muschelkalk, Buntsandstein, and the Basement horizons. These

horizons showed vertical variations up to 500 m when crossing the faults (Baillieux 2012).

The sedimentary layers show east dip as well as the top of the basement. The thicker

geological unit is mainly the Tertiary which can reach 750 m (±320 m), whereas the other

sedimentary units do not exceed 373 m, the thickness of the Buntsandstein for example

(Baillieux 2012 and references in there). The geothermal reservoir in the simulated water

injection area is located in the granitic basement unit below 1500-m depth.

It is obvious from Fig. 10 that the predicted gravity change at the surface is very small,

below the μGal level, and hence undetectable in micro-gravimetry. We would like to test

our modeling with observations; since there is presently no geothermal activity in Soultz,

our experiment is merely a “null test” where we check that no gravity change occurs. This

leads to a “To” state acting as a reference for the future monitoring during production.

The predicted changes are very small because of the large distance from the surface

to the source anomaly located at a depth of 2000 m. Therefore, it is worth to see what

signal would be observed when measuring with a borehole gravimeter closer to the

source anomaly. Figure 11 shows the borehole gravity prediction as a function of depth

for the same source anomaly (mass perturbation of 0.173 MT at 2-km depth) as the

one used in Fig. 10. It is obvious that the gravity changes become large when one mea-

sures close to the anomaly; it is for instance reaching 250 μGal at a distance of 100 m.

Changes of a few tens or hundreds of μGal are easily measurable today with borehole
Fig. 10 Surface gravity effect (in μGal) due to a mass perturbation of 0.173 MT located at 2-km depth within
a prism of dimension 100 × 100 × 100 m



Fig. 11 Borehole gravity effect as a function of the depth due to a mass perturbation of 0.173 MT located
at 2-km depth. The two horizontal red lines show the top and bottom of the layer (100 m thick) where the
source anomaly occurs
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gravimeters which are sensors able to measure gravity as deep as several thousand me-

ters with a few μGal precision (Nind et al. 2007; Seigel et al. 2009).

Data processing

The repetition of a micro-gravimetric network, where x0 and t0 are the reference point

and time, leads to the following formula for the gravity double differences at point x

and time t:

Dgt−t0x−x0 ¼ gx−gx0

� �
t
− gx−gx0

� �
t0

ð5Þ

To process the data, we developed a software written using a Python language called
PyGrav in order to homogenize and concatenate current processing codes like Matlab

scripts, MCGravi (Beilin 2006), CGxTool (Gabalda et al. 2003), or ETERNA (Wenzel

1996). This code is very appropriate for all kinds of gravity surveys (static, time-lapse)

and allows in particular an easy reprocessing of repeated micro-gravity networks. It

has a user-friendly interface for handy and fast treatment of the raw gravity data at

every station of the network (see Fig. 12).

Fully manual or automatic selection is possible according to specific thresholds in tilt,

standard deviation, or duration of the gravity observations. Each selected measurement is

then corrected for tides and air pressure and the software allows to remove the instru-

mental drift on all the chosen loops of the network. This is done using the least-square in-

version scheme described in Hwang et al. (2002). This first step leads to the gravity simple



Fig. 12 An example of a graphical window of PyGrav software
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differences between the reference point and any point of the network; the standard devi-

ation is computed following Hwang et al. (2002) as the square root of the posteriori vari-

ance resulting from the inversion scheme. When different repetitions of the network are

done, gravity double differences are computed according to Eq. 5; the standard error (un-

certainty) on a gravity change between two surveys and for a specific station is the square

root of the quadratic sum of respective station standard errors for each survey.

Results and discussion
The processing of the 8 surveys in 2013 and 6 surveys in 2014 leads first to the simple

differences (Fig. 13). This plot shows the gravity differences in mGal as a function of

the station number where the base station GPK1 (code 1) is set to 0. The variation

range below 17 mGal is mainly a consequence of the height differences among the sta-

tions and the regional density structure and any smaller variation (typically < tens of

μGal for the 2014 surveys as shown below) in time due to hydrology or geothermics is

of course undetectable on this plot. The stations from 1 to 11 correspond to the Soultz

network. Stations 12 and 13 around Rittershoffen are only available in 2014.

The computation of the double differences leads to a tremendous decrease in the

amplitude of the gravity variations between 2013 and 2014 with values of several hun-

dreds of μGal in 2013 and in the range of a few μGal to less than 30 μGal in 2014.

Similarly, there is roughly one order of magnitude reduction in the uncertainties

(standard deviation) in 2014 with respect to 2013 as shown by Table 4; the 2014 uncer-

tainties are small ranging from 2.6 to 6.6 μGal for the 6 available surveys.

Since the measurement protocol (number of stations per loop, number of loops, dur-

ation of each measurement, environmental conditions) is identical in 2013 and 2014,

we attribute this decrease to the use of a different instrument. Both instruments are

Scintrex CG5 models but the older instrument used in 2013 was known to be unstable

after transportation. In 2014, we acquired a new CG5 and the older one was sent back

to the manufacturer for test and it turned out that this instrument was defective and

needed to be fixed. We believe that our poor results in 2013 are mostly due to the poor
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Fig. 13 Gravity simple differences of the stations of the micro-gravimetric network
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performances of the instrument. Since the 2013 campaign is useless, we focus now on

the 2014 results in Fig. 14.

The variations in time are now much smaller with amplitude in the range of a few

μGals almost never exceeding 10 μGal. These changes are linked to several processes

including vertical deformation, underground water redistribution (soil water content +

water table), and possibly deeper geothermal contributions.

Almost all observed changes in the Soultz network (stations 1–11) are within the rect-

angular uncertainty zone and are hence not significant. In other terms, we do not observe

any gravity change that exceeds our measurement precision.

The lack of detectable gravity changes indicated by our results for 2014 is in agree-

ment with the fact that during this period, the geothermal activity was completely

stopped in Soultz. When this activity will restart as expected in 2016 after major im-

provements in the central geothermal system, the induced gravity changes should still

be small according to our (very) simple modeling and hardly observable by our network



Table 4 Average standard deviation (SD) for each survey in 2013 and 2014

Survey 2013 July August

Day 2 8 16 23 1 9 15 26

SD (μGal) 64.9 51.8 47.1 49.7 52.6 50.1 53.6 56.1

Survey 2014 July August

Day 1 15 23 5 11 18

SD (μGal) 2.6 3.2 5.8 6.6 5.8 5.6
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and related uncertainty. A more precise computation will be done according to known

input parameters like production/injection flow rate and stimulation duration.

Stations 12 and 13 around the Rittershoffen geothermal site show larger changes

(reaching 25 μGal) that are largely above our precision level and coincide with the start

of well production tests at ECOGI beginning in August 2014. However, we need to

have additional measurements to confirm the correlation between gravity and geo-

thermal activity, especially having in mind that the Rittershoffen gravity loop is longer

than the other loops near Soultz, which may deteriorate the drift correction of the

micro-gravimeter. Moreover, our simple modeling has shown that gravity changes

due to reasonable amount of injected mass are below 1 μGal; we must be cautious on

the origin of the changes which may be due to more superficial hydrological effects.

However, notice that an increase of 10 μGal would require a water table increase of

25 cm (or 25 cm/φ where φ is the porosity). We plan to acquire in the future piezo-

metric data close to our investigated site to estimate this contribution.
Conclusions
Since the successive surveys in 2013 of the Soultz network can be dismissed because of

an instrument defect, we basically only rely on the 6 surveys performed in summer

2014 using a new instrument. The time changes of the weekly repetitions of the sta-

tions are clearly small and mostly within the uncertainty level of the order of 5 μGal.

We have to repeat again these measurements in summer 2015 to check that the

changes from 1 year to the next are also small, especially in the lack of geothermal
Fig. 14 Gravity double differences in 2014. The blue area is the ±2 σ uncertainty band computed from the
uncertainties in the measurements and processing of all surveys
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activity. If this is true, we will then have a well-defined reference network to detect the

possible gravity changes that might occur when the geothermal plant will be restarted

in 2016. The comparison of the uncertainties in the ties between the local reference

station (GPK1) and the external reference station (J9 Observatory) shows that the use

of absolute measurements at GPK1 combined with continuous SG observations at J9

leads to better results than CG5 RG ties alone. It is also obvious that the ideal case

would be to install at GPK1 a permanent SG regularly checked with FG5 measure-

ments as suggested in a true hybrid gravimetric approach.

The only observed significant changes in 2014 close to the ECOGI site in Rittershoffen

that are possibly related to the injection tests at the same period rely only on two stations.

We plan to densify in the future the network around ECOGI with additional stations to

check the stability of the Rittershoffen network in the lack of activity in summer 2015. We

also intend to detect the gravity signature of the future tests planned end of 2015 and to

monitor the gravity change during the 2016 production period.

The rather large distance of the mass sources in deep geothermal reservoirs (2.5 km

for Rittershoffen and 5 km for Soultz) leads to very small surface signals, at least from

the purely Newtonian point of view. However, borehole gravimetric modeling showed

that a significant signal arises from water injection according to depth, when the

source-sensor distance decreases.
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