
HAL Id: hal-01228533
https://hal.science/hal-01228533

Preprint submitted on 18 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Painlevé monodromy manifolds, decorated character
varieties and cluster algebras

Leonid Chekhov, Marta Mazzocco, Vladimir Roubtsov

To cite this version:
Leonid Chekhov, Marta Mazzocco, Vladimir Roubtsov. Painlevé monodromy manifolds, decorated
character varieties and cluster algebras. 2015. �hal-01228533�

https://hal.science/hal-01228533
https://hal.archives-ouvertes.fr


ar
X

iv
:1

51
1.

03
85

1v
1 

 [
m

at
h-

ph
] 

 1
2 

N
ov

 2
01

5

PAINLEVÉ MONODROMY MANIFOLDS, DECORATED

CHARACTER VARIETIES AND CLUSTER ALGEBRAS.

LEONID CHEKHOV, MARTA MAZZOCCO, VLADIMIR RUBTSOV

Abstract. In this paper we introduce the concept of decorated character va-
riety for the Riemann surfaces arising in the theory of the Painlevé differential
equations. Since all Painlevé differential equations (apart from the sixth one)
exhibit Stokes phenomenon, it is natural to consider Riemann spheres with
holes and bordered cusps on such holes. The decorated character is defined as
complexification of the bordered cusped Teichmüller space introduced in [8].
We show that the decorated character variety of a Riemann sphere with s holes
and n > 1 cusps is a Poisson manifold of dimension 3s + 2n − 6 and we ex-
plicitly compute the Poisson brackets which are naturally of cluster type. We
also show how to obtain the confluence procedure of the Painlevé differential
equations in geometric terms.

1. Introduction

It is well known that the sixth Painlevé monodromy manifold is the SL2(C)
character variety of a 4 holed Riemann sphere. The real slice of this character
variety is the decorated Teichmüller space of a 4 holed Riemann sphere, and can be
combinatorially described by a fat-graph and shear coordinates. By complexifying
the shear coordinates, flat coordinates for the character variety of a 4 holed Riemann
sphere were found in [7].

For the other Painlevé equations, the interpretation of their monodromy man-
ifolds as ”character varieties” of a Riemann sphere with boundary is still an ex-
tremely difficult problem due to the fact that the linear problems associated to
the other Painlevé equations exhibit Stokes phenomenon. This implies that some
of the boundaries have bordered cusps on them [8]. Being on the boundary, these
bordered cusps escape the usual notion of character variety leading to the necessity
of introducing a decoration.

In this paper we present a decoration which truly encodes the geometry of each
cusped boundary. On the real slice of our decorated character variety, this dec-
oration corresponds to choosing some horocycles to associate a λ-length to each
bordered cusp.1 This geometric description allows us to introduce flat coordinates
in the corresponding bordered cusped Teichmüller space (see [8] for the definition of
this notion) and by complexification on the decorated character variety.

This leads us to define explicitly a set of coordinates on the decorated character
variety of the Riemann spheres with bordered cusps which arise in the theory of the

1We use the term bordered cusp meaning a vertex of an ideal triangle in the Poincaré metric
in order to distinguish it from standard cusps (without borders) associated to punctures on a
Riemann surface.
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Painlevé differential equations and to compute the Poisson brackets in these coor-
dinates. Such Poisson brackets coincide with the cluster algebra Poisson structure
as predicted in [8].

We note that another approach to this problem was developed in [2] where
the definition of wild character variety was proposed following a construction by
Gaiotto, Moore and Neitzke [16] which consisted in introducing spurious punctures
at the points of intersection between the Stokes lines and some fixed circles around
each irregular singularity. This description does not seem compatible with the
confluence procedure of the Painlevé equations, which is one of our motivations to
propose a new approach.

We show that, if we exclude PV I, we have nine possible Riemann surfaces with
bordered cusps, for which we define the decorated character variety. We show that
in each case there is a singled Poisson sub-algebra which is the coordinate ring of an
affine variety (the monodromy manifold of one of the Painlevé differential equations)
We shall explain it in details in the Section 5. Indeed, all the Painlevé differential
equations arise as monodromy preserving deformations of an auxiliary linear system
of two first order ODEs. The monodromy data of such auxiliary linear system
are encoded in their monodromy manifolds which can all be described by affine
cubic surfaces in C3 defined by the zero locus of the corresponding polynomials
in C[x1, x2, x3] given in Table 1, where ω1, . . . , ω4 are some constants related to
the parameters appearing in the corresponding Painlevé equation as described in
Section 2.

P-eqs Polynomials
PV I x1x2x3 + x2

1 + x2
2 + x2

3 + ω1x1 + ω2x2 + ω3x3 + ω4

PV x1x2x3 + x2
1 + x2

2 + ω1x1 + ω2x2 + ω3x3 + 1 + ω2
3 −

ω3(ω2+ω1ω3)(ω1+ω2ω3)
(ω2

3
−1)2

PVdeg x1x2x3 + x2
1 + x2

2 + ω1x1 + ω2x2 + ω1 − 1
PIV x1x2x3 + x2

1 + ω1x1 + ω2(x2 + x3) + ω2(1 + ω1 − ω2)
PIII x1x2x3 + x2

1 + x2
2 + ω1x1 + ω2x2 + ω1 − 1

PIIID7 x1x2x3 + x2
1 + x2

2 + ω1x1 − x2

PIIID8 x1x2x3 + x2
1 + x2

2 − x2

PIIJM x1x2x3 − x1 + ω2x2 − x3 − ω2 + 1
PIIFN x1x2x3 + x2

1 + ω1x1 − x2 − 1
PI x1x2x3 − x1 − x2 + 1

Table 1.

Note that in Table 1, we distinguish ten different monodromy manifolds, the

PIIIPIII , PIIIPIIID7
and PIIIPIIID8

correspond to the three different cases of
the third Painlevé equation according to Sakai’s classification [27], and the two mon-
odromy manifolds PIIFN and PIIJM associated to the same second Painlevé equa-
tion correspond to the two different isomonodromy problems found by Flaschka–
Newell [13] and Jimbo–Miwa [21] respectively.
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Our methodology consists in reproducing the famous confluence scheme for the
Painlevé equations:

PD6
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❉❉

❉❉
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❉
// PD7

III

""❉
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❊
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II

// PI

PIV

<<②②②②②②②②②
// PFN

II

<<③③③③③③③③③

in terms of the following two basic operations on the underlying Riemann sphere:

• Chewing-gum: hook two holes together and stretch to infinity by keeping
the area between them finite (see Fig. 1).

• Cusps removal: pull two cusps on the same hole away by tearing off an
ideal triangle (see Fig. 2).

Figure 1. The process of confluence of two holes on the Riemann
sphere with four holes: as a result we obtain a Riemann sphere with one
less hole, but with two new cusps on the boundary of this hole. The
red geodesic line which was initially closed becomes infinite, therefore
two horocycles (the green dashed circles) must be introduced in order
to measure its length.

Figure 2. The process of breaking up a Riemann surface with bound-
ary cusps: by grabbing together two cusps and pulling we tear apart an
ideal triangle.
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As shown by the first two authors in [8], these two operations correspond to
certain asymptotics in the shear coordinates and perimeters. We will deal with
such asymptotics in Section 5. The confluence process on the underlying Riemann
spheres with cusped boundaries is described in Fig. 3.

Figure 3. The table of confluences of Riemann surfaces from the
Painlevé perspective. The red arrows correspond to chewing-gum moves,
the green ones to cusp removal.

Note that these results agree with the work by T. Sutherland [28] who used the
auxiliary linear problem to produce a quadratic differential on the same underlying
Riemann spheres with cusped boundaries. In his work, Sutherland associated a
quiver to each of the above Painlevé cusped Riemann spheres and explicitly exhibit
the canonical connected component of the space of numerical stability conditions
of the Painlevé quivers.

In our work, cluster algebras appear naturally when describing the bordered
cusped Teichmüller space of each Riemann sphere with bordered cusps. Indeed, as
shown in [8], when bordered cusps arise, it is possible to introduce a generalised

lamination on the Riemann surface consisting only of geodesics which start and
terminate at the cusps. The geodesic length functions (well defined by fixing horo-
cycles at each cusp) in this lamination are the coordinates in the bordered cusped
Teichmüller space, while the decoration itself is given by the choice of horocycles.
In the Poisson structure given by the Goldman bracket, these coordinates satisfy
the cluster algebra Poisson bracket. This is due to the fact that the geodesics in
the lamination do not intersect in the interior of the Riemann sphere, but come
together asymptotically in the bordered cusps. We also study the corresponding
cluster mutations and show that in the case of a Riemann sphere with four holes
they correspond to the procedure of analytic continuation for solutions to the sixth
Painlevé equation, thus showing that this procedure of analytic continuation satis-
fies the Laurent phenomenon. For the other Painlevé equations, the cluster algebra
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mutations correspond to the action of the Mapping Class Group on the cusped
lamination.

We define the decorated character variety as the complexification of the bordered
cusped Teichmüller space so that by complexifying the coordinates given by the
generalised laminations we obtain coordinates on the decorated character varieties.
We show that in the case of the Painlevé differential equations, the decorated
character variety is a Poisson manifold of dimension 3s + 2n − 6, where s is the
number of holes and n > 1 is the number of cusps. We show that in each case the
decorated character variety admits a special Poisson sub–manifold defined by the
set of functions which Poisson commute with the frozen cluster variables. This sub–
manifold is defined as a cubic surface Mφ := Spec(C[x1, x2, x3]/〈φ = 0〉), where φ
is one of the polynomials in Table 1, with the natural Poisson bracket defined by:

(1.1) {x1, x2} =
∂φ

∂x3
, {x2, x3} =

∂φ

∂x1
, {x3, x1} =

∂φ

∂x2
.

This paper is organised as follows: in Section 2, we recall the link between the
parameters ω1, . . . , ω4 and the Painlevé parameters α, β, γ and δ in each Painlevé
equation and discuss the natural Poisson bracket (1.1) on each cubic. In Section 3,
we remind some important notions on the combinatorial description on the bordered
cusped Teichmüller space. In Section 4, we introduce the notion of decorated
character variety. In Section 5, we present the flat coordinates for each cubic and
describe the laminations and the corresponding cluster algebra structure. In Section
6, we explain the generalised cluster algebra structure appearing in the case of PV I,
PV , PIII and PIV . In the Appendix we discuss the singularity theory.

Acknowledgements. The authors are grateful to P. Clarkson and T. Sutherland
for helpful discussions. We are thankful to B.V. Dang for his help with SINGULAR
package. The work of L.O.Ch. was partially supported by the center of excellence
grant “Centre for Quantum Geometry of Moduli Spaces” from the Danish National
Research Foundation (DNRF95) and by the Russian Foundation for Basic Research
(Grant Nos. 14-01-00860-a and 13-01-12405-ofi-m2). This research was supported
by the EPSRC Research Grant EP/J007234/1, by the Hausdorff Institute, by ANR
”DIADEMS”, by RFBR-12-01-00525-a, MPIM (Bonn) and SISSA (Trieste).

2. The Painlevé the monodromy manifolds and their Poisson

structure

According to [26], the monodromy manifolds M(d) have all the form

(2.2) x1x2x3 + ǫ
(d)
1 x2

1 + ǫ
(d)
2 x2

2 + ǫ
(d)
3 x2

3 + ω
(d)
1 x1 + ω

(d)
2 x2 + ω

(d)
3 x3 + ω

(d)
4 = 0,

where d is an index running on the list of the Painlevé cubics PV I, PV, PVdeg, P IV ,

PIIID6 , P IIID7 , P IIID8 , P IIJM , P IIFN , P I and the parameters ǫ
(d)
i , ω

(d)
i , i =

1, 2, 3 are given by:

ǫ
(d)
1 =

{
1 for d = PV I, PV, PIII, PVdeg, P IIID7 , P IIID8 , P IV, PIIFN ,
0 for d = PIIJM , P I,

ǫ
(d)
2 =

{
1 for d = PV I, PV, PIII, PVdeg, P IIID7 , P IIID8

0 for d = PIV, PIIFN , P IIJM , P I,

ǫ
(d)
3 =

{
1 for d = PV I,
0 for d = PV, PIII, PVdeg, P IIID7 , P IIID8 , P IV, PIIFN , P IIJM , P I.
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while

ω
(d)
1 = −G

(d)
1 G(d)

∞ − ǫ
(d)
1 G

(d)
2 G

(d)
3 , ω

(d)
2 = −G

(d)
2 G(d)

∞ − ǫ
(d)
2 G

(d)
1 G

(d)
3 ,

ω
(d)
3 = −G

(d)
3 G(d)

∞ − ǫ
(d)
3 G

(d)
1 G

(d)
2 ,(2.3)

ω
(d)
4 = ǫ

(d)
2 ǫ

(d)
3

(
G

(d)
1

)2

+ ǫ
(d)
1 ǫ

(d)
3

(
G

(d)
2

)2

+ ǫ
(d)
1 ǫ

(d)
2

(
G

(d)
3

)2

+
(
G(d)

∞

)2

+

+G
(d)
1 G

(d)
2 G

(d)
3 G(d)

∞ − 4ǫ
(d)
1 ǫ

(d)
2 ǫ

(d)
3 ,

where G
(d)
1 , G

(d)
2 , G

(d)
3 , G

(d)
∞ are some constants related to the parameters appearing

in the Painlevé equations as follows:

G
(d)
1 =





2 cosπθ0 d = PV I, PV, PIII, PVdeg, P IV, PIIFN

1 d = PIIID8 , P IIJM , P I
∞ d = PIIID7 ,
0 d = PIIID8 ,

G
(d)
2 =





2 cosπθ1 d = PV I, PV,
2 cosπθ∞ d = PIII, PVdeg, P IV,
eiπθ0 d = PIIJM

1 d = PIIID8 , P IIFN PI
∞ d = PIIID7 , P IIID8 ,

G
(d)
3 =





2 cosπθt d = PV I,
2 cosπθ∞ d = PV, PIV
1 d = PIIJM ,
0 d = PIII, PVdeg, P IIID7 , P IIID8 , P IIFN , P I

(2.4)

G(d)
∞ =





2 cosπθ∞ d = PV I, PIV
1 d = PV, PVdeg, D8, P IIJM , P IIFN , P I
eiπθ0 d = PIII
0 d = PIIID7 , P IIID8 .

where the parameters θ0, θ1, θt, θ∞ are related to the Painlevé equations parameters
in the usual way [21]. Note that for PIIID7 the parameters G1 and G2 tend to
infinity - we take this limiti in such a way that ω1 = −G1G∞ and ω2 = −G2G∞

are not zero, while ω4 = 0. Similarly for PIIID8 .

Remark 2.1. Observe that in the original article [26] the cubic corresponding to
the Flaschka–Newell isomonodromic problem [13] is in the form x1x2x3+x1−x2+
x3 + 2 cosπθ0 = 0. This can be obtained from our cubic PII : E∗

7 x1x2x3 + x2
1 +

ω1x1 − x2 + 1 by the following diffeomorphism (away from x2x3 = 0):

x1 → −sx1, x2 →
1

s
x2, x3 →

s2x2
1 −

1+x1x2

s
x3

x1x2
,

where s = 2 cosπθ0. The reason to choose the cubic in the form PII : E∗
7 will be

clear in Section 5.

Remark 2.2. Note that the PIIID7 , PIIID8 and PI cubics have different signs
in [26], which can both be obtained by a trivial rescaling of the variables x1, x2, x3.

2.1. Natural Poisson bracket on the monodromy manifold. We would like to
address here some natural facts that arise when comparing the various descriptions
of family of affine cubics surfaces with 3 lines at infinity (2.2).
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First of all, the projective completion of the family of cubics 2.2 with ǫ
(d)
i 6= 0

for all i = 1, 2, 3 has singular points only in the finite part of the surface and if any

of ǫ
(d)
i , i = 1, 2, 3 vanish, then M(d) is singular at infinity with singular points in

homogeneous coordinates Xi = 1 and Xj = 0, j 6= i ([24]). Here xi =
Xi

X0
.

One can consider this family of cubics as a variety S = {(x̄, ω̄) ∈ C
3 × Ω) :

S(x̄, ω̄) = 0} where x̄ = (x1, x2, x3), ω̄ = (ω1, ω2, ω3, ω4) and the ”x̄−forgetful”
projection π : S → Ω : π(x̄, ω̄) = ω̄. This projection defines a family of affine cubics
with generically non–singular fibres π−1(ω̄) (we will discuss the nature of these
singularities in Subsection 6.3).

The cubic surface Sω̄ has a volume form ϑω̄ given by the Poincaré residue for-
mulae:

(2.5) ϑω̄ =
dx1 ∧ dx2

(∂Sω̄)/(∂x3)
=

dx2 ∧ dx3

(∂Sω̄)/(∂x1)
=

dx3 ∧ dx1

(∂Sω̄)/(∂x2)
.

The volume form is a holomorphic 2-form on the non-singular part of Sω̄ and it
has singularities along the singular locus. This form defines the Poisson brackets
on the surface in the usual way as

(2.6) {x1, x2}ω̄ =
∂Sω̄

∂x3

and the other brackets are defined by circular transposition of x1, x2, x3. It is a
straightforward computation to show that for (i, j, k) = (1, 2, 3):

(2.7) {xi, xj}ω̄ =
∂Sω̄

∂xk

= xixj + 2ǫdi xk + ωd
i

and the volume form (2.5) reads as

(2.8) ϑω̄ =
dxi ∧ dxj

(∂Sω̄)/(∂xk)
=

dxi ∧ dxj

(xixj + 2ǫdi xk + ωd
i )

.

In a special case of PV I , i.e. the D̃4 cubic with parameters ωi = 0 for i = 1, 2, 3
and ω4 = −4, there is an isomorphism π : C∗ × C∗/η → Sω̄ : [4]

(2.9) π(u, v) → (x1, x2, x3) = (−u− 1/u,−v − 1/v,−uv − 1/uv),

where η is the involution of C∗×C∗ given by u → 1/u, v → 1/v. The log-canonical
2-form ϑ̄ = du∧dv

uv
defines a symplectic structure on C∗×C∗ which is invariant with

respect the involution η and therefore defines a symplectic structure on the non-
singular part of the cubic surface Sω̄ for ωi = 0 for i = 1, 2, 3 and ω4 = −4.

The relation between the log-canonical 2-form ϑ̄ = du∧dv
uv

and the Poisson brack-
ets on the surface Sω̄ can be extended to all values of the parameters ω̄ and for
all the Painlevé cubics as we shall show in this paper. In fact the flat coordinates
that we will introduce in Section 5 are such that their exponentials satisfy the
log-canonical Poisson bracket.

Remark 2.3. The cubic M(PV I) appears in many different contexts outside of
the Painlevé theory. For example, it was studied in Oblomkov’ s work (see [24]) in
relation to Cherednik algebras and M. Gross, P. Hacking and S.Keel (see Example
5.12 of [18]) claim that the family 2.2 can be ”uniformized” by some analogues
of theta-functions related to toric mirror data on log-Calabi-Yau surfaces. More
precisely, the projectivisation Y of 2.2 with the cubic divisor ∆ : X1X2X3 = 0 is an
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example of so called Looeijnga pair and Y \∆ is a log-symplectic Calabi-Yau variety
with the holomorphic 2-form 2.5. We shall quantize this log-Calabi-Yau variety in
the subsequent paper [9].

3. Combinatorial description of the bordered cusped Teichmüller

space

Let us start with the standard case, i.e. when no cusps are present. According
to Fock [14] [15], the fat graph associated to a Riemann surface Σg,n of genus g
and with n holes is a connected three–valent graph drawn without self-intersections
on Σg,n with a prescribed cyclic ordering of labelled edges entering each vertex; it
must be a maximal graph in the sense that its complement on the Riemann surface
is a set of disjoint polygons (faces), each polygon containing exactly one hole (and
becoming simply connected after gluing this hole). In the case of a Riemann sphere
Σ0,4 with 4 holes, the fat–graph is represented in Fig. 4.

The geodesic length functions, which are traces of hyperbolic elements in the
Fuchsian group ∆g,s such that

Σg,s ∼ H/∆g,s

are obtained by decomposing each hyperbolic matrix γ ∈ ∆g,s into a product of
the so–called right, left and edge matrices:

R :=

(
1 1
−1 0

)
, L :=

(
0 1
−1 1

)
, Xsi :=

(
0 − exp

(
si
2

)

exp
(
− si

2

)
0

)
,

where si is the shear coordinate associated to the i-th edge in the fat graph.
In [8] the notion of fat-graph was extended to allow cusps. Here we present this

definition adapted to the special cases dealt in the current paper:

Definition 3.1. We call cusped fat graph (a graph with the prescribed cyclic or-
dering of edges entering each vertex) Gg,s,n a spine of the Riemann surface Σg,s,n

with g handles, s and n > 0 decorated bordered cusps if

(a) this graph can be embedded without self-intersections in Σg,s,n;
(b) all vertices of Gg,s,n are three-valent except exactly n one-valent vertices

(endpoints of the open edges), which are placed at the corresponding bor-
dered cusps;

(c) upon cutting along all nonopen edges of Gg,s,n the Riemann surface Σg,s,n

splits into s polygons each containing exactly one hole and being simply
connected upon contracting this hole.

Definition 3.2. We call geometric cusped geodesic lamination (CGL) on a bordered
cusped Riemann surface a set of nondirected curves up to a homotopic equivalence
such that

(a) these curves are either closed curves (γ) or arcs (a) that start and terminate
at bordered cusps (which can be the same cusp);

(b) these curves have no (self)intersections inside the Riemann surface (but can
be incident to the same bordered cusp);

(c) these curves are not empty loops or empty loops starting and terminating
at the same cusp.
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In the case of arcs, the geodesic length functions are now replaced by the signed
geodesic lengths of the parts of arcs contained between two horocycles decorat-
ing the corresponding bordered cusps; the sign is negative when these horocycles
intersect.

Combinatorially speaking this corresponds to calculating the lengths of such arcs
by associating to each arc a matrix in SL2(R) in the same way as before, i.e. by
taking products of left, right and edge matrices, but then by taking the trace of

such product of matrices multiplied by the cusp matrix: K =

(
0 0
−1 0

)
at the

right hand side of the whole expression. For example the arc b in Fig. 6 has length
lb such that

exp

(
lb
2

)
= Tr (X(k1)RX(s3)RX(s2)RX(p2)RX(s2)LX(s3)LX(k1)K) .

Note that in all fat graphs in this paper we distinguish the shear coordinates
s1, s2, s3 which correspond to the edges in the central T shaped part of the graph
and the shear coordinates k1, . . . , k6 which arise when breaking holes.

In [8] it is proved that for every cusped fat-graph with the additional property
that the polygons containing holes with no cusps are monogons, there exists a
complete cusped geodesic lamination which consists only of arcs and simple loops
around the un-cusped holes. Loosely speaking, this means that all lengths of any
closed geodesic or of any arc in the Riemann surface is a Laurent polynomial of the
lengths of the elements in the lamination.

The Poisson brackets between lengths of arcs and closed geodesics can be com-
puted by using the Weil–Petersson bracket , which is shear coordinates becomes
[5, 6]

(3.10)
{
f(Z), g(Z)

}
=

4g+2s+|δ|−4∑

3-valent
vertices α = 1

3 mod 3∑

i=1

(
∂f

∂Zαi

∂g

∂Zαi+1

−
∂g

∂Zαi

∂f

∂Zαi+1

)
,

where Zα are the shear coordinates on each edge and the sum ranges all three-
valent vertices of a graph and αi are the labels of the cyclically (clockwise) ordered
(α4 ≡ α1) edges incident to the vertex with the label α.

This bracket gives rise to the Goldman bracket on the space of geodesic length
functions [17] and in [8] it is proved that on the lengths of the elements of a complete
cusped geodesic lamination which consists only of arcs and simple loops this Poisson
bracket gives rise to the cluster algebra Poisson structure.

In order to describe this Poisson structure more explicitly, notice that for cusped
fat-graph with the additional property that the polygons containing holes with no
cusps are monogons, every hole with no associated bordered cusps is contained
inside a closed loop, which is an edge starting and terminating at the same three-
valent vertex. Vice versa, every such closed loop corresponds to a hole with no
associated bordered cusps. Therefore every open edge corresponding to a bordered
cusp “protrudes” towards the interior of some face of the graph, and we have exactly
one hole contained inside this face.

As a consequence of these facts, we can fix an orientation of the fat graph and
of each open edge which allows us to determine a natural partition of the set of
bordered cusps into nonintersecting (maybe empty) subsets δk, k = 1, . . . , s of
cusps incident to the corresponding holes, and to set a cyclic ordering in every
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such subset. This means that all arcs in the lamination are uniquely determined
by 4 indices, telling us in which cusp they originate and terminate and in what
order they enter or exit the cusp. For example, if we orient the fat graph in Fig. 6
counterclockwise so that the arc d originates in cusp 2 and is the first arc in that
cusp, then it terminates in cusp 1 and it is the eight arc in that cusp (we count arcs
starting from the side of open edge that goes into the fat-graph), we can denote
d = g21,18 . Analogously b = g13,14 and so on. The formula for the Poisson brackets
is then completely combinatorial:

(3.11) {gsi,tj , gpr ,ql} = gsi,tjgpr ,ql

ǫi−rδs,p + ǫj−rδt,p + ǫi−lδs,q + ǫj−lδt,q
4

,

where ǫk := sign(k).
In [8] it is proved that the abstract bracket defined by (3.11) is indeed a Poisson

bracket.

4. Decorated character variety

The classical character varieties are moduli spaces of monodromy data of regular
or singular connections, which can be considered like representation spaces of the
fundamental group of a Riemann surface. N. Hitchin proved that they are endowed
with a holomorphic symplectic structure [19].

It is well-known that so-called Stokes data should be added to the classical
monodromy in the case of non-fuchsian irregular singularities. That is why we want
to generalise the previous representation space description to define an appropriate
generalisation of the classical (or ”tame”) character variety.

Various descriptions of generalised character varieties as spaces of representations
of a ”wild fundamental groupoid” [25], ”Stokes groupoid” [11] or as ”fissions” vari-
eties of Stokes representations associated with a complex reductive linear algebraic
group G [2].

In this paper we propose a different notion of decorated character variety which
is based on the combinatorial description of Teichmüller space explained in the
previous section. Our construction is based on the fact that topologically speaking
a Riemann surface Σg,s,n with n holes, with s bordered cusps is equivalent to a

Riemann surface Σ̃g,s,n of genus g, with s holes and n marked points m1, . . . ,mn

on the boundaries.
We introduce the fundamental groupoid of arcs A as the set of all directed paths

γij : [0, 1] → Σ̃g,s,n such that γij(0) = mi and γij(1) = mj modulo homotopy. The
groupoid structure is dictated by the usual path–composition rules.

In this groupoid we have n subgroups Πj = {γjj |γjj : [0, 1] → Σ̃g,s,n, γjj(0) =
mj, γjj(1) = mj}. Each of these subgroups is isomorphic to the usual fundamental

group and Πj = γ−1
ij Πiγij for any arc γij ∈ A.

Now, we use the geometry: using the decoration at each cusp, we associate
to each arc γij a matrix Mij ∈ SL2(R) as explained in the previous section, for
example Mij = X(kj)LX(zn)R · · ·LX(z1)RX(ki). In order to associate a matrix
in SL2(C), we complexify the coordinates Zi ∈ C in all formulas. We define two
different characters:

TrK : SL2(C) → C

M 7→ Tr(MK)

and the usual character (i.e. trace) which is only defined for the images of Πi,
i = 1, . . . n.
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s3

p3

s1

p1

s2

p2

Figure 4. The fat graph of the 4 holed Riemann sphere. The red
dashed geodesic is x1.

Finally, we define the decorated character variety as

Hom (A, {TrK(Mij)} ∪ {Tr (Mii)})

To equip the decorated character variety with a Poisson bracket, we extend Poisson
brackets (3.10) to the complexified shear coordinates. For Zi, Zj ∈ C we postulate

{Zi, Zj} = {Zi, Zj} := {Zi, Zj}R and {Zi, Zj} ≡ 0 or, explicitly, {ℜZi,ℜZj} =
−{ℑZi,ℑZj} = 1

2{Zi, Zj}R, {ℜZi,ℑZj} ≡ 0 where we let {Zi, Zj}R denote the
(constant) Poisson bracket (3.10). All formulas for Poisson brackets between char-
acters then remain valid irrespectively on whether we consider real or complexified
generalised shear coordinates Zi.

5. Decorated character varieties and Painlevé monodromy manifolds

In the case of a Riemann sphere with 4 holes and no cusps, the fat graph is given
in Fig. 4 and the three geodesics lengths x1, x2, x3 of the thee geodesics which go
around two holes without self–intersections are enough to close the Poisson algebra.

By following the rules explained in Section 3, the following parameterization of
x1, x2, x3 in shear coordinates on the fat-graph of a 4–holed sphere was found in
[7]:

x1 = −es2+s3+
p2
2
+

p3
2 − e−s2−s3−

p2
2
−

p3
2 − es2−s3+

p2
2
−

p3
2 −G2e

−s3−
p3
2 −G3e

s2+
p2
2 ,

x2 = −es3+s1+
p3
2
+

p1
2 − e−s3−s1−

p3
2
−

p1
2 − es3−s1+

p3
2
−

p1
2 −G3e

−s1−
p1
2 −G1e

s3+
p3
2 ,

x3 = −es1+s2+
p1
2
+

p2
2 − e−s1−s2−

p1
2
−

p2
2 − es1−s2+

p1
2
−

p2
2 −G1e

−s2−
p2
2 −G2e

s1+
p1
2 ,

(5.12)

where

Gi = e
pi
2 + e−

pi
2 , i = 1, 2, 3,

and

G∞ = es1+s2+s3+
p1
2
+

p2
2
+

p3
2 + e−s1−s2−s3−

p1
2
−

p3
2
−

p3
2 .
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Note that by complexifying s1, s2, s3, p1, p2, p3, we obtain a parameterisation of the
PV I cubic, i.e. of the character variety of SL2(C) character variety of a Riemann
sphere with 4 holes.

We are now going to produce a similar coordinate description of each of the other
Painlevé cubics. We will provide a geometric description of the corresponding Rie-
mann surface and its fat-graph and discuss the corresponding decorated character
variety.

5.1. Shear coordinates for PV . The confluence from the cubic associated to
PV I to the one associated to PV is realised by

p3 → p3 − 2 log[ǫ],

in the limit ǫ → 0. We obtain the following shear coordinate description for the
PV cubic:

x1 = −es2+s3+
p2
2
+

p3
2 −G3e

s2+
p2
2 ,

x2 = −es3+s1+
p3
2
+

p1
2 − es3−s1+

p3
2
−

p1
2 −G3e

−s1−
p1
2 −G1e

s3+
p3
2 ,

x3 = −es1+s2+
p1
2
+

p2
2 − e−s1−s2−

p1
2
−

p2
2 − es1−s2+

p1
2
−

p2
2 −G1e

−s2−
p2
2 −G2e

s1+
p1
2 ,

(5.13)

where

Gi = e
pi
2 + e−

pi
2 , i = 1, 2, G3 = e

p3
2 , G∞ = es1+s2+s3+

p1
2
+

p2
2
+

p3
2 .

These coordinates satisfy the following cubic relation:

x1x2x3 + x2
1 + x2

2 − (G1G∞ +G2G3)x1 − (G2G∞ +G1G3)x2 −

−G3G∞x3 +G2
∞ +G2

3 +G1G2G3G∞ = 0.(5.14)

Note that the parameter p3 is now redundant, we can eliminate it by rescaling. To
obtain the correct PV cubic, we need to pick p3 = −p1 − p2 − 2s1 − 2s2 − 2s3 so
that G∞ = 1.

Geometrically speaking, sending the perimeter p3 to infinity means that we are
performing a chewing-gum move: two holes, one of perimeter p3 and the other of
perimeter s1 + s2 + s3 +

p1

2 + p2

2 + p3

2 , become infinite, but the area between them
remains finite, thus leading to a Riemann sphere with three holes and two cusps on
one of them. In terms of the fat-graph, this is represented by Fig. 5.

The geodesic x3 corresponds to the closed loop obtained going around p1 and p2
(green and red loops), while x1 and x2 are arcs starting at one cusp, going around
p1 and p2 respectively, and coming back to the other cusp.

As explained in Section 3, according to [8], the Poisson algebra related to the
character variety of a Riemann sphere with three holes and two cusps on one bound-
ary is 7-dimensional. The fat-graph admits a complete cusped lamination as dis-
played in Fig. 6 so that a full set of coordinates on the character variety is given by
the complexification of the five elements in the lamination and of the two parame-
ters G1 and G2 which determine the perimeter of the two non-cusped holes.

Notice that there are two shear coordinates associated to the two cusps, they are
denoted by k1 and k2, their sum corresponds to what we call p3 in (5.13). These
shear coordinates do not commute with the other ones, they in fact satisfy the
following relations:

{s3, k1} = {k1, k2} = {k2, s3} = 1.
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s3

k1

k2
s1

p1

s2

p2

Figure 5. The fat graph corresponding to PV. The geodesic x3

remains closed, while x1 (see red arc) and x2 become arcs.

d c a b e

k1

k2

s3s1

s2

p2

p1

Figure 6. The system of arcs for PV.

As a consequence, the elements G3 andG∞ are not Casimirs in this Poisson algebra,
despite being frozen variables in the cluster algebra setting (see Section 6)

In terms of shear coordinates, the elements in the lamination correspond to two
loops (whose hyperbolic cosin length is denoted by G1 and G2 respectively) and
five arcs whose lengths are expressed as follows:

a = ek1+s1+2s2+s3+
p1
2
+p2 , b = ek1+s2+s3+

p2
2 , e = e

k1
2
+

k2
2 ,

c = ek1+s1+s2+s3+
p1
2
+

p2
2 , d = e

k1
2
+

k2
2
+s1+s2+s3+

p1
2
+

p2
2 .(5.15)

They satisfy the following Poisson relations, which can be deduced by formula
(3.11):

{a, b} = ab, {a, c} = 0, {a, d} = −
1

2
ad, {a, e} =

1

2
ae,(5.16)
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{b, c} = 0, {b, d} = −
1

2
bd, {b, e} =

1

2
be,(5.17)

{c, d} = −
1

2
cd, {c, e} =

1

2
ce, {d, e} = 0, {G1, ·} = {G2, ·} = 0,(5.18)

so that the elements G1, G2 and G3G∞ = de are central.
The generic family of symplectic leaves are determined by the common level set

of the three Casimirs G1, G2 and G3G∞ = de and are 4-dimensional (rather than
2-dimensional like in the PV I case).

On each symplectic leaf, the PV monodromy manifold (5.14) is the subspace
defined by those functions of a, b, c, d (and of the Casimir values G1, G2, G3G∞ =
de) which commute with the frozen variables, i.e. with G3 = e (and therefore
with d as well, since de is a Casimir). To see this, we can use relations (5.15) to
determine the exponentiated shear coordinates in terms of a, b, c, d, and then deduce
the expressions of x1, x2, x3 in terms of the lamination. We obtain the following
expressions:

x1 = −e
a

c
− d

b

c
, x2 = −e

b

c
−G1d

b

a
− d

b2

ac
− d

c

a
,(5.19)

x3 = −G2
c

b
−G1

c

a
−

b

a
−

c2

ab
−

a

b
,(5.20)

which automatically satisfy (5.14).
Due to the Poisson relations (5.16) the functions that commute with e are exactly

the functions of a
b
, b
c
, c
a
, d. Such functions may depend on the Casimir values G1, G2

and G3G∞ and e itself, so that d = G∞ becomes a parameter now. With this in
mind, it is easy to prove that x1, x2, x3 are algebraically independent functions of
a
b
, b
c
, c
a
, d so that x1, x2, x3 form a basis in the space of functions which commute

with e.

5.2. Shear coordinates for PVdeg. The confluence from PV to PVdeg is realised
by the substitution

s3 → s3 − log[ǫ],

in formulae (5.13). In the limit ǫ → 0 we obtain:

x1 = −es2+s3+
p2
2
+

p3
2 ,

x2 = −es3+s1+
p3
2
+

p1
2 − es3−s1+

p3
2
−

p1
2 −G1e

s3+
p3
2 ,

x3 = −es1+s2+
p1
2
+

p2
2 − e−s1−s2−

p1
2
−

p2
2 − es1−s2+

p1
2
−

p2
2 −G1e

−s2−
p2
2 −G2e

s1+
p1
2 ,

(5.21)

where
Gi = e

pi
2 + e−

pi
2 , i = 1, 2, G∞ = es1+s2+s3+

p1
2
+

p2
2
+

p3
2 .

These coordinates satisfy the following cubic relation:

(5.22) x1x2x3 + x2
1 + x2

2 −G1G∞x1 −G2G∞x2 +G2
∞ = 0.

Note that the parameter p3 is now redundant, we can eliminate it by rescaling. To
obtain the correct PVdeg cubic, we need to pick p3 = −p1 − p2 − 2s1 − 2s2 − 2s3.

Geometrically speaking, sending the shear coordinate s3 to infinity means that we
are performing a cusp-removing move. In terms of the fat-graph, this is represented
by Fig. 7.

The character variety of a Riemann sphere with three holes and one cusp on one
boundary is 5-dimensional. The fat-graph admits a complete cusped lamination so
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s3s1

p1

s2

p2

Figure 7. The fat graph corresponding to PVdeg . The red arc
corresponds to x1.

that a full set of coordinates on the character variety is given by the complexification
of the geodesic length functions of the elements in the lamination. Now we have
only one shear coordinate associated to the cusp, denoted by s3, which does not
commute with the other shear coordinates.

We omit the picture of the PVdeg lamination as it is very similar to Fig. 6, in
which the edges labelled by k1 and k2 are removed and the geodesics d and e are
lost.

In terms of shear coordinates, the elements in the lamination are two loops
corresponding to the parameters G1 and G2 and three arcs for which the lengths
are expressed as follows:

(5.23) a = es1+2s2+s3+
p1
2
+p2 , b = es2+s3+

p2
2 , c = es1+s2+s3+

p1
2
+

p2
2 ,

They satisfy the following Poisson relations, which can be deduced by formula
(3.11):

(5.24) {a, b} = ab, {a, c} = 0, {b, c} = 0,

so that the element c is a Casimir as well as the parameters G1, G2. Each sym-
plectic leaf is two-dimensional and corresponds to the PVdeg monodromy manifold
(5.22). Indeed, we can use relations (5.23) to determine the exponentiated shear
coordinates in terms of a, b, c, and then deduce he expressions of x1, x2, x3 in terms
of the lamination. We obtain the following expressions:

x1 = −b, x2 = −G1
bc

a
−

b2

a
−

c2

a
,(5.25)

x3 = −G2
c

b
−G1

c

a
−

b

a
−

c2

ab
−

a

b
,(5.26)

which automatically satisfy (5.22).
In terms of lamination, the confluence from PV to PVdeg is given by the following

rules:

a → a, b → b, c → c, d → c, e → 0.
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s3

k1

k2
s1

p1

s2

Figure 8. The fat graph corresponding to PIV. The variable x1

now corresponds to the product of the two red arcs.

5.3. Shear coordinates for PIV . The confluence from the generic PV cubic
(5.14) to the PIV one is realised by the substitution

p2 → p2 − 2 log[ǫ],

in formulae (5.13). In the limit ǫ → 0 we obtain:

x1 = −es2+s3+
p2
2
+

p3
2 −G3e

s2+
p2
2 ,

x2 = −es3+s1+
p3
2
+

p1
2 − es3−s1+

p3
2
−

p1
2 −G3e

−s1−
p1
2 −G1e

s3+
p3
2 ,

x3 = −es1+s2+
p1
2
+

p2
2 −G2e

s1+
p1
2 ,

(5.27)

where

G1 = e
p1
2 + e−

p1
2 , G2 = e+

p2
2 , G3 = e+

p3
2 , G∞ = es1+s2+s3+

p1
2
+

p2
2
+

p3
2 .

These coordinates satisfy the following cubic relation:

x1x2x3 + x2
1 − (G1G∞ +G2G3)x1 −G2G∞x2 −

−G3G∞x3 +G2
∞ +G1G2G3G∞ = 0.(5.28)

Note that the parameters p3, p2 are now redundant, we can eliminate it by rescaling.
To obtain the correct PIV cubic, we need to pick p2 = p3 = −p1 − 2s1 − 2s2 − 2s3
so that G2 = G3 = G∞.

Similarly to the previous case, this means that we send the perimeter p2 to
infinity, which is a chewing-gum move leading to a Riemann sphere with two holes,
one of which has 4 cusps on it. The corresponding fat-graph is given in Fig. 8,
where we see 4 new shear coordinates, one for each cusp, so that in formulae (5.27)
p2 = k3 + k4 and p3 = k1 + k2.

The character variety is now 8 dimensional and the complete cusped lamination
is given in Fig. 9.

In terms of shear coordinates, the elements in the lamination are expressed as
follows:

a = es1+s2+k3+
p1
2 , b = e

s2
2
+

s3
2
+

k1
2
+

k4
2 , c = es1+

s2
2
+

s3
2
+

p1
2
+

k1
2
+

k3
2 ,(5.29)
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d
c
a
f

h

b

e

k1

k2

k3 k4

s3s1

s2

p1

Figure 9. The system of arcs for PIV.

d = es1+
s2
2
+

s3
2
+

p1
2
+

k2
2
+

k3
2 , e = e

k1
2
+

k2
2 , f = e

s2
2
+

s3
2
+

k1
2
+

k3
2 , g = e

k3
2
+

k4
2 .

We omit the formulae for the Poisson brackets as these can be easily extracted from
(3.11). Let us notice that the element bdeh is a Casimir as well as the perimeter
G1. Each symplectic leaf is six-dimensional and the PIV monodromy manifold
(5.28) is the subspace of those functions of a, b, . . . , g which commute with e and g.
The proof of this statement is quite similar to the previously considered analogous
assertion for the PV-case and we omit it.

5.4. Shear coordinates for PIII. The confluence from PV to PIII is obtained
by the following substitution:

s1 → s1 + 2 log[ǫ], p2 → p2 − 2 log[ǫ], p1 → p1 − 2 log[ǫ].

In the limit as ǫ → 0 we obtain:

x1 = −es2+s3+
p2
2
+

p3
2 −G3e

s2+
p2
2 ,

x2 = −es3−s1+
p3
2
−

p1
2 −G3e

−s1−
p1
2 −G1e

s3+
p3
2 ,

x3 = −es1+s2+
p1
2
+

p2
2 − e−s1−s2−

p1
2
−

p2
2 −G1e

−s2−
p2
2 −G2e

s1+
p1
2 ,

(5.30)

where
G̃i = e

pi
2 , i = 1, 2, 3 G̃∞ = es1+s2+s3+

p1
2
+

p2
2
+

p3
2 .

These coordinates satisfy the following cubic relation:

(5.31) x1x2x3+x2
1+x2

2−(G̃1G̃∞+G̃2G̃3)x1−(G̃2G̃∞+G̃1G̃3)x2+G̃1G̃2G̃3G̃∞ = 0.

We can pick p2 = p3 = 0 in order to obtain the correct PIII cubic. Note that there

is a slight discrepancy between the G̃is in the cubic (5.31) and the Gis dictated by
our formulae (2.4). This is easily solved by a simple transformation

G∞ =

√
G̃1G̃∞, G1 =

√
G̃1G̃∞ +

1√
G̃1G̃∞

, G2 =

√
G̃∞

G̃1

+

√
G̃1

G̃∞

.

To understand the geometry of this confluence, we first need to flip the PV
fat-graph to the equivalent graph given in Fig. 10.
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ŝ3

ŝ2

p̂2

ŝ1

p̂1

k̂1

k̂2

Figure 10. The flipped fat graph corresponding to PV. The red
arc corresponds to x1.

The new shear coordinates are expressed in terms of the old ones as follows:

ŝ1 = −s1 − p1 − log(1 + es2),

ŝ2 = −s2 + log
(
(1 + ep1+s1 + ep1+s1+s2)(1 + es1 + es1+s2)

)
,

ŝ3 = s3 − log(1 + e−s2), p̂1 = p1,(5.32)

p̂2 = p2 + s2 + p1 + 2s1 + 2 log(1 + es2) +

+ log
(
(1 + ep1+s1 + ep1+s1+s2)(1 + es1 + es1+s2)

)
.

Remark 5.1. Note that this flip is obtained by composing two mapping class
group transformations described in Figures 3 and 4 of [8]. This means that the
fat-graph of PV is mapped to an intermediate fat-graph which does not satisfy the
property that the polygons containing holes with no cusps are monogons. This is
not a problem as in fact we can map the lamination in Fig. 6 to this new fat-graph
and then to Fig.10.

In the new shear coordinates the substitution (5.30) becomes simply:

p̂1 → p̂1 − 2 log[ǫ],

which geometrically speaking corresponds to the fat-graph in Fig. 11, where we see

4 new shear coordinates, one for each cusp, so that p̂2 = k̂3 + k̂4 and p̂1 = k̂5 + k̂6.
This is the fat-graph of a Riemann sphere with two holes each of them with two
cusps.

Note that the coordinates in Fig. 11 are the true shear coordinates, namely they
satisfy the Poisson brackets:

{k̂2, ŝ3} = {ŝ3, k̂1} = {k̂1, k̂2} = {ŝ3, ŝ2} = {p̂2, ŝ3} = 1, {ŝ2, p̂2} = 2,

{ŝ1, ŝ2} = {p̂2, ŝ1} = {ŝ1, k̂5} = {k̂6, ŝ1} = {k̂5, k̂6} = 1,(5.33)

If we use the limiting transformation of (5.32):

ŝ1 = −s1 − k5 − k6 − log(1 + es2), ŝ3 = s3 − log(1 + e−s2),

ŝ2 = −s2 + log
(
1 + ek5+k6+s1 + ek5+k6+s1+s2)

)
, p̂1 = p1,
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ŝ3

ŝ2

p̂2

ŝ1

k̂1

k̂2

k̂5

k̂6

Figure 11. The fat graph corresponding to PIII.

k̂1 = k1, k̂2 = k2, k̂5 = k5, k̂6 = k6,

p̂2 = p2 + s2 + k5 + k6 + 2s1 + 2 log(1 + es2) +(5.34)

+ log
(
(1 + ek5+k6+s1 + ek5+k6+s1+s2)(1 + es1 + es1+s2

)
.

to go back to s1, s2, s3, p2, k1, k2, k5, k6, we see that k5, k6 have non standard Poisson
brackets with s1, s2, s3. This is due to the fact that this limiting transformation
(5.34) destroys the geometry, as it essentially maps from a Riemann sphere with
two holes each of them with two cusps to a Riemann sphere with two holes one of
which has 4 cusps, and the other has no cusps (the PIV case). This implies that the
correct coordinates to describe the character variety of a Riemann sphere with two

holes each of them with two cusps are the complexified ŝ1, ŝ2, ŝ3, p̂2, k̂1, k̂2, k̂5, k̂6.
This character variety is 8-dimensional. The fat-graph admits a complete cusped

lamination as displayed in Fig. 12 so that a full set of coordinates on the character
variety is given by the eight complexified elements in the lamination.

In terms of the shear coordinates ŝ1, ŝ2, ŝ3, p̂2, k̂1, k̂2, k̂5, k̂6 the elements in the
PIII lamination are expressed as follows:

a = e
k̂1+k̂6−ŝ1+ŝ3+p̂2

2 + e
k̂1+k̂6+ŝ1+ŝ3+p̂2

2 , e = e
k̂1+k̂2

2 , g = e
k̂5+k̂6

2 ,

b = e
k̂1+k̂6−ŝ1−ŝ2+ŝ3

2 + e
k̂1+k̂6+ŝ1−ŝ2+ŝ3

2 + e
k̂1+k̂6+ŝ1+ŝ2+ŝ3

2 ,(5.35)

c = e
2k̂1+ŝ2+2ŝ3+p̂2

2 , d = e
k̂1+k̂2+ŝ2+2ŝ3+p̂2

2 ,

f = e
k̂1+k̂5+ŝ1+ŝ3+p̂2

2 , h = e
k̂5+k̂6+2ŝ1+ŝ2+p̂2

2 .

The Poisson brackets admit two Casimirs, de and hg so that the symplectic leaves
are 6-dimensional. Within each symplectic leaf, the PIII monodromy manifold is
given by the set of functions which commute with d, e, g, h. To see this, we proceed
in the same way as in the case of PV. On the monodromy manifold we set e = G̃3,
d = G̃∞, h = G̃2 and g = G̃1.

Note that, unlike the cases of PV (Fig. 6), PIV (Fig. 9), and PII (Fig. 19 below),
the expressions for the λ-lengths of arcs in (5.35) are not monomials in the expo-
nentiated shear coordinates. This is because, unlike the other named cases, the fat
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d c a f b e

k1

k2

s3

ŝ2

p̂2

ŝ1

k6

k5

g

h

Figure 12. The character variety for the PD6

III
system.

graph in Fig. 12 is not dual to the maximum cusped lamination {a, b, c, d, e, f, g, h}.
We obtain the dual graph out of the one in Fig. 12 if we first flip the edge ŝ1 sub-
sequently flipping the edge ŝ2. We depict the resulting fat graph and lamination in
Fig. 13. In the transformed shear coordinates (indicated by tildes), the elements of
the PIII lamination read

a = e
k̃1+k̃6+s̃1+s̃3+2s̃2+p̃2

2 , e = e
k̃1+k̃2

2 , g = e
k̃5+k̃6+p̃2

2 ,

b = e
k̃1+k̃6+s̃2+s̃3

2 , c = e
2k̃1+s̃1+s̃2+2s̃3+p̃2

2 , d = e
k̃1+k̃2+s̃1+s̃2+2s̃3+p̃2

2 ,(5.36)

f = e
k̃1+k̃5+s̃2+s̃3+p̃2

2 , h = e
k̃5+k̃6+s̃1+s̃2

2 .

In this form, the homogeneity of the Poisson relations on the set {a, b, c, d, e, f, g, h}
becomes obvious.

d c a f b e

k̃1=k1

k̃2=k2

s̃3

s̃1

s̃2

p̃2

k̃6

k̃5
g h

Figure 13. The character variety for the PD6

III
system depicted on the

fat graph dual to this variety.



PAINLEVÉ MANIFOLDS, CUSPED CHARACTER VARIETIES, CLUSTER ALGEBRAS 21

It is interesting to construct the lamination and pattern in Fig. 12 as a limit of the
corresponding system of PV . When we flip the fat-graph for PV , the lamination
is flipped too as in Fig. 14.

When we open the inside hole to obtain the fat-graph for PIII, the PV arcs a
and b break giving rise to the new arcs a, b and f and G1 breaks up giving rise to
g so that

a → af, b → bf, c → c, d → d, e → e, G2 → h, G1 → g.

d c a b e

k1

k2

s3

ŝ2

p̂2

ŝ1

p1

Figure 14. Transformation of the PV system of arcs from Fig. 6 under
a sequence of two flips.

5.5. Shear coordinates for PIIID7 . The confluence from the generic PIII cubic
(5.31) to the PIIID7 one is realised by the substitution

s3 → s3 − log[ǫ],

in formulae (5.30). in the limit ǫ → 0 we obtain:

x1 = −es2+s3+
p2
2
+

p3
2 ,

x2 = −es3−s1+
p3
2
−

p1
2 −G1e

s3+
p3
2 ,

x3 = −es1+s2+
p1
2
+

p2
2 − e−s1−s2−

p1
2
−

p2
2 −G1e

−s2−
p2
2 −G2e

s1+
p1
2 ,

(5.37)

where
Gi = e

pi
2 , i = 1, 2, G3 = 0, G∞ = es1+s2+s3+

p1
2
+

p2
2
+

p3
2 .

These same expressions can equivalently obtained by the substitution:

s1 → s1 + 2 log(ǫ), p1 → p1 − 2 log(ǫ), p2 → p2 − 2 log(ǫ),

in formulae (5.21) and by taking the limit as ǫ → 0.
These coordinates satisfy the following cubic relation:

(5.38) x1x2x3 + x2
1 + x2

2 −G1G∞x1 −G2G∞x2 = 0.

We can pick p2 = p3 = 0 and s3 = −s1 − s2 −
p1

2 in order to obtain the correct

PIIID7 cubic.
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In terms of fat graph, we need to work with the coordinates (5.32), for which
the confluence gives

ŝ3 → ŝ3 − log[ǫ],

which corresponds to the fat-graph in Fig. 15. This corresponds to a Riemann
sphere with two holes, one with one cusp and one with two cusps.

ŝ3

ŝ2

p̂2

ŝ1

k̂5

k̂6

Figure 15. The fat graph corresponding to PIIID7 .

The character variety is 6 dimensional and we omit the picture of the PIIID7

lamination as it is very similar to Fig. 12, in which the edges labelled by k1 and
k2 are removed and the arcs d and e are lost. Again the Poisson brackets can be
calculated using (3.11) and it is easy to check that there are two Casimirs so that
the symplectic leaves are 4 dimensional. The PIIID7 monodromy manifold is given
by those functions of a, b, c, d, f, h that commute with h.

5.6. Shear coordinates for PIIID8. The confluence from the generic PIIID7

cubic (5.38) to the PIIID8 one is realised by the substitution

s1 → s1 + log[ǫ], p2 → p2 − 2 log[ǫ]

in formulae (5.37). In the limit ǫ → 0 we obtain:

x1 = −es2+s3+
p2
2
+

p3
2 ,

x2 = −es3−s1+
p3
2
−

p1
2 ,

x3 = −es1+s2+
p1
2
+

p2
2 − e−s1−s2−

p1
2
−

p2
2 −G2e

s1+
p1
2 ,

(5.39)

where

G1 = 0, G2 = e
p2
2 , i = 1, 2, G3 = 0, G∞ = es1+s2+s3+

p1
2
+

p2
2
+

p3
2 .

These coordinates satisfy the following cubic relation:

(5.40) x1x2x3 + x2
1 + x2

2 −G2G∞x2 = 0.

We can pick p2 = p3 = 0 and s3 = −s1 − s2 −
p1

2 in order to obtain the correct

PIIID8 cubic.
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In terms of fat graph, we need to work with the coordinates (5.32), for which
the confluence gives

ŝ1 → ŝ1 − log[ǫ],

which corresponds to the fat-graph in Fig. 16. This corresponds to a Riemann
sphere with two holes, each with one cusp on it.

ŝ3

ŝ2

p̂2

ŝ1

Figure 16. The fat graph corresponding to PIIID8 .

The character variety is 4 dimensional and the Poisson brackets can be calculated
using (3.11). It is easy to check that there are two Casimirs so that the symplectic
leaves are 2 dimensional and coincide with the PIIID8

monodromy manifold.

5.7. Shear coordinates for PIIJM . The confluence from the generic PIV cubic
(5.28) to the PIIJM cubic is realised by the substitution

p1 → p1 − 2 log[ǫ],

in formulae (5.27). In the limit ǫ → 0 we obtain:

x1 = −es2+s3+
p2
2
+

p3
2 −G3e

s2+
p2
2 ,

x2 = −es3+s1+
p3
2
+

p1
2 −G1e

s3+
p3
2 ,

x3 = −es1+s2+
p1
2
+

p2
2 −G2e

s1+
p1
2 ,

(5.41)

where
Gi = e

pi
2 , i = 1, 2, 3, G∞ = es1+s2+s3+

p1
2
+

p2
2
+

p3
2 .

These coordinates satisfy the following cubic relation:

x1x2x3 −G1G∞x1 −G2G∞x2 −

−G3G∞x3 +G2
∞ +G1G2G3G∞ = 0.(5.42)

Note that the parameters p3, p2, p1 are now redundant, we can eliminate it by
rescaling. To obtain the correct PIIJM cubic, we need to pick p2 = p3 = 0 and
p1 = −2s1 − 2s2 − 2s3.

Again, this means that we send the perimeter p1 to infinity, which is a chewing-
gum move leading to a Riemann sphere with one hole with 6 cusps on it. The
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s3

k1

k2

k5

k6
s1

s2

k4k3

Figure 17. The fat graph corresponding to PIIJM .

corresponding fat-graph is given in Fig. 17 where we have 6 cusp shear coordinates
k1, . . . , k6 such that in formulae (5.41) we must set p1 = k5 + k6, p2 = k3 + k4 and
p3 = k1 + k2. The character variety is now 9-dimensional, with only one Casimir
and the PIIJM monodromy manifold is given by the set of functions that Poisson
commute with p1 = k5 + k6, p2 = k3 + k4 and p3 = k1 + k2. We omit all details in
this case.

5.8. Shear coordinates for PIIFN . The confluence from the generic PIV cubic
(5.28) to the PIIFN cubic is realised by the substitution

s3 → s3 − log[ǫ],

in formulae (5.27). In the limit ǫ → 0 we obtain:

x1 = −es2+s3+
p2
2
+

p3
2 ,

x2 = −es3+s1+
p3
2
+

p1
2 − es3−s1+

p3
2
−

p1
2 −G1e

s3+
p3
2 ,

x3 = −es1+s2+
p1
2
+

p2
2 −G2e

s1+
p1
2 ,

where

G1 = e
p1
2 + e−

p1
2 , G2 = e

p2
2 , G3 = 0, G∞ = es1+s2+s3+

p1
2
+

p2
2
+

p3
2 ..

They satisfy the following cubic relation

(5.43) x1x2x3 + x2
1 −G1G∞x1 −G2G∞x2 +G2

∞ = 0.

Observe that we can obtain exactly the same formulate by starting from the
generic PVdeg cubic (5.22) by the substitution

p2 → p2 − 2 log[ǫ],

and by taking the limit as ǫ → 0.
To obtain the PIIFN cubic we pick p2 = p3 = 0 and p1 = −2s1 − 2s2 − 2s3.
Geometrically speaking, sending the shear coordinate s3 to infinity means that

we are performing a cusp-removing move. This gives a Riemann sphere with two
holes, one of them having three cusps on its boundary. In terms of the fat-graph,
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s3s1

p1

s2

k4k3

Figure 18. The fat graph corresponding to PIIFN .

this is represented by Fig. 18, where we wee three cusps of coordinates k3, k4 and
s3, so that in formulae (5.43) we must set p2 = k3 + k4. .

The decorated character variety in this case is 6 dimensional. The lamination is
given by the loop around the un-cusped-hole and the five arcs in Fig. 19.

d

a
f

h

b

k3 k4

s3s1

s2

p1

Figure 19. The system of arcs for PIIFN.

The lengths of the arcs are

a = es1+s2+k3+
p1
2 , b = e

s2
2
+

s3
2
+

k4
2 ,(5.44)

d = es1+
s2
2
+

s3
2
+

p1
2
+

k3
2 , f = e

s2
2
+

s3
2
+

k3
2 , g = e

k3
2
+

k4
2 .

To show that our decorated character variety is not the same as the wild character
variety (see [3] for the PIIFN case), we deal with this case in all details. The
Poisson brackets among the complexified lamination arcs lengths are given by

{a, b} = {d, f} = 0, {a, d} = −
ad

2
, {a, f} =

af

2
, {a, h} =

af

2
,
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{b, d} =
bd

4
, {b, f} =

bf

4
, {b, h} = −

bh

4
, {d, h} =

dh

4
, {f, h} =

fh

4
.

It is easy to check that there are two Casimirs, G1 and bdh, so that the symplectic
leaves are 4-dimensional and the PIIFN monodromymanifold (5.43) is the subspace
of those functions of a, b, d, f, h which commute with h. To check that x1, x2 and
x3 commute with h it is enough to express them in terms of the lamination:

x1 = −bf, x2 = −G1
df

a
−

d2

a
−

f2

a
, x3 = −

dh

f
−

ab

f
.

Vice versa all functions commuting with h must have the form aαbβdδfφ where
α, β, γ, δ, φ are some numbers satisfying 2α − β + δ + φ = 0. Using this fact, it is
easy to prove that on each symplectic leaf the set of functions which commute with
h is 2-dimensional.

5.9. Shear coordinates for PI. The confluence from the generic PIIJM cubic
to the PI one is realised by

s3 → s3 − log[ǫ],

in formulae (5.41). In the limit ǫ → 0 we obtain:

x1 = −es2+s3+
p2
2
+

p3
2 ,

x2 = −es3+s1+
p3
2
+

p1
2 −G1e

s3+
p3
2 ,

x3 = −es1+s2+
p1
2
+

p2
2 −G2e

s1+
p1
2 ,

(5.45)

where

Gi = e
pi
2 , i = 1, 2, G3 = 0, G∞ = es1+s2+s3+

p1
2
+

p2
2
+

p3
2 .

These coordinates satisfy the following cubic relation:

(5.46) x1x2x3 −G1G∞x1 −G2G∞x2 +G2
∞ = 0.

Observe that we can obtain exactly the same formulate by starting from the generic
PIIFN cubic (5.43) in Flashcka-Newell form by the substitution

p1 → p1 − 2 log[ǫ],

and by taking the limit as ǫ → 0.
Note that the parameters p3, p2, p1 and s3 are now redundant, we can eliminate

them by rescaling. We pick p1 = p2 = p3 = 0 and s3 = −s1 − s2, we obtain the
correct PI by changing the sign of x1 and x2.

Geometrically speaking, sending the shear coordinate s3 to infinity means that we
are performing a cusp-removing move. In terms of the fat-graph, this is represented
by Fig. 20.

The character variety is now 7-dimensional, with only one Casimir and the PI
monodromy manifold is given by the set of functions that Poisson commute with
p1 = k5 + k6, p2 = k3 + k4. We omit all details in this case.
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s3s1

s2

k4k3

k5

k6

Figure 20. The fat graph corresponding to PI.

5.10. Shear coordinates for the Weierstrass equation. We now remove one
further cusp from the generic PI cubic by replacing

s1 → s1 − log[ǫ],

in formulae (5.45). In the limit ǫ → 0 we obtain:

x1 = −es2+s3+
p2
2
+

p3
2 ,

x2 = −es3+s1+
p3
2
+

p1
2 ,

x3 = −es1+s2+
p1
2
+

p2
2 −G2e

s1+
p1
2 ,

(5.47)

where

G2 = e
p2
2 , G1 = G3 = 0, G∞ = es1+s2+s3+

p1
2
+

p2
2
+

p3
2 .

These coordinates satisfy the following cubic relation:

(5.48) x1x2x3 −G2G∞x2 +G2
∞ = 0.

Note that the parameters p3, p2, p1 and s3 are now redundant, we can choose
p1 = p2 = p3 = 0 and s3 = −s1 − s2 so that G2 = G∞ = 1. This gives us the
following cubic

(5.49) x1x2x3 − x2 + 1 = 0.

In order to relate this cubic to the Weiestrass elliptic curve, we need to projectivise
it first:

(5.50) x1x2x3 − x2x
2
0 + x3

0 = 0.

This cubic is now invariant under the following transformation

x0 → αx0, x1 → βx1, x2 → αx2, x3 →
α2

β
x3,

so that we can rescale x2 → 1 and x3 → x1, leading to the Weiestrass elliptic curve:

x2
1 − x2

0 + x3
0 = 0.
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6. Painlevé cluster algebras: braid-group and affine MCG actions

6.1. Painlevé VI: analytic continuation and cluster mutations. In [12, 23]
it was proved that the procedure of analytic continuation of a local solution to the
sixth Painlevé equation corresponds to the following action of the braid group on
the monodromy manifold:

(6.51) β1 :
x1 → −x1 − x2x3 + ω1,
x2 → x3,
x3 → x2,

(6.52) β2 :
x1 → x3,
x2 → −x2 − x1x2 + ω2,
x3 → x1,

(6.53) β3 :
x1 → x2,
x2 → x1,
x3 → −x3 − x1x2 + ω3.

In [7] it was shown that flips on the shear coordinates correspond to the action of
the braid group on the cubic. The flips f1, f2, f3 of the shear coordinates which
give rise to the braid transformations β1β2 and β3 respectively have the following
form

(6.54) f1 :
s1 → −p1 − s1, p2 → p3, p3 → p2,
s2 → s3 + log [1 + es1 ] + log [1 + es1+p1 ] ,
s3 → s2 − log [1 + e−s1 ] + log [1 + e−s1−p1 ] ,

(6.55) f2 :
s1 → s3 − log [1 + e−s2 ]− log [1 + e−s2−p2 ] ,
s2 → −p2 − s2, p1 → p3, p3 → p1,
s3 → s1 + log [1 + es2 ] + log [1 + es2+p2 ] ,

(6.56) f3 :
s1 → s2 + log [1 + es3 ] + log [1 + es3+p3 ] ,
s2 → s1 − log [1 + e−s3 ]− log [1 + e−s3−p3 ] ,
s3 → −p3 − s3 p1 → p2, p2 → p1.

Remark 6.1. Observe that in [10] it was proved that shear coordinate flips (6.54),
(6.55), (6.56) are indeed dual to the generalised cluster mutations (6.59) for the
corresponding λ-lengths.

We are now going to show that when G∞ = 2 (geometrically this means that
we have a puncture at infinity), the action of the braid group coincides with a
generalised cluster algebra structure [10].

In order to see this let us compose each braid with a Okamoto symmetry in order
to obtain the following

(6.57) β̃i :
xi → −xi − xjxk + ωi, j, k 6= i,
xj → xj , for j 6= i

By using (2.2) this transformation acquires a cluster flavour:

(6.58) β̃i : xix
′
i = x2

j + x2
k + ωjxj + ωkxk + ω4 j, k 6= i.

Indeed let us introduce the shifted variables:

yi := xi −Gi, i = 1, 2, 3,
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they satisfy the generalised cluster algebra relation:

(6.59) µi : yiy
′
i = y2j + y2k +Giyjyk j, k 6= i.

Note that generalised cluster algebras satisfy the Laurent phenomenon. In partic-
ular this result implies that procedure of analytic continuation of the solutions to
the sixth Painlevé equation satisfies the Laurent phenomenon: if we start from a
local solution corresponding to the point (y01 , y

0
2 , y

0
3) on the shifted Painlevé cubic

y1y2y3 + y21 + y22 + y23 +G1y2y3 +G2y1y3 +G3y1y2 = 0

any other branch of that solution will corresponds to points (y1, y2, y3) on the same
cubic such that each yi is a Laurent polynomial of the initial (y01 , y

0
2 , y

0
3).

6.2. Generalised cluster algebra structure for PV and PVdeg. In this case,
we have a Riemann surface Σ0,3,2 with two bordered cusps on one hole. The only
nontrivial Dehn twist is around the closed geodesic γ encircling these two holes
(this geodesic is unique).

We now consider the effect of this MCG transformation on the system of arcs in
Fig. 6.

e d

c

b aγ

ω2 ω1

Ma

e d

c

b

a′
ω2 ω1

Mb

e d

b′

a′

c

ω2 ω1

Here the generalized mutations Ma and Mb are given by the formulas

a′a = b2 + c2 + ω1bc; b′b = (a′)2 + c2 + ω2a
′c,

or, explicitly,

(6.60)

[
a
b

]
→




b2 + c2 + ω1bc

a
(b2 + c2 + ω1bc)

2

a2b
+ ω2c

b2 + c2 + ω1bc

ba
+

c2

b


 .

The geodesic function of γ is

(6.61) Gγ = ω2
c

b
+ ω1

c

a
+

a

b
+

b

a
+

c2

ab

and this function is the so-called Hamiltonian MCG invariant: it generates the
corresponding Dehn twist (see [22]), has nontrivial Poisson brackets with a and b,
and is preserved by the MCG action (6.60).
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In the case of PVdeg, all the above formulas remain valid provided we replace c
by the λ-length d of the boundary arc.

6.3. Generalised cluster algebra structure for PIIID6 , PIIID7 , and PIIID8 .

In all cases of PIII, we have a Riemann surface Σ0,2,n with n1 > 0 and n2 > 0,
n1 + n2 = n, bordered cusps on the respective holes. For any n1 and n2, the only
nontrivial Dehn twist is around the closed geodesic γ separating the holes (this
geodesic is unique). Its geodesic function Gγ is the Hamiltonian MCG invariant.
Besides this invariant, we have (non-Hamiltonian) invariants, which are λ-lengths
of all arcs starting and terminating at the same boundary component.

We begin with the case of PIIID6 and consider the MCG action on the system
of arcs in Fig. 12:

1

2

3

4

c

b a

γ

h g

e d

f

Mb

1

2

3

4

c

b′
a

h g

e d

f

Mf

1

2

3

4

c

b′
a

h g

e d

f ′

These transformations are governed by the standard mutation rules,

bb′ = hc+ fa, ff ′ = gc+ ab′;

in order to describe them in a more regular way, let us introduce the notation: we

let λ
(i)
α,β denote the λ-length of the arc that goes between bordered cusps α and

β (belonging to different boundary components) winding i times around the lower
hole. For example,

f = λ
(0)
1,3, b = λ

(0)
1,4, a = λ

(1)
1,4, b′ = λ

(1)
1,3, f ′ = λ

(2)
1,4, c = λ1,1 etc.

Note that λα,β with the labels α and β pertaining to the same boundary component
are unique and invariant under the MCG action.

The net result of the Dehn twist on the triple {λ
(i−1)
1,4 , λ

(i−1)
1,3 , λ

(i)
1,4} reads:

(6.62)




λ
(i−1)
1,4

λ
(i−1)
1,3

λ
(i)
1,4


 →




λ
(i)
1,4

λ
(i−1)
1,3 λ

(i)
1,4 + hλ1,1

λ
(i−1)
1,4

(λ
(i)
1,4)

2

λ
(i−1)
1,4

+
hλ1,1λ

(i)
1,4

λ
(i−1)
1,4 λ

(i−1)
1,3

+
gλ1,1

λ
(i−1)
1,3




.
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This action admits two invariants: Gγ and λ4,4 (the latter is obtained by the

mutation of the element f , or λ
(i)
1,3):

Gγ =
λ
(i)
1,4

λ
(i−1)
1,4

+
λ
(i−1)
1,4

λ
(i)
1,4

+
hλ1,1

λ
(i−1)
1,3 λ

(i−1)
1,4

+
gλ1,1

λ
(i−1)
1,3 λ

(i)
1,4

(6.63)

λ4,4 =
gλ

(i−1)
1,4

λ
(i−1)
1,3

+
hλ

(i)
1,4

λ
(i−1)
1,3

(6.64)

The case of PIIID7 coincides with that of PIIID6 , the geodesic λ1,1 now be-
comes the boundary geodesic after erasing the bordered cusp 2.

In the case of PIIID8 we erase bordered cusps 2 and 3; the only MCG transfor-
mation is

1

4

λ1,1

λ4,4

λ
(i−1)
1,4 λ

(i)
1,4

γ

M

1

4

λ1,1

λ4,4

λ
(i+1)
1,4

λ
(i)
1,4

This MCG transformation reads:

(6.65)

[
λ
(i−1)
1,4

λ
(i)
1,4

]
→




λ
(i)
1,4

(λ
(i)
1,4)

2 + λ1,1λ4,4

λ
(i−1)
1,4


 .

and the (Hamiltonian) invariant is

(6.66) Gγ =
λ
(i)
1,4

λ
(i−1)
1,4

+
λ
(i−1)
1,4

λ
(i)
1,4

+
λ1,1λ4,4

λ
(i−1)
1,4 λ

(i)
1,4

.

The cases of PIV , PII, and PI correspond to finite cluster algebras admitting
no nontrivial modular transformations.

Appendix A Singularity theory approach to the Painlevé cubics

As mentioned above, for special values of ω
(d)
1 , . . . , ω

(d)
4 the fibre may have a

singularity. Such singularities were classified in [20] for PV I and in [26] for all
other Painlevé equations. These results can be summarised in the following table:

The meaning of the table is the following: for each Painlevé equation of type
specified by the first column in the table, there is at least one singular fibre with
singularity of the type given in the second column of the table, and at least one
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Dynkin Painlevé equations Surface singularity type

D̃4 PV I D4

D̃5 PV A3

D̃6 deg PV =PIII(D̃6) A1

D̃6 PIII(D̃6) A1

D̃7 PIII(D̃7) non-singular

D̃8 PIII(D̃8) non-singular

Ẽ6 PIV A2

Ẽ∗
7 PII(FN) A1

Ẽ∗∗
7 PII(MJ) A1

Ẽ8 PI non-singular

Table 2.

singular fibre with singularity of type specified by any Dynkin sub-diagram of the
Dynkin diagram given in the second column of the table.

For example PIV is the equation corresponding to Ẽ6 and it has a two singular
fibres with singularity of type A2 and at three singular fibres with singularity of
type A1.

The scope of this section is to show that the non singular fibres of each family of
affine cubics are locally diffeomorphic to the versal unfolding [1] of the singularity
of the type given in the second column of the table.

A.3.1. D̃4. This case corresponds to the sixth Painlevé equation. The cubic in this

case is (we drop the indices (D̃4) for convenience):

(A.1) x1x2x3 + x2
1 + x2

2 + x2
3 + ω1x1 + ω2x2 + ω3x3 + ω4 = 0.

To show that this is diffeomorphic to the versal unfolding of D4 we need to map
this cubic to Arnol’d form. To this aim we first shift all variables by xi → xi + 2,
i = 1, 2, 3 to obtain

(A.2) x2
1+x2

2+x2
3+2x1x2+2x2x3+2x1x3+x1x2x3+ω̃1x1+ω̃2x2+ω̃3x3+ω̃4 = 0,

where

ω̃i = ωi + 8, for i = 1, 2, 3, ω̃4 = ω4 + 2(ω1 + ω2 + ω3) + 20.

As a second step we use the following diffeomorphism around the origin:

x → x−
1

2
y, y → x+

1

2
x, z → z +

y2

8
− 2x−

x2

2
−

ω̃3

2

so that the new cubic (up to a Morse singularity that we throw away and after a
shift x → x− ω3

4 ) becomes indeed the versal unfolding of a D4 singularity in Arnol’d
form:

−2x3
1 +

x1x
2
2

2
+ ω̂1x1 + ω̂2x2 + ω̂3x

2
1 + ω̂4,

where

ω̂1 = ω1 + ω2 − 8− 4ω3 −
ω2
3

8
, ω̂2 =

ω2 − ω1

2
,
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ω̂3 = 8 + ω3, ω̂4 = ω4 + 2ω3 −
ω3(ω1 + ω2 − ω3)

4
+ 4.

The above formulae show that the versal unfolding parameters ω̂1, . . . , ω̂4 are inde-
pendent as long as ω1, . . . , ω4 are.

A.4. D̃5. This case corresponds to the fifth Painlevé equation. The cubic in this

case is (we drop the indices (D̃5) for convenience):

(A.3) x1x2x3 + x2
1 + x2

2 + ω1x1 + ω2x2 + ω3x3 + ω4 = 0,

where only three parameters are free:

ω1 = −G1G∞−G2, ω2 = −G2G∞−G1, ω3 = −G∞, ω4 = 1+G2
∞+G1G2G∞.

Again we want to show that this is diffeomorphic to the versal unfolding of A3. To
this aim we impose the following change of variables:
(A.4)

x1 → x1 − x3 +
G∞

u(x2)
, x2 → u(x2), x3 → 2

x3

u(x2)
+

G2 +G1G∞

u(x2)
−

2G∞

u(x2)2
,

where u(x2) is a function to be determined. This maps the PV cubic to:

x2
1 − x2

3 + 1 +G1G2G∞ +G2
∞ +

G2
∞

u2
−

G∞(G2 +G1G∞)

u
− (G1 +G2G∞)u + u2.

It is easy to prove that any solution u(x2) of the equation

G2
∞

u2
−
G∞(G2 +G1G∞)

u
−(G1+G2G∞)u+u2 = x4

2+(G2+G1G∞)x2
2+(G1+G2G∞)x2

will define a diffeomorphism by (A.4) mapping (A.3) to the versal unfolding of A3.

A.5. D̃6. This case corresponds to the third Painlevé equation. The cubic in this

case is (we drop the indices (D̃3) for convenience):

(A.5) x1x2x3 + x2
1 + x2

2 + ω1x1 + ω2x2 + ω4 = 0,

where only two parameters are free:

ω1 = −1−G2
∞, ω2 = −G2G∞, ω4 = G2

∞.

The most singular fibre is given by G∞ = 1 and G2 = 2 and has two singular
points at (1, 0, 2) and (0, 1, 2) respectively. We can define two local diffeomorphisms,
one around (1, 0, 2), the other around (0, 1, 2), which map our cubic to the versal
unfolding of a A1 singularity.

The first diffeomorphism is given by:

x1 →
1 +G2

∞

2
+ x1, x2 → −x2 + x3, x3 →

2(G2G∞ − 2x3)

1 +G2
∞ + 2x1

The second diffeomorphism is:

x1 → −x1 + x3, x2 →
G2G∞

2
− x2, x3 →

2(1 +G2
∞ − 2x3)

G2G2
∞ − 2x2

.
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A.5.1. Ẽ6. This case corresponds to the fourth Painlevé equation. The cubic in

this case is (we drop the indices (Ẽ6) for convenience):

(A.6) x1x2x3 + x2
1 + ω1x1 + ω2x2 + ω3x3 + ω4 = 0,

where only two parameters are free:

ω1 = −G1G∞ −G2
∞, ω2 = −G2

∞, ω3 = −G2
∞, ω4 = G2

∞ +G1G
3
∞.

Again we want to show that this is diffeomorphic to the versal unfolding of A2. To
this aim we impose the following change of variables:

(A.7) x1 → x1 − x3 +
G2

∞

u
, x2 → u, x3 →

2x3

u
+

G∞

u
(G1 +G∞)−

2G2
∞

u2

where u is function of x3 satisfying the following

G4
∞

u2
−

G3
∞(G∞ +G1)

u
−G2

∞u = x3
2 +G∞x2.

It is easy to prove that this transformation is a local diffeomorphism mapping our
cubic to

x2
1 − x2

3 + x3
2 +G∞x2 +G∞ +G1G

3
∞,

the versal unfolding of the A2 singularity.

A.5.2. Ẽ7. This case corresponds to the second Painlevé equation. Since the treat-

ment of the two cubics Ẽ∗
7 and Ẽ∗∗

7 is completely equivalent, we choose to work
with the former:

(A.8) x1x2x3 − x1 − x2 − x3 + ω4 = 0,

where:

ω4 = G2
∞ +G−2

∞

The following change of variables:

x1 → x1 − x3 +
1

u
, x2 → u, x3 →

x1 + x3 + 1

u
,

where u is a function of x2 satisfying

−
1

u
− u = x2

2,

is a local diffeomorphism mapping our cubic to the versal unfolding of the A1

singularity:

x2
1 − x2

3 + x2
2 + ω4.
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