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Abstract MEMS vibrating beam accelerometers use the

variation of frequency of a vibrating beam attached to a

proof mass to measure its applied acceleration. Considering

inertial navigation applications, the beam is actuated in the

linear regime to keep high eigen frequency stability.

Concerning the new application of MEMS accelerometers

as UGS seismometers, the bias stability is not important

anymore and the important parameter is the resolution at

integration time of 1 ms. It becomes then interesting to

actuate the beam in the nonlinear regime. This paper pre-

sents a behavioral model of the vibrating beam acceler-

ometer including the nonlinear terms. This model is

validated by experimental measurements and phase noise

in the nonlinear regime is simulated. The seismometer

resolution is then calculated in the nonlinear regime and

compared to other state of the art UGS seismometers.

Keywords Accelerometer � Seismometer � Nonlinear
resonator � Phase noise

1 Introduction

1.1 Application of MEMS accelerometers to seismic

UGS (unattented ground sensor) applications

Seismometers have been widely used for earthquake moni-

toring and oil&gas prospecting.More recently, seismometers

have been integrated in wireless sensors networks for areas

surveillance. The goal of the seismometers used as unattended

ground sensors (UGS) is to detect and identify walking

persons or moving vehicles by means of seismic waves

measurements [1–4]. The bandwidth of the seismic signal is

from DC to 1,000 Hz.

The small size and low power consumption of MEMS

accelerometers allows using them in such applications. Their

advantages over the conventional geophones are the fol-

lowing [5, 6]: the MEMS accelerometer is DC coupled

whereas the geophone acts as a high pass filter and signal

below 10 Hz is not detected, it is alsomuch smaller andmore

robust to shocks, while showing a good signal to noise ratio.

Figure 1 shows such a ground acceleration measurement

produced by a walking person and measured by state of the

art accelerometer. The amplitude of the acceleration sine

wave is measured and related to the distance of the person

to the sensor, so the bias stability is not important in this

application whereas the resolution is critical as it deter-

mines the maximum distance of detection.

1.2 The high resolution vibrating beam seismometer

The vibrating beam accelerometer (VBA) consists in a

vibrating micro beam anchored on one side and linked to a

proof mass on the other side as shown in Fig. 2. The beam

is maintained at resonance by means of an oscillator cir-

cuit, and when the proof mass is submitted to acceleration,

compressive or tensile stresses are applied on the vibrating

beam modifying its resonance frequency. The output of the

accelerometer is a frequency measurement, its resolution is

determined by the phase noise integrated over the sensor

bandwidth, and its bias stability is determined by the close

to carrier phase noise or frequency stability.

The high resolution VBA developed at ONERA [7] is

presented in Fig. 2. Its acceleration noise expressed as the

Allan deviation over integration time is presented in Fig. 3.

This acceleration noise shows a low noise \100 ng for
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integration time[30 s but higher noise for integration time

of 1 ms used for UGS applications. This acceleration noise

measurement has been performed while operating the beam

resonator in the linear regime, the goal of this work is to

quantify the achievable reduction of noise obtained by

operating the vibrating beam in the nonlinear regime.

Towards that purpose, the behavioral model of the VBA

including nonlinear terms is presented, and then phase

noise simulations are performed and analyzed.

1.3 Phase noise in the nonlinear regime

Recent works [8] have investigated the phase noise of an

oscillator including nonlinear terms. They show that, in

presence of mechanical nonlinear terms of the resonator,

increasing the amplitude of the excitation force leads to an

improvement of the far from carrier phase noise and a deg-

radation of the close to carrier phase noise. Concerning the

vibrating beam accelerometer, the excitation amplitude

increase leads to the decrease of the accelerometer noise over

a high bandwidth at the cost of a decrease of the bias stability,

this is not recommended for inertial application where the

acceleration is twice integrated but is interesting for seismic

ground sensor applications where bias stability is not con-

sidered and the important parameter is the resolution at the

bandwidth determined by the frequency of the seismicwaves

(*DC-1,000 Hz). In this case it is then better to operate the

beam resonator in the nonlinear regime to improve the sensor

resolution and thus the maximum detection distance.

The development of a behavioral model of the nonlinear

resonator and its oscillator electronics and its phase noise

simulation has permitted the optimization of the VBA in

the nonlinear regime. These models, simulations and

experimental measurements are presented in this paper.

2 Behavioural modeling of the oscillator

2.1 Behavioral oscillator model

The behavioral model of the VBA shown in Fig. 4 has been

presented in previous papers [9, 10], it includes:

• The mass & stiffness resonator model equation includ-

ing the Duffing mechanical nonlinear term:

Fx ¼ mx
:: þd _xþ kxþ k3x

3 ð1Þ

Fx: actuation force (N), x: displacement (m), m: equivalent

mass (kg), d: damping term (kg/s), k: equivalent stiffness

(N/m), k3: nonlinear stiffness (N/m
3).

For a clamped–clamped beam, the parameters of Eq. 1

can be expressed with the parameters of the beam. Details

of the calculations can be found in [11]:

k ¼ 16Ehe3

L3
ð2Þ

m ¼ 0:38qehL ð3Þ

Fig. 1 Ground acceleration

measurement showing the

seismic waves produced by a

walking person: on the left each

spike corresponds to a footstep,

on the right the ground

acceleration in response to a

footstep is shown

Fig. 2 On the left finite element model of the vibrating beam

accelerometer showing the vibrating beam attached to the proof mass.

The manufactured quartz crystal accelerometer structure is presented

on the right

Fig. 3 Acceleration noise of the high resolution VBA expressed as

the Allan deviation over integration time
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d ¼ mx0

Q
ð4Þ

E: quartz Young modulus (Pa), q: quartz density (kg/m3),

h: height of the beam (m), e: width of the beam (m), L:

length of the beam (m), x0: eigen frequency of the beam,

Q: quality factor of the beam.

The eigen frequency for a clamped–clamped beam is

shown in Eq. 5. Details of the calculation can be found in

[12]:

x0 ¼
3:52

2
ffiffiffi

3
p e

L2

ffiffiffiffi

E

q

s

ð5Þ

The damping term of the beam is limited by thermoelsatic

damping, its quality factor is derived in [13, 14]:

Q ¼ qCpðf 20 þ f 2t Þ
a2T0Ef0ft

ft ¼
qKt

2qCpe2
ð6Þ

Kt: quartz thermal conductibility (W m-1 K-1), Cp: quartz

heat capacity at constant pressure (J kg-1 K-1), a: thermal

expansion coefficient (K-1).

The expression of the Duffing nonlinear stiffness term is

calculated in [11]:

k3 ¼
k
ffiffiffi

2
p

e2
ð7Þ

• The linear piezoelectric transduction equation:

Fx ¼ NpiezoVx ð8Þ
q ¼ NpiezoX ð9Þ

Npiezo ¼ e12
3eh

L
ð10Þ

Npiezo is the linear piezoelectric transduction parameter (C/

m), Fx is the excitation force (N), Vx is the excitation

voltage (V), q are the electric charges (C), X the

mechanical displacement (m), e12 is the piezoelectric

coefficient (N V-1 m-1).

As piezoelectric transduction remains linear, the main

nonlinearity originates from the resonator.

• The analog electronics self-sustained oscillator. The

components of the circuit are described by their spice

model including the associated white and flicker noise

sources.

2.2 Open loop model simulation

Transient open loop simulations are performed on the

mechanical resonator including piezoelectric transduction

and compared to experimental measurements on the

accelerometer quartz resonator: the experimental setup

consists in a waveform generator to actuate the resonator, a

charge amplifier at the resonator output that output voltage

is proportional to the mechanical displacement of the

cantilever. The actuation frequency is swept around the

eigen frequency, and the resonance curve is repeated for

three values of the excitation voltage. The results are

shown in Fig. 5 and show nonlinear behavior in good

agreement between measurements and simulations, this

validates that the main nonlinear term originates from the

mechanical resonator nonlinear term in Eq. 1.

2.3 Phase noise simulation

Closed loop simulations can then be performed including

the resonator and the self-sustained oscillator circuit

models.

Phase noise can be simulated once the steady state is

reached with the Pnoise tool of the cadence software. This

phase noise is then used to calculate the Allan deviation that is

a standard measurement of noise for sensors. The Allan

deviation for an integration time of 1 ms is then the parameter

to optimize to design a high resolution UGS seismometer.

Fig. 4 Behavioural model of the quartz crystal MEMS oscillator

including the mechanical cubic nonlinear term

Fig. 5 Experimental and simulations based nonlinear resonance

curves for the quartz clamped–clamped resonator of the vibrating

beam accelerometer
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3 Optimization of the UGS seismometer resolution

3.1 From phase noise to acceleration noise

Once the phase noise of the accelerometer has been sim-

ulated, in order to obtain the resolution of the accelerom-

eter integrated over its bandwidth, the phase noise is

converted into frequency noise, and then into acceleration

noise expressed as the Allan deviation that is a standard

performance measurement for sensors.

The phase noise SU(f) is expressed in dBc/Hz as the

spectral density of a signal’s phase deviation where f is the

relative frequency from the carrier. It can be simulated by

Cadence software given a behavioral model of the reso-

nator, the piezoelectric transduction model, and the oscil-

lator circuit model. A Periodic steady state simulation is

first performed, followed by a phase noise simulation.

This phase noise can be converted into frequency noise

[15]:

Syðf Þ ¼
f 2

f 20
Suðf Þ ð11Þ

The frequency noise is then converted into the Allan

frequency deviation [15]:

r
2
yðsÞ ¼ 2

Z

1

0

Syðf Þ
sin4ðpsf Þ
ðpsf Þ2

df ð12Þ

Finally the Allan frequency deviation is converted into

Allan acceleration deviation expressed in g:

rA sð Þ ¼ ry sð ÞK ð13Þ

where K is the accelerometer scale factor (Hz/g).

3.2 VBA acceleration noise in the nonlinear regime

The Allan deviation is simulated for increasing values of

the excitation voltages as shown in Figs. 6 and 7. It shows

that increasing the excitation voltage:

– In the linear regime (Vx\ 500 mV):

• Improves noise at an integration time of 1 ms

• Has no impact on noise at high integration times

– In the nonlinear regime (Vx[ 500 mV):

• Improves noise at an integration time of 1 ms

• Worsens noise at high integration times

3.3 Application to the vibrating beam UGS

seismometer

Concerning seismic ground sensor applications where the

bias stability is not considered and the important parameter

is the sensor resolution at an integration time of 1 ms, it is

better to actuate the resonator in the nonlinear regime.

Actuating the resonator with a 8 V excitation voltage leads

to a resolution of 50 lg. This VBA resolution makes it a

good UGS seismometer compared to state of the art MEMS

UGS seismometers as shown in Table 1. Compared to the

other silicon MEMS pendular accelerometers presented in

Table 1, the VBA has the advantage of a direct digital

frequency output that allows a wide dynamic range and no

need for ADC, there is also no need for high polarization

voltage (piezoelectric transduction), and a good tradeoff

between resolution and power consumption.

Fig. 6 Allan acceleration deviation for increasing values of the

excitation voltage remaining in the linear regime

Fig. 7 Allan acceleration deviation for increasing values of the

excitation voltage in the nonlinear regime

Table 1 Performances of state of the art MEMS seismometers used

as UGS for area surveillance

MEMS accelerometer Resolution @ 1 ms

integration time (lg)

Power

consumption

(mW)

SD1221 [16] 150 25

SF1500 [17] 10 150

VBA (this work) 40 50
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3.4 Application to the vibrating beam accelerometer

for inertial navigation

For other applications of vibrating beam accelerometers

such as inertial navigation, the acceleration measurement is

twice integrated to calculate the position, and as a conse-

quence the bias stability is crucial. The bias stability is

deteriorated when the beam resonator operates in the

nonlinear regime, this is the reason why VBAs work in the

linear region for inertial applications.

4 Conclusions

The acceleration noise simulation of the VBA has been

performed with an excitation voltage high enough to drive

the clamped–clamped beam resonator in the nonlinear

regime. It shows, in the nonlinear regime, an improvement

of the resolution at low integration time but worsens the

resolution for higher integration time. It is thus interesting

to actuate the resonator in the nonlinear regime for seismic

ground sensor applications where the dynamic acceleration

is measured and the resolution at integration time of 1 ms

determines the maximum distance of detection. If excited

in the nonlinear regime, the resolution of the VBA can be

as good as 50 lg at integration time of 1 ms, that design is

well suited for UGS seismometer application.
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