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Abstract. In the 1970s, Tutte developed a clever algebraic approach, based on certain “invariants”, to solve a func-

tional equation that arises in the enumeration of properly colored triangulations. The enumeration of plane lattice

walks confined to the first quadrant is governed by similar equations, and has led in the past decade to a rich col-

lection of attractive results dealing with the nature (algebraic, D-finite or not) of the associated generating function,

depending on the set of allowed steps.

We first adapt Tutte’s approach to prove (or reprove) the algebraicity of all quadrant models known or conjectured

to be algebraic (with one small exception). This includes Gessel’s famous model, and the first proof ever found for

one model with weighted steps. To be applicable, the method requires the existence of two rational functions called

invariant and decoupling function respectively. When they exist, algebraicity comes out (almost) automatically.

Then, we move to an analytic viewpoint which has already proved very powerful, leading in particular to integral

expressions of the generating function in the non-D-finite cases, as well as to proofs of non-D-finiteness. We develop

in this context a weaker notion of invariant. Now all quadrant models have invariants, and for those that have in

addition a decoupling function, we obtain integral-free expressions of the generating function, and a proof that this

series is differentially algebraic (that is, satisfies a non-linear differential equation).

Keywords: Lattice walks, enumeration, differentially algebraic functions, conformal mappings

1 Introduction

In the past decade, the enumeration of plane walks confined to the first quadrant has received a lot of

attention, and given rise to many interesting methods and results. Given a set of steps S ⊂ Z2 and a

starting point (usually (0, 0)), the main question is to determine the generating function

Q(x, y; t) ≡ Q(x, y) =
∑

i,j,n≥0

q(i, j;n)xiyjtn,

where q(i, j;n) is the number of n-step quadrant walks from (0, 0) to (i, j), taking their steps in S. If

one only considers walks with small steps (that is, S ⊂ {−1, 0, 1}2), there are 79 inherently different

subm. to DMTCS c© by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



2 O. Bernardi, M. Bousquet-Mélou and K. Raschel

step sets (also called models) and an expression of Q(x, y), sometimes rather complex, is known in each

case. Moreover, the nature of this series is also known: it is D-finite (that is, satisfies three linear dif-

ferential equations, one in x, one in y, one in t, with polynomial coefficients) if and only if a certain

group of rational transformations is finite. This happens in 23 cases. In exactly 4 of them, Q(x, y) is

even algebraic, that is, satisfies a polynomial equation with polynomial coefficients in x, y and t. This

classification has been obtained by an attractive combination of approaches: algebraic [BM02, BMM10,

Ges86, GZ92], computer-algebraic [BK10, KKZ09, KZ08], analytic [BKR13, Ras12, KR12], asymp-

totic [DW15, MR09].

The starting point of all of them is a functional equation satisfied by Q(x, y), which is simple to es-

tablish, but often hard to solve. For instance, in the case of Kreweras’ walks (steps ր, ←, ↓), it reads

Q(x, y) = 1 + txyQ(x, y) + t
Q(x, y)−Q(0, y)

x
+ t

Q(x, y)−Q(x, 0)

y
. (1)

This is reminiscent of an equation written by Tutte in the 1970s when studying q-colored triangulations:

G(x, y) = xq(q − 1)t2 +
xy

qt
G(1, y)G(x, y)− x2yt

G(x, y)−G(1, y)

x− 1
+ x

G(x, y) −G(x, 0)

y
. (2)

Due to the quadratic term, this is in fact more complicated than (1). Tutte worked about a decade on this

equation, and finally solved it, proving that the series G(1, 0) is differentially algebraic, that is, satisfies

a (non-linear) differential equation in t. One key step in his study was to prove that for certain (infinitely

many) values of q, the series G(x, y) is algebraic, using a certain notion of invariant [Tut95].

Could this notion bring something new to the classification of quadrant walks? This paper answers this

question positively:

• We first adapt Tutte’s approach to quadrant walks, and thus obtain short and uniform proofs of

algebraicity for all algebraic models (with one small exception). This includes the shortest proof

ever found for Gessel’s famous model, and extends to models with weighted steps, for which alge-

braicity was sometimes still conjectural [KY14]. With our approach, a model with finite group is

algebraic if and only if it admits a decoupling function (Sections 2 and 3).

• We then define a weaker notion of invariant, and use it to give an integral free expression of Q(x, y)
for models with infinite group that admit a decoupling function (Section 4). We have at the moment

found 9 such models. This expression implies that Q(x, y) is differentially algebraic in x, y and t
(Section 5).

We now introduce some basic tools in the study of quadrant walks with small steps. A simple step-by-

step construction of these walks gives the following functional equation [BMM10]:

K(x, y)Q(x, y) = K(x, 0)Q(x, 0) +K(0, y)Q(0, y)−K(0, 0)Q(0, 0)− xy, (3)

where

K(x, y) = xy

(
t
∑

(i,j)∈S

xiyj − 1

)



Counting quadrant walks via Tutte’s invariant method 3

is called the kernel of the model. It is a polynomial of degree 2 in x and y, which we often write as

K(x, y) = ã(y)x2 + b̃(y)x+ c̃(y) = a(x)y2 + b(x)y + c(x). (4)

We shall also denote

K(x, 0)Q(x, 0) = R(x) and K(0, y)Q(0, y) = S(y).

Note that K(0, 0)Q(0, 0) = R(0) = S(0), so that the basic functional equation (3) reads

K(x, y)Q(x, y) = R(x) + S(y)−R(0)− xy. (5)

Seen as polynomial in y, the kernel has two roots Y0 and Y1, which are Laurent series in t with coeffi-

cients in Q(x). If the series Q(x, Yi) is well defined, setting y = Yi in (5) shows that

R(x) + S(Yi) = xYi +R(0). (6)

If this holds for Y0 and Y1, we have

S(Y0)− xY0 = S(Y1)− xY1. (7)

The group of the model, denoted by G(S), is generated by the following two rational transformations:

Φ(x, y) =

(
c̃(y)

ã(y)

1

x
, y

)
and Ψ(x, y) =

(
x,

c(x)

a(x)

1

y

)
.

Both are involutions, thus G(S) is a dihedral group, which, depending on the step set S, is finite or not.

A step set S is singular if each step (i, j) ∈ S satisfies i+ j ≥ 0.

Notation. For a ring R, we denote by R[t] (resp. R[[t]]) the ring of polynomials (resp. formal power

series) in t with coefficients in R. If R is a field, then R(t) stands for the field of rational functions in t.
This notation is generalized to several variables. For instance, the series Q(x, y) belongs to Q[x, y][[t]].

2 A new solution of Gessel’s model

This model, with steps →,ր,←,ւ, appears as the most difficult model with a finite group. Around

2000, Ira Gessel conjectured that the number of 2n-step quadrant walks starting and ending at (0, 0) was

g0,0(2n) = 16n
(1/2)n(5/6)n
(2)n(5/3)n

,

where (a)n = a(a + 1) · · · (a + n − 1) is the rising factorial. This conjecture was proved in 2009 by

Kauers, Koutschan and Zeilberger [KKZ09]. A year later, Bostan and Kauers [BK10] proved that the

three-variate series Q(x, y; t) is not only D-finite, but even algebraic. Two other proofs of these results

have been given [BKR13, BM15]. Here, we give yet another proof based on Tutte’s idea of invariants.

The basic functional equation (5) holds with K(x, y) = t(y+x2y+x2y2+1)−xy, R(x) = tQ(x, 0),
and S(y) = t(1 + y)Q(0, y). It follows from K(x, Y0) = K(x, Y1) = 0 that

I(Y0) = I(Y1), with I(y) =
1

t(1 + y)(1 + 1/y)
+ t(1 + y)(1 + 1/y). (8)
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We say that I(y) is a (rational) y-invariant.

Let us now take x = t + t2(u + 1/u), where u is a new variable. Then it is easy to see that both Y0

and Y1 are Laurent series in t with coefficients in Q(u), and that Q(x, Y0) and Q(x, Y1) are well defined.

Hence (7) holds. Moreover, the kernel equation K(x, Yi) = 0 implies that

x(Y0 − Y1) =
1

t(1 + Y1)
−

1

t(1 + Y0)
, (9)

so that we can rewrite (7) as

J(Y0) = J(Y1), with J(y) = S(y) +
1

t(1 + y)
.

This should be compared to (8). The connection between I(y) and J(y) will stem from the following

lemma, the proof of which is elementary.

Lemma 1 Let F (y) be a Laurent series in t with coefficients in Q[y], of the form

F (y) =
∑

0≤j≤n+n0

a(j, n)yjt2n

for some n0 ≥ 0. Then for x = t + t2(u + 1/u), the series F (Y0) and F (Y1) are well defined Laurent

series in t, with coefficients in Q(u). If they coincide, then F (y) is in fact independent of y.

The above series I and J do not satisfy the assumptions of the lemma, as their coefficients are rational

in y with poles at y = 0,−1 (for I) and y = −1 (for J). Still, we can construct from them a series F
satisfying the assumptions of the lemma. First, we eliminate the pole of I at 0 by forming the y-invariant

(J(y)−J(0))I(y). The coefficients of this series have a pole of order at most 3 at y = −1. By subtracting

an appropriate series of the form aJ(y)3 + bJ(y)2 + cJ(y), we obtain a series satisfying the assumptions

of the lemma, which must thus be constant, equal for instance at its value at y = −1. In brief,

(J(y)− J(0))I(y) = aJ(y)3 + bJ(y)2 + cJ(y) + d (10)

for some series a, b, c, d in t. Expanding this identity near y = −1 gives:

a = −t, b = 2 + tS(0), c = −S(0) + 2S′(−1)− t− 1/t,

and

d = tS(0)− 2S(0)S′(−1)− 3S′(−1)/t+ S′′(−1)/t+ 1.

Replacing in (10) the series I and J by their expressions (in terms of t, y and S(y)) gives for S(y) a cubic

equation, involving three additional unknown series in t, namely S(0), S′(−1) and S′′(−1). It is not hard

to see that this equation defines a unique power series S(y) in Q[y][[t]]. In the terminology of [BMJ06],

this is a cubic equation in one catalytic variable y. The solutions of such equations are always algebraic,

and a procedure for solving them is given in [BMJ06]. Applying it shows in particular that S(0), S′(−1)
and S′′(−1) belong to the extension of Q(t) generated by the unique series Z = 1 + O(t) satisfying

Z2 = 1 + 256t2Z6/(Z2 + 3)3. Due to lack of space, we do not give any details, but refer the reader

to [BM15, Sec. 3.4], where an analogous equation satisfied by R(x) is solved.
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3 Extensions and obstructions

We now formalize the three main ingredients in the above solution of Gessel’s model. The first one is

clearly the rational invariant I(y) given by (8).

Definition 2 A rational function I(y) ∈ Q(t, y) is said to be a y-invariant of a quadrant model S if

I(Y0) = I(Y1) when Y0 and Y1 are the roots of the kernel, solved for y. We define x-invariants similarly.

Note that I(Yi) = (I(Y0)+I(Y1))/2 must then be a rational function of x, since it is a symmetric function

of Y0 and Y1.

Lemma 3 If a model has a y-invariant I2(y), then it admits I1(x) := I2(Y0) = I2(Y1) as x-invariant.

Moreover, I1(X0) = I1(X1) = I2(y).

Note that having invariants is just saying that I1(x) − I2(y) vanishes on the curve K(x, y) = 0, which

alludes to Hilbert’s Nullstellensatz. In Gessel’s case, I2(y) was the function I(y) of (8), and we find

I1(x) = −t/x
2 + 1/x+ 2t+ x− tx2.

Proposition 4 A quadrant model has rational invariants if and only if the associated group is finite.

Proof: A model with an infinite group cannot have rational invariants: the function I1(x) would take the

same value for infinitely many values of x, which is not possible for a rational function. Conversely, each

of the 23 models with a finite group admits rational invariants, listed in Appendix A. 2

In the next section, we introduce a weaker notion of (possibly irrational) invariants, which guarantees

that any quadrant model now has a (weak) invariant. One key difference with the algebraic setting of the

above section is that the new notion is analytic in nature.

The second ingredient of Section 2 was the identity (9), which we formalize as follows.

Definition 5 We say that a quadrant model is decoupled if there exist rational functions F (x) ∈ Q(x, t)
and G(y) ∈ Q(y, t) such that, as soon as K(x, y) = 0, one has xy = F (x) +G(y).

This is in fact equivalent to the (apparently weaker) identity x(Y0−Y1) = G(Y0)−G(Y1) (which was (9)

in Gessel’s case), and the functions F and G are related by F (x) = xY0 −G(Y0) = xY1 −G(Y1) (and

symmetrically). In Gessel’s case, we had G(y) = −1/(t(1 + y)), corresponding to F (x) = −1/x+ 1/t.
So which models are decoupled? Not all, at any rate: for any model that has a vertical symmetry, the

series Yi are symmetric in x and 1/x, and so any expression of x of the form (G(Y0)−G(Y1))/(Y0−Y1)
would be at the same time an expression of 1/x. At the moment, we have found 13 decoupled models

(Appendix B): 4 with a finite group (and these are, as one can expect from the algebraicity result of

Section 2, those with an algebraic generating function), and 9 with an infinite group, shown in Figure 2.
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Fig. 1: Left: The four algebraic quadrant models (Kreweras, reversed Kreweras, double Kreweras, Gessel).

Right: Four algebraic models with weights [KY14].
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#1 #2 #3 #4 #5 #6 #7 #8 #9

Fig. 2: Nine decoupled models with an infinite group.

The final ingredient is the “invariant Lemma” (Lemma 1). It admits analogues for the 4 algebraic

models to the left of Figure 1, except for the second one, which we solve in a slightly different way in the

next section.

Proposition 6 The existence of rational invariants, decoupling functions and invariant lemma yields new

and uniform proofs of the algebraicity of the 4 models of Figure 1, left, except the second. This extends to

the 4 weighted models shown on Figure 1, right.

For Gessel’s walks, this is the shortest known proof. For the rightmost weighted model, it is the first one.

Remark. In the finite group case, there exists a systematic procedure to construct the invariants and (when

they exist) the decoupling functions, adapting [FIM99, Thm. 4.2.9 and Thm. 4.2.10] to our context. In the

infinite group case, the 9 decoupling functions have been guessed-and-checked.

4 An analytic invariant method

We now move to an analytic world, and considerQ(x, y) as a function of three complex variables, analytic

in the polydisc {|x| < 1, |y| < 1, |t| < 1/|S|} (at least). This section borrows its notation and several

results from the analytic approach of quadrant models [FIM99, Ras12]. The roots Y0,1 of the kernel (now

called branches of K) are given by

Y0,1(x) =
−b(x)±

√
b(x)2 − 4a(x)c(x)

2a(x)
, (11)

where a, b and c are defined by (4). The discriminant d(x) := b(x)2− 4a(x)c(x) has degree three or four,

hence there are four branch points x1, . . . , x4 (depending on t), with x4 = ∞ if d(x) has degree three.

We define symmetrically the branches X0,1 and their four branch points yℓ.

Lemma 7 ([FIM99]) Let t ∈ (0, 1/|S|). The xℓ’s are real. Two branch points (say x1 and x2) are in the

(open) unit disc, with |x1| ≤ |x2| and x2 > 0. The other two (say x3 and x4) are outside the (closed) unit

disc, with |x3| ≤ |x4| and x3 > 0. The discriminant d(x) is negative on (x1, x2) and (x3, x4), where if

x4 < 0, (x3, x4) stands for (x3,∞) ∪ (−∞, x4).

The branches Y0,1 are meromorphic on C \ ([x1, x2] ∪ [x3, x4]). On the cuts [x1, x2] and [x3, x4], the

two branches Y0,1 still exist and are complex conjugate. A key object in our definition of weak invariants

is the curve L defined by

L = Y0([x1, x2]) ∪ Y1([x1, x2]) = {y ∈ C : K(x, y) = 0 and x ∈ [x1, x2]}. (12)

By construction, it is symmetric with respect to the real axis. If L is bounded (as for the models of

Figure 2), we denote by GL the domain enclosed by L. Otherwise, GL is the domain delimited by L and

containing the real point at −∞. See Figure 3 for examples.
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Fig. 3: The curves L for the models #3 (for t = 0.03, 0.1, 0.2 and 0.25, as one moves closer to the origin) and for

the reverse Kreweras model (t = 0.2, 0.25, 0.28 and 0.33, from right to left).

The function S(y) = K(0, y)Q(0, y) is analytic in GL (by [Ras12, Thm. 5]) and bounded on GL ∪ L
(this follows from (6) when x ∈ [x1, x2]). Moreover, Eq. (11) of [Ras12] tells us that, for x ∈ [x1, x2],

S(Y0)− xY0 = S(Y1)− xY1. (13)

4.1 Weak invariants

Definition 8 A function I(y) ≡ I(y; t) is a weak invariant of a quadrant model S if for t ∈ (0, 1/|S|):

• it is meromorphic in the domain GL, and admits finite limit values on the curve L;

• for any y ∈ L, we have I(y) = I(y).

The second condition is indeed a weak form of the invariant condition I(Y0) = I(Y1), because two

conjugate points y and y of the curve L are the (complex conjugate) roots of K(x, y) = 0 for some

x ∈ [x1, x2]. Hence, if the model admits a rational invariant I(y) in the sense of Definition 2, then I
is also a weak invariant. However, the above definition is less demanding, and it turns out that every

quadrant model admits a weak invariant, which we now describe (in the non-singular case).

This invariant, traditionally denoted w(y) (or even w̃(y)) in the analytic approach to quadrant prob-

lems [FIM99, Ras12], is in addition injective in GL. In analytic terms, this third condition makes it a

conformal gluing function for the domain GL. Explicit expressions of conformal gluing functions are

known in a number of cases (when the domain is an ellipse, a polygon, etc.). In our case the bounding

curveL is a quartic curve [FIM99, Thm. 5.3.3 (i)], and w can be expressed in terms of Weierstrass’ elliptic

functions (see [FIM99, Sec. 5.5.2.1] or [Ras12, Thm. 6]):

w(y; t) ≡ w(y) = ℘1,3

(
−

ω1 + ω2

2
+ ℘−1

1,2(f(y))
)
, (14)
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where the various ingredients are as follows. First, f(y) is a simple rational function of y whose coeffi-

cients are algebraic functions of t:

f(y) =





d̃′′(y4)

6
+

d̃′(y4)

y − y4
if y4 6=∞,

d̃′′(0)

6
+

d̃′′′(0)y

6
if y4 =∞,

where the yℓ’s are the branch points of the functions X0,1, and d̃(y) is the counterpart of the discriminant

d(x) for the variable y (so that d̃(y4) = 0). Then, ℘1,2 (resp. ℘1,3) is Weierstrass’ elliptic function with

periods (ω1, ω2) (resp. (ω1, ω3)), where

ω1 = i

∫ x2

x1

dx√
−d(x)

, ω2 =

∫ x3

x2

dx√
d(x)

, ω3 =

∫ x1

Y (x1)

dx√
d(x)

. (15)

Note that ω1 ∈ iR+ and ω2, ω3 ∈ R+.

It is known that the function w(y) given by (14) is meromorphic in GL, with a unique pole at y2. It is

an algebraic function of y and t for the 23 models with a finite group, see [Ras12, Thm. 2 and Thm. 3].

It is even rational unless S is one of the 4 algebraic models. It is then a rational invariant, in the sense

of Definition 2. In the infinite group case, w(y) is not algebraic, nor even D-finite w.r.t. to y, see [Ras12,

Thm. 2]. However, we will prove in Proposition 12 that it is differentially algebraic in y and t.

4.2 The analytic invariant lemma — Application to quadrant walks

We now come with an analytic counterpart of Lemma 1.

Lemma 9 Let S be a non-singular quadrant model and I(y) a weak invariant for this model. If I has no

pole in GL (and, in the case of a non-bounded curve L, if I is bounded at∞), it is independent of y.

This is proved in [Lit00, Ch. 3], more precisely in Lemma 1 for the bounded case, and in Lemma 2 for the

unbounded case.

Let S be a quadrant model that is decoupled, in the sense of Definition 5. In particular,

x(Y0 − Y1) = G(Y0)−G(Y1)

for some rational function G. Assume that G has no pole on L. Then, by combining (13) with the analytic

properties of S, we see that

I(y) := S(y)−G(y)

is a weak invariant in the sense of Definition 8. Since S is analytic in GL, the poles of I(y) lying in GL
must be poles of G(y). Let us denote them p1, . . . , pℓ, and assume they are different from the pole y2
of w. Then there exists a function of the form

r(y) =

ℓ∑

i=1

mi∑

e=1

αe,i

(w(y) − w(pi))e

such that I(y) − r(y) has no pole in GL and is bounded there — and is still a weak invariant. Applying

Lemma 9 tells us that this function is independent of y. Let us examine two examples.
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Example: Model #3 of Figure 2. This is a decoupled model, with G(y) = −y − 1/y. Hence I(y) =
S(y) + y + 1/y = tyQ(0, y) + y + 1/y is a weak invariant, with a single pole in GL, placed at y = 0

and having residue 1 (the curve GL is shown in Figure 3, left). Thus I(y) differs from
w′(0)

w(y)−w(0) by a

constant, and a series expansion at y = 0 gives

tQ(0, y) =
1

y

(
w′′(0)

2w′(0)
+

w′(0)

w(y) − w(0)
− y −

1

y

)
.

2

This extends to all models of Figure 2. The curve L is bounded in each case.

Corollary 10 For any of the 9 models of Figure 2, the series tQ(0, y) admits a rational expression in

terms of y, w(y), w(0), w′(0), w′′(0), w(−1), w′(−1), w′′(−1), w(±i), w(±j), with j = e2iπ/3.

Example: the reversed Kreweras model. Recall that this model was left unsolved in Section 3. The

associated curve L is unbounded (Figure 3, right). This is again a decoupled model, and a decoupling

function is G(y) = −1/y (Table 3). Accordingly, I(y) = S(y) + 1/y = tQ(0, y) + 1/y is a weak

invariant, with a single pole in GL, placed at y = 0 and having residue 1. Further, it follows from (6) that

I is bounded at∞. Thus I(y) differs from
w′(0)

w(y)−w(0) by a constant, and a series expansion at y = 0 gives

tQ(0, y) = −
1

y
+

w′(0)

w(y)− w(0)
+ tQ(0, 0) +

w′′(0)

2w′(0)
.

It remains to determine Q(0, 0). Using the case i = 0 of (6) and the x/y symmetry, we find that

0 =
w′(0)

w(x) − w(0)
+

w′(0)

w(Y0)− w(0)
−

1

x
−

1

Y0
− xY0 + tQ(0, 0) + 2

w′′(0)

2w′(0)
.

Specializing for instance at x = 1 gives an expression of tQ(0, 0). The algebraicity of Q(0, y) (and hence

that of Q(x, y) by (3)) is a consequence of this, since applying the analytic invariant lemma to the rational

invariant I2(y) =
t
y2 −

1
y − ty shows that w(y) is algebraic in y and t, via the solution of an equation with

one catalytic variable [BMJ06]. 2

5 Differential algebraicity

As recalled in the introduction, quadrant walks have a D-finite generating function if and only if the

associated group is finite — we can now say, if and only if they admit a rational invariant (Proposition 4).

Still, one outcome of our analytic invariant approach is that non-linear differential equations hold for a

number of models with an infinite group.

Theorem 11 For any of the 9 models of Figure 2, the generating function Q(x, y; t) is differentially alge-

braic (or D-algebraic) in x, y, t. By this, we mean that it satisfies three (non-linear) differential equations

with coefficients in Q: one in x, one in y and one in t.

The proof builds on Corollary 10 and on the following result, which holds for any non-singular model.

Proposition 12 The conformal gluing function w(y; t) defined by (14) is D-algebraic in y and t.
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Proof: (sketched). There are three main steps in the proof:

• We first consider the Weierstrass function ℘(ω) as a function of ω, but also as a function of its

periods ω1 and ω2 or, alternatively, of the values g2 and g3 (also called invariants in the elliptic

terminology!) defined by

gk(ω1, ω2) =
∑

(i,j)∈Z2\{(0,0)}

1

(iω1 + jω2)2k
.

Using some differentiations formulæ borrowed from [AS64], we prove that ℘ is DA in ω, g2 and g3.

• Then, we prove that when ω1, ω2 are either the functionsω1(t), ω2(t) given by (15), or the functions

ω1(t), ω3(t) (still given by (15)), then the functions g2 and g3 are DA in t. This follows from their

expression as modular forms [WW62], and from the fact that modular forms satisfy differential

equations [Zag91].

• We conclude using closure properties of D-algebraic functions. 2

6 Further results and final comments

Tutte’s invariants offer a new approach of quadrant walks, and we are faced with many open problems,

mainly related to the notion of decoupling functions.

• We still need to determine the exact applicability of our approach: which models admit a decoupling

function? For a model with finite group, the existence of a decoupling function implies algebraicity.

Hence we have found all decoupling functions for walks with finite group. But what about the 51

non-singular models with an infinite group? We have found 9 with a decoupling function and

(although not explained in this abstract) we also know that 36 have no decoupling function (this

includes for instance the model with jumps ↓,ւ,←,ր). This leaves 6 more models which might

have decoupling functions.

• We have not considered the 5 singular models. But they do admit weak invariants (though not given

by (14)) and this raises the question of finding decoupling functions for them.

• Our results on the nature of Q(x, y) can be summarized as follows:

Existence of decoupling functions No decoupling function

Finite group Algebraic D-finite

Infinite group Differentially algebraic ?

Could it be that infinite group models without decoupling function have a non-differentially alge-

braic generating function?

• Can we obtain explicit differential equations in the D-algebraic cases? One possible approach

would be to mimic Tutte’s solution of (2): he first found a non-linear differential equation valid

for infinitely many values of q (for which G(1, 0) is in fact algebraic), and then concluded by a

continuity argument. In our context, this would mean introducing weights so as to obtain algebraic

models converging to a D-algebraic one.
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• Another aspect, to be explored in the long version of this extended abstract, is the influence of

the starting point on the nature of the generating function. As examples, Gessel’s and Kreweras’

models starting from (0, 1) do not admit decoupling functions, which implies their transcendance.
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A Rational invariants for finite groups
Recall from [BMM10] that there are 23 models with a finite group. First come 16 models with a vertical

symmetry, for which K(x, y) = (1+ x2)ã(y) + xb̃(y). Hence for a pair (x, y) that cancels the kernel, we

have x+ 1
x = − b̃(y)

ã(y) . A possible choice of invariants is thus:

I1(x) = x+
1

x
, I2(y) = −

b̃(y)

ã(y)
.

We are left with 7 models. We can restrict the discussion to 3 since the invariants of two models differing

by a symmetry of the square are related. As these symmetries are generated by the reflection in the first

diagonal and the reflection in a vertical, we just need to consider these two cases.

Lemma 13 Take a model S with kernel K(x, y) and its diagonal reflection S̃, with kernel K̃(x, y) =

K(y, x). Then S̃ admits invariants if and only if S does, and in this case a possible choice is Ĩ1 = I2 and

Ĩ2 = I1. A similar statement holds for the vertical reflection S, with kernel K(x, y) = x2K(1/x, y). A

possible choice is in this case I1(x) = I1(1/x) and I2 = I2.

We can now complete our list of rational invariants: Table 1 gives for the 7 remaining models a pair

(I1, I2) satisfying the conditions of Lemma 3. Finally, Table 2 gives invariants for the four weighted

models of Figure 1.

B Decoupled models
As discussed in Section 3, we have found 4 decoupled models among those with a finite group (and 4

more if we include the weighted models of Figure 1), and 9 with an infinite group. In Tables 3 and 4 we

give the corresponding functions F and G, first for the models of Figure 1, then for those of Figure 2.
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I1
t

x2 −
1
x
− tx t

x2 −
1
x
− tx tx2

− x−
t

x
tx−

t

x
+ 1+2t

1+ 1

x

t

x
− tx−

1+2t
1+x

x+ 1
x
− tx2

−
t

x2

I2 ty2
− y −

t

y

t

y2 −
1
y
− ty ty2

− y −
t

y

t

y
− ty −

1+2t
1+y

t

y
− ty −

1+2t
1+y

y + 1
y
− ty2

−
t

y2

Tab. 1: Rational invariants for models with a finite group: models with no vertical symmetry.

1

1
λ

1

2

1

1

1
2

1

2

1
1

2

1
1

1

1

1
2

2

1
2

1

1

1
1

I1
t

x2 −
1
x
− x(1 + λt) t2

x2 −
(1+2t)t

x
− (3t+ 1)tx−

(1+3t)(4t+1)
x+1

+ (3t+1)2

(x+1)2
see Lemma 13

and the

I2 t2y + 1+λt

y+1
−

(

1+λt

y+1

)2
t2

y2 −
(1+2t)t

y
− (3t+ 1)ty −

(1+3t)(4t+1)
y+1

+ (3t+1)2

(y+1)2
previous example

Tab. 2: Rational invariants for weighted models.

Model

1
1

λ
1
2
1

1
1

2
1
2
1

1

2
1

1

1
1
1

2

2
1

2
1
1

1
1

F −
1
x

−
1
x

−x−
1
x

−x+ 1
x
−

1+3t
t(1+x)

−x2 + x(1 + 1
t
) +

3+ 1

t

x
−x−

1+3t
t(1+x)

G −
1
y

−
1

t(1+y)
−

1+λt

t(1+y)
−y + 1

y
−

1+3t
t(1+y)

−y2 + y(1 + 1
t
) +

3+ 1

t

y
−y −

1
y

Tab. 3: Decoupling functions for algebraic models.

Model
#1 #2 #3 #4 #5 #6 #7

F −x2 + x

t
−x2 + x

t
−

1
x

1
x2 −

1
xt

− x −
1
x

−
1+t

t(x+1)
−x2 + x

t

G −
1
y

−y −
1
y

−y −
1
y

−y2 + y

t
+ 1

y
−

1+t

t(y+1)
− y −

1
y

−y −
1
y

#8 #9

−
1

x
− x

(t+ 1)2

(x+ 1)2t2
−

2t2 + 3t + 1

(x+ 1)t2
−

1

x
− x

−
1

y
− y −

1

y2
+

1

ty
+

(t+ 1)y

t
− y2

Tab. 4: Decoupling functions for nine infinite group models.


