Philippe Moser
email: pmoser@cs.nuim.ie

Frank Stephan
email: fstephan@comp.nus.edu.sg

Highness Frank Stephan Depth

Dnr 2015 Degrees

Highness Dnr Hal-01228469 Depth

Philippe Degrees

Moser

teaching and research institutions in France or abroad, or from public or private research centers.

Introduction

The concept of logical depth was introduced by C. Bennett [START_REF] Bennett | Logical depth and physical complexity. The Universal Turing Machine, A Half-Century Survey[END_REF] to differentiate useful information (such as DNA) from the rest, with the key observation that non-useful information pertains in both very simple structures (for example, a crystal) and completely unstructured data (for example, a random sequence, a gas). Bennett calls data containing useful information logically deep data, whereas both trivial structures and fully random data are called shallow.

The notion of useful information (as defined by logical depth) strongly contrasts with classical information theory, which views random data as having high information content. I.e., according to classical information theory, a random noise signal contains maximal information, whereas from the logical depth point of view, such a signal contains very little useful information.

Bennett's logical depth notion is based on Kolmogorov complexity. Intuitively a logically deep sequence (or equivalently a set) is one for which the more time a compressor is given, the better it can compress the sequence. For example, both on trivial and random sequences, even when given more time, a compressor cannot achieve a better compression ratio. Hence trivial and random sequences are not logically deep.

Several variants of logical depth have been studied in the past [START_REF] Filipe | Variyam Vinodchandran. Computational depth: Concept and applications[END_REF][START_REF] Doty | Feasible depth[END_REF][START_REF] Juedes | Computational depth and reducibility[END_REF][START_REF] Lathrop | Recursive computational depth[END_REF][START_REF] Moser | On the polynomial depth of various sets of random strings[END_REF]. As shown in [START_REF] Moser | On the polynomial depth of various sets of random strings[END_REF], all depth notions proposed so far can be interpreted in the compression framework which says a sequence is deep if given (arbitrarily) more than t(n) time steps, a compressor can compress the sequence r(n) more bits than if given at most t(n) time steps only. By considering different time bound families for t(n) (e.g. recursive, polynomial time etc.) and the magnitude of compression improvement r(n) -for short: the depth magnitude -(e.g. O(1), O(log n)) one can capture all existing depth notions [START_REF] Filipe | Variyam Vinodchandran. Computational depth: Concept and applications[END_REF][START_REF] Doty | Feasible depth[END_REF][START_REF] Juedes | Computational depth and reducibility[END_REF][START_REF] Lathrop | Recursive computational depth[END_REF][START_REF] Moser | On the polynomial depth of various sets of random strings[END_REF] in the compression framework [START_REF] Moser | On the polynomial depth of various sets of random strings[END_REF]. E.g. Bennett's notion is obtained by considering all recursive time bounds t and a constant depth magnitude, i.e., r(n) = O(1). Several authors studied variants of Bennett's notion, by considering different time bounds and/or different depth magnitude from Bennett's original notion [START_REF] Filipe | Variyam Vinodchandran. Computational depth: Concept and applications[END_REF][START_REF] Filipe | Depth as randomness deficiency[END_REF][START_REF] Doty | Feasible depth[END_REF][START_REF] Juedes | Computational depth and reducibility[END_REF][START_REF] Moser | On the polynomial depth of various sets of random strings[END_REF].

In this paper, we study the consequences these changes of different parameters in Bennett's depth notion entail, by investigating the computational power of the deep sets yielded by each of these depth variants.

-We found out that the choice of the depth magnitude has consequences on the computational power of the corresponding deep sets. The fact that computational power implies Bennett depth was noticed in [START_REF] Juedes | Computational depth and reducibility[END_REF], where it was shown that every high degree contains a Bennett deep set (a set is high if, when given as an oracle, its halting problem is at least as powerful as the halting problem relative to the halting problem: A is high iff A ≥ T ∅). We show that the converse also holds, i.e., that depth implies computational power, by proving that if the depth magnitude is chosen to be "large" (i.e., r(n) = εn), then depth coincides with highness (on the Turing degrees), i.e., a Turing degree is high iff it contains a deep set of magnitude r(n) = εn. -For smaller choices of r, for example, if r is any recursive order function, depth still retains some computational power: we show that depth implies either highness or diagonally-non-recursiveness, denoted DNR (a total function is DNR if its image on input e is different from the output of the e-th Turing machine on input e). This implies that if we restrict ourselves to left-r.e. sets, recursive order depth already implies highness. We also show that highness is not necessary by constructing a low order-deep set (a set is low if it is not powerful when given as an oracle). -As a corollary, our results imply that weakly-useful sets introduced in [START_REF] Juedes | Computational depth and reducibility[END_REF] are either high or DNR (set S is weakly-useful if the class of sets reducible to it within a fixed time bound s does not have measure zero within the class of recursive sets). -Bennett's depth [START_REF] Bennett | Logical depth and physical complexity. The Universal Turing Machine, A Half-Century Survey[END_REF] is defined using prefix-free Kolmogorov complexity. Two key properties of Bennett's notion are the so-called slow growth law, which stipulates that no shallow set can quickly (truth-table) compute a deep set, and the fact that neither Martin-Löf random nor recursive sets are deep. It is natural to ask whether replacing prefix-free with plain complexity in Bennett's formulation yields a meaningful depth notion. We call this notion plain-depth. We show that the random is not deep paradigm also holds in the setting of plain-depth. On the other hand we show that the slow growth law fails for plain-depth: every many-one degree contains a set which is not plain-deep of magnitude O(1). -A key property of depth is that "easy" sets should not be deep. Bennett [START_REF] Bennett | Logical depth and physical complexity. The Universal Turing Machine, A Half-Century Survey[END_REF] showed that no recursive set is deep. We give an improvement to this result by observing that no K-trivial set is deep (a set is K-trivial if the complexity of its prefixes is as low as possible). Our result is close to optimal, since there exist deep ultracompressible sets [START_REF] Lathrop | Recursive computational depth[END_REF]. -In most depth notions, the depth magnitude has to be achieved almost everywhere on the set. Some feasible depth notions also considered an infinitely often version [START_REF] Doty | Feasible depth[END_REF]. Bennett noticed in [START_REF] Bennett | Logical depth and physical complexity. The Universal Turing Machine, A Half-Century Survey[END_REF] that infinitely often depth is meaningless because every recursive set is infinitely often deep. We propose an alternative infinitely often depth notion that doesn't suffer this limitation (called i.o. depth). We show that little computational power is needed to compute i.o. depth, i.e., every hyperimmune degree contains an i.o. deep set of magnitude εn (a degree is hyperimmune if it computes a function that is not bounded almost everywhere by any recursive function), and construct a Π 0 1 -class where every member is an i.o. deep set of magnitude εn. For hyperimmunefree sets we prove that every non-recursive, non-DNR hyperimmune-free set is i.o. deep of constant magnitude, and that every nonrecursive many-one degree contains such a set. In summary, our results show that the choice of the magnitude for logical depth has consequences on the computational power of the corresponding deep sets, and that larger depth magnitude is not necessarily preferable over smaller magnitude. We conclude with a few open questions regarding the constant magnitude case.

Preliminaries

We use standard computability/algorithmic randomness theory notations see [START_REF] Downey | Algorithmic Randomness and Complexity[END_REF][START_REF] Nies | Computability and Randomness[END_REF][START_REF] Odifreddi | Classical Recursion Theory: The Theory of Functions and Sets of Natural Numbers[END_REF]. We use ≤ + to denote less or equal up to a constant term. We fix a recursive 1-1 pairing function • : N × N → N. We use sets and their characteristic sequences interchangeably, we denote the binary strings of length n by {0, 1} n and {0, 1} ω denotes the set of all infinite binary sequences. The join of two sets A, B is the set A ⊕ B whose characteristic sequence is A(0)B(0)A(1)B(1) . . ., that is, (A ⊕ B)(2n) = A(n) and (A ⊕ B)(2n + 1) = B(n) for all n. An order function is an unbounded non-decreasing function from N to N. A time bound function is a recursive order t such that there exists a Turing machine Φ such that for every n, Φ(n)[t(n)] ↓ = t(n), i.e., Φ(n) outputs the value t(n) within t(n) steps of computation. Set A is left-r.e. iff the set of dyadic rationals strictly below the real number 0.A (a.k.a. the left-cut of A denoted L(A)) is recursively enumerable (r.e.), i.e., there is a recursive sequence of non-decreasing rationals whose limit is 0.A. All r.e. sets are left-r.e., but the converse fails.

We consider standard Turing reductions ≤ T , truth-table reductions ≤ tt (where all queries are made in advance and the reduction is total on all oracles) and many-one reductions ≤ m . Two sets A, B are Turing equivalent (A ≡ T B) if A ≤ T B and B ≤ T A. The Turing degree of a set A is the set of sets Turing equivalent to A. We fix a standard enumeration of all oracle Turing machines Φ 1 , Φ 2 , . . .; the jump A of a set A is the halting problem relative to A, i.e., A = {e : Φ A e (e) ↓ }. The halting problem is denoted ∅ . A set A is high (that is, has high Turing degree) if its halting problem is as powerful as the halting problem of the halting problem, i.e., ∅ ≤ T A . High sets are equivalent to sets that compute dominating functions (i.e., sets A such that there is a function f with f ≤ T A such that for every computable function g and for almost every n, f (n) ≥ g(n)), i.e., a set is high iff it computes a dominating function [START_REF] Odifreddi | Classical Recursion Theory: The Theory of Functions and Sets of Natural Numbers[END_REF]. A set A is low if its halting problem is not more powerful than the halting problem of a recursive set, i.e., A ≤ T ∅ . Note that ∅ is high relative to every low set.

If one weakens the dominating property of high sets to an infinitely often condition, one obtains hyperimmune degrees. A set is of hyperimmune degree if it computes a function that dominates every recursive function on infinitely many inputs. Otherwise the set is called of hyperimmune-free degree.

Another characterization of computational power used in computability theory is the concept of diagonally non-recursive function (DNR). A total function g is DNR if for every e, g(e) = Φ e (e), i.e., g can avoid the output of every Turing machine on at least one specified input. A set is of DNR degree, if it computes a DNR function. It is known that every r.e. DNR degree is high, actually even Turing equivalent to ∅ [START_REF] Marat | Degree structures in local degree theory[END_REF].

If one requires a DNR function to be Boolean, one obtains the PA-complete degrees: A degree is PA-complete iff it computes a Boolean DNR function. It is known that there exists low PA-complete degrees [START_REF] Odifreddi | Classical Recursion Theory: The Theory of Functions and Sets of Natural Numbers[END_REF].

Fix a universal prefix free Turing machine U , i.e., such that no halting program of U is a prefix of another halting program. The prefix-free Kolmogorov complexity of string x, denoted K(x), is the length of the lengthlexicographically first program x * such that U on input x * outputs x. It can be shown that the value of K(x) does not depend on the choice of U up to an additive constant. K(x, y) is the length of a shortest program that outputs the pair (x, y), and K(x|y) is the length of a shortest program such that U outputs x when given y as an advice. We also consider standard time bounded Kolmogorov complexity. Given time bound t (resp. s ∈ N), K t (x) (resp. K s (x)) denotes the length of the shortest prefix free program p such that U (p) outputs x within t(|x|) (resp. s) steps. Replacing U above with a plain (i.e., non prefix-free) universal Turing machine yields the notion of plain Kolmogorov complexity, and is denoted C(x). We need the following counting theorem.

Theorem 1 (Chaitin [START_REF] Chaitin | A theory of program size formally identical to information theory[END_REF]). There exists c ∈ N such that for every r, n ∈ N, |{σ ∈ {0,

1} n : K(σ) ≤ n + K(n) - r}| ≤ 2 n-r+c .
A set A is Martin-Löf random (MLR) if none of its prefixes are compressible by more than a constant term, i.e., ∀n K(A n) ≥ n -c for some constant c, where A n denotes the first n bits of the characteristic function of A. A set A is K-trivial if its complexity is as low as possible, i.e., ∀n K(A n) ≤ K(n) + O(1). See the books of Downey and Hirschfeldt [START_REF] Downey | Algorithmic Randomness and Complexity[END_REF] and Nies [START_REF] Nies | Computability and Randomness[END_REF] for more on C and K-complexity, MLR and trivial sets.

Effective closed sets are captured by

Π 0 1 -classes. A Π 0 1 -class P is a class of sequences such that there is a computable relation R such that P = {S ∈ {0, 1} ω | ∀n R(S n)}.
Definition 2 (Bennett [6]). Let g(n) ≤ n be an order. A set S is g-deep K if for every recursive time bound t and for almost all n ∈ N,

K t (S n) -K(S n) ≥ g(n). A set S is O(1)-deep K (resp. order-deep K) if it is c-deep K (resp. g-deep K
) for every c ∈ N (resp. for some recursive order g). A set is said Bennett deep if it is O(1)-deep K . We denote by g-deep C the above notions with K replaced with C. It is easy to see that for every two orders f, g such that ∀n ∈

N f (n) ≤ g(n), every g-deep K set is also f -deep K .
Bennett's slow growth law (SGL) states that creating depth requires time beyond a "recursive amount", i.e., no shallow set quickly computes a deep one. Lemma 3 (Bennett [6]; Juedes, Lathrop and Lutz [START_REF] Juedes | Computational depth and reducibility[END_REF]). Let h be a recursive order, and

A ≤ tt B be two sets. If A is h-deep K (resp. O(1)-deep K) then B is h -deep K (resp. O(1)-deep K)
for some recursive order h . Furthermore given indices for the truth-table reduction and for h, one can effectively compute an index for h .

The symmetry of information holds in the resource bounded case.

Lemma 4 (Li and Vitányi [START_REF] Li | An Introduction to Kolmogorov Complexity and its Applications[END_REF]). For every time bound t, there is a time bound t such that for all strings x, y with |y| ≤ t(|x|), we have C t (x, y) ≥ C t (x) + C t (y | x) -O(log C t (x, y)). Furthermore given an index for t one can effectively compute an index for t .

Corollary 5. Let t be a time bound and x, a be strings. Then there exists a time bound t such that for every prefix y of x we have

C t (y | a) ≥ + C t (x | a) -|x| + |y| -O(log C t (y | a)
). Furthermore given an index for t one can effectively compute an index for t .

Proof. Given p a C t -minimal program with advice a for y, |x|-|y| remaining bits, and a delimiter after p, one can reconstruct

x in time t (•) = t(•)+O(n) steps given a. Thus C t (y | a)+|x|-|y|+O(log C t (y | a)) ≥ + C t (x | a).

C-Depth

Bennett's original formulation [START_REF] Bennett | Logical depth and physical complexity. The Universal Turing Machine, A Half-Century Survey[END_REF] is based on K-complexity. In this section we investigate the depth notion obtained by replacing K with C, which we call plain depth. We study the interactions of plain depth with the notions of Martin-Löf random sets, many-one degrees and the Turing degrees of deep sets.

MLR is not order-deep C

The following result is the plain complexity version of Bennett's result that no MLR sets are Bennett deep. Theorem 6. For every MLR A and for every recursive order h, A is not h-deep C .

Proof. Suppose by contradiction that set A is MLR and h-deep C , for some h as above. We claim that

∃ ∞ n C(A n) ≥ n -h(n)/2. To prove the claim, let N = {n ∈ N : h(n) = h(n -1)}. Then given a = h(n) with n ∈ N , the program p: "Print the smallest i such that h(i) = a." is a program for n of size K(a) + O(1), i.e., K(n) ≤ K(a) + O(1) ≤ 2 log h(n) + O(1) < h(n)/4.
Suppose q is a C-minimal program for A n of size n -m, then appending 2 log m + K(n) bits to q yields a prefix free program q for A n of size 2 log m + K

(n) + n -m. Since A is MLR we have |q | ≥ n -O(1), i.e., 2 log m + K(n) + n -m > n -O(1) which implies K(n) > m -2 log m -O(1) > 2/3m (for m sufficiently large). If n ∈ N , then 2/3m < K(n) < h(n)/4, thus m < h(n)/2, i.e., C(A n) > n -h(n)/2, which proves the claim.
Since for all n ∈ N we have C n 2 (A n) ≤ n + O(1) (via a "print" program), it follows that for every n ∈ N ,

C n 2 (A n) -C(A n) ≤ n + O(1) -n + h(n)/2 ≤ + h(n)/2 which contradicts that A is h-deep C .
Sequences that are MLR relative to the halting problem are called 2-random. Equivalently a sequence A is 2random iff there is a constant c such that C(A n) ≥ n -c for infinitely many n [START_REF] Miller | Every 2-random real is Kolmogorov random[END_REF][START_REF] Nies | Randomness, relativization and Turing degree[END_REF]. Since there is a constant c such that n + c is a trivial upper bound on the plain Kolmogorov complexity of any string of length n, it is clear that no 2-random sequence can be O(1)-deep C . Thus most MLR sequences are not O(1)-deep C .

The SGL fails for C-depth

The following result shows that the Slow Growth Law fails for plain depth. Note that this result shows that order-deep K does not imply order-deep C : all the sets in the truth-table degree of any order-deep K set are all order-deep K (by the SGL), but this degree contains a non order-deep C set by the previous result.

Depth implies highness or DNR

The following result shows that being constant deep for C implies computational power.

Theorem 8. Let A be an O(1)-deep C set. Then A is high or DNR.

Proof. We prove the contrapositive. Suppose that A is neither DNR nor high. Let f (m) be (a coding of) A 2 m+1 . Because f ≤ tt A, there are infinitely many m where Φ m (m) is defined and equal to f (m). Hence there is an A-recursive increasing function g such that, for almost every m, g(m) is the time to find an m ≥ m with A(0)A(1) . . . A(2 m +1) = Φ m (m) and to evaluate the expression Φ m (m) to verify the finding. As A is not high, there is a recursive increasing function h with h(m) ≥ g(m) for infinitely many m. Now consider any m where h(m) ≥ g(m). Then for the m found for this m, it holds that h(m) ≥ h(m) and h(m) is also larger than the time to evaluate Φ m (m). Hence h(m) is larger than the time to evaluate Φ m (m) for infinitely many m where Φ m (m) codes A 2 m+1 . For each such m, let n be a number with 2 m ≤ n ≤ 2 m+1 and C(n) ≥ m. Starting with a binary description of such an n, one can compute m from n and run Φ m (m) for h(m) steps and, in the case that this terminates with a string σ of length 2 m+1 , output σ n. It follows from this algorithm that there is a resource-bounded approximation to C such that there exist infinitely many n such that, on one hand C(A n) ≥ log(n) while on the other hand A n can be described in log(n) + c bits using this resource bounded description. Hence A is not O(1)-deep C .

Since there are incomplete r.e. Turing degrees which are high, these are also not DNR and, by Theorem 10, they contain sets which are 0.9-deep C . Thus the preceeding theorem cannot be improved to show that "O(1)-deep C sets are DNR". Theorem 9. There exists a set A such that A is (1 -ε)n-deep C (for any ε > 0) but A is not DNR.

Proof. There is a degree which is high but not DNR [START_REF] Odifreddi | Classical Recursion Theory: The Theory of Functions and Sets of Natural Numbers[END_REF]. Thus we can, by Theorem 10, select a set A in this degree which is (1 -ε)n-deep C for every ε < 1.

K-Depth

Bennett's original depth notion is based on prefix free complexity. He made important connections between depth and truth-table degrees; In particular he proved that the O(1)-deep K sets are closed upward under truth-table reducibility, which he called the slow growth law. In the following section we pursue Bennett's investigation by studying the Turing degrees of deep sets. In the first subsection, we investigate the connections between linear depth and high Turing degrees. We then look at the opposite end by studying the interactions of various lowness notions with logical depth.

Highness and depth coincide

The following result shows that at depth magnitude εn, depth and highness coincide on the Turing degrees. The result holds for both K and C depth.

Theorem 10. For every set A the following statements are equivalent:

1. The degree of A is εn-deep C for some ε > 0.

The degree of

A is (1 -ε)n-deep C for every ε > 0. 3. A is high.
Proof. We prove (1) ⇒ (3) using the contrapositive: Let ε > 0 and l ∈ N such that δ < ε/3 with δ := 1/l. Let k be the limit inferior of the set {0, 1, . . . , l} such that there are infinitely many n with C(A n) ≤ n • k • δ. Now one can define, relative to A, an A-recursive function g such that for each n there is an m with n ≤ m ≤ g(n) and

C g(n) (A m) ≤ m • k • δ.
As A is not high, there is a recursive function h with h(n) > g(n) for infinitely many n; furthermore, h(n) ≤ h(n + 1) for all n. It follows that there are infinitely many n with

C h(n) (A n) ≤ n • k • δ
which is also at most n • δ away from the optimal value, hence A is not ε • n deep, which ends this direction's proof.

Let us show (3) ⇒ (2). Let ε > 0, A be high, and let g ≤ T A be dominating. We construct

B ≡ T A such that B is (1 -ε)n-deep C .
By definition, if t is a time bound and i an index of t then for every m ∈ N Φ i (m)[t(m)] ↓ = t(m). Since g is dominating, we have for almost every m ∈ N, t(m) = Φ i (m)[g(m)] ↓.

We can thus use g to encode all time bounds that are total on all strings of length less than a certain bound into a set H, where

H(i, j) = 1 iff Φ i (m)[g(2 j)] ↓ for all m ∈ {1, 2, . . . , 2 j }.
Thus t is a (total) time bound iff for almost every j, H(i, j) = 1 (where i is an index for t).

We have H ≤ T A and we choose the pairing function • such that H n 2 + 1 encodes the values

{H(i, j) : i, j ≤ n}.
Let n ∈ N and suppose B 2 n is already constructed. Given A n + 1 and H n 2 + 1, we construct B 2 n+1 . From H n 2 + 1, we can compute the set L n = {i ≤ n : H(i, n) = 1}, i.e., a list eventually containing all time bounds that are total on strings of lengths less or equal to 2 n . Let

T n := max{Φ i (m) : i ∈ L n , m ≤ 2 n }.
Find the lex first string x n of length 2 n -1 such that

C Tn (x n | (B 2 n)A(n)) ≥ 2 n . Let B [2 n , 2 n+1 -1] := A(n)x n . By construction we have B ≡ T A. Also, C(B 2 n+1 | H n 2 + 1, A n + 1) ≤ + C(n), i.e., C(B 2 n+1) ≤ 2n 2 .
Let us prove B is 2 3 n-deep C ; we then extend the argument to show B is (1 -ε)n-deep C . Let t be a time bound. Let n be large enough such that t 1 , t 2 , t 3 ∈ L n-2 and t 1 , t 2 , t 3 , t 4 ∈ L n where the t i 's are derived from t as described below.

Let j be such that 2 n < j ≤ 2 n+1 and j = j -(2 n -1), i.e., B j ends with the first j -2 bits of x n (One bit is "lost" due to the first bit used to encode A(n)).

We consider two cases, first suppose j < log n. Let t 1 be a time bound (obtained from t) such that C t (B j) ≥ + C t1 (x n-1 , B 2 n-1), where neither the constant nor t 1 depends on j, n. Let t 2 be derived from t 1 using Lemma 4. We have

C t1 (x n-1 , B 2 n-1) ≥ C t2 (B 2 n-1) + C t2 (x n-1 | B 2 n-1) -O(log 2 n) ≥ C t2 (B 2 n-1) + C Tn-1 (x n-1 | B 2 n-1) -O(n) because t 2 ∈ L n-1 ≥ C t2 (B 2 n-1) + 2 n-1 -O(n) by definition of x n-1 ≥ 2 n-1 + 2 n-2 + C t3 (B 2 n-2) -O(n) reapplying the argument above ≥ 3 4 2 n -O(n) > 2 3 (2 n + j + 1) = 2 3 j.
For the second case, suppose j > log n. We have

C t (B j) ≥ C t 1 (x n j , B 2 n) ≥ C t 2 (x n j | B 2 n) + C t 2 (B 2 n) -O(n) By Lemma 4 ≥ C t 3 (x n | B 2 n) -2 n + j + C t 2 (B 2 n) -O(n) by Corollary 5 ≥ C Tn (x n | B 2 n) -2 n + j + C t 2 (B 2 n) -O(n) because t 3 ∈ L n ≥ 2 n -2 n + j + C t 2 (B 2 n) -O(n) by definition of x n ≥ j + C t 4 (x n-1 , B 2 n-1) -O(n)
same as in the first case

≥ j + 3 4 2 n -O(n)
same as in the first case

> 2 3 j
Note that each iteration of the argument above yields a 2 n-k term (k = 1, 2, 3, . . .), therefore for any ε > 0, there is a number I of iterations, such that B can be shown (1 -ε)n-deep C , for all n large enough such that t 1 , t 2 , . . . , t 3I ∈ L n .

Corollary 11. Theorem 10 also holds for K-depth.

Proof. Because every set

A is εn-deep C (for some ε > 0) iff it is ε n-deep K for some ε > 0, since for every x, C(x) ≤ K(x) ≤ C(x) + O(log |x|).

Depth implies highness or DNR

An analogue of Theorem 8 holds for K.

Theorem 12. Let A be a h-deep K set for some recursive order h. Then A is high or DNR.

Proof. We prove the contrapositive. Suppose that A is neither DNR nor high. Let f (m) be (a coding of) A h -1 (m), where h -1 (m) = min n {h(n) = m}. The rest of the proof follows the proof of Theorem 8, with 2 m replaced with h -1 (m).

As a corollary, we show that in the left-r.e. case, depth always implies highness.

Corollary 13. If A is left-r.e. and h-deep K (for some recursive order h) then A is high.

Proof. Let A be as above. By definition of A being left-r.e., the left cut L(A) of A is r.e. and L(A) ≡ tt A. By Lemma 3, L(A) is h -deep K (for some recursive order h). By Theorem 12, L(A) is high or DNR. Since every r.e. DNR set is high, A is high.

As a second corollary, we prove that every weakly-useful set is either high or DNR. A set A is weakly-useful if there is a time-bound s such that the class of all sets truth-table reducible to A with this time bound s is not small, i.e., does not have measure zero within the class of recursive sets; see [START_REF] Juedes | Computational depth and reducibility[END_REF] for a precise definition. In [START_REF] Juedes | Computational depth and reducibility[END_REF], it was shown that every weakly-useful set is O(1)-deep K (even order-deep K as observed in [START_REF] Filipe | Depth as randomness deficiency[END_REF]) thus generalising the fact that ∅ is O(1)-deep K , since ∅ is weakly-useful.

Theorem 14 (Antunes, Matos, Souto and Vitányi [START_REF] Filipe | Depth as randomness deficiency[END_REF]; Juedes, Lathrop and Lutz [START_REF] Juedes | Computational depth and reducibility[END_REF]). Every weaklyuseful set is order-deep K .

It is shown in [START_REF] Juedes | Computational depth and reducibility[END_REF] that every high degree contains a weakly-useful set. Our results show some type of converse to this fact.

Theorem 15. Every weakly-useful set is either high or DNR.

Proof. This follows from Theorem 12, since every weakly-useful set is order-deep K by Theorem 14.

A low deep set

We showed in Theorem 10 that every εn-deep K set is high. Also Theorem 12 shows that every order-deep K set is either high or DNR. Thus one might wonder whether there exists any non-high order-deep K set. We answer this question affirmatively by showing there exist low order-deep K sets.

Theorem 16. If A has PA-complete degree, then there exists a weakly-useful set B ≡ T A.

Proof. Let f ≤ T A be a Boolean DNR function and let g(n) := 1 -f (n). It follows that if Φ e is Boolean and total, then g(e) = Φ e (e). One can thus encode g into a set B ≤ T A such that for every e such that Φ e is Boolean and total and for every x, B(e + 1, x) = Φ e (x). One can also encode A into B (for example, B(0, x) = A(x)) so that A ≡ T B. Thus for every recursive set L there exists e such that for every string x, we have L(x) = B(r e (x)), where r e (x) = e, x is computable within s(n) = n 2 steps (by using a lookup table on small inputs). It follows that every recursive set is truth-table reducible to B within time s(n) = n 2 . Because the class of recursive sets does not have measure zero within the class of recursive sets [START_REF] Juedes | Computational depth and reducibility[END_REF], it follows that B is weakly-useful.

Corollary 17. If A has PA-complete degree, then there exists an order-deep K set B ≡ T A. Furthermore, there is a Π 0 1 -class only consisting of order-deep K sets.

This corollary follows from Theorems 14 and 16. Recall that a set A is said low for Ω iff Chaitin's Ω is Martin-Löf random relative to A; a set A has superlow degree if its jump A is truth-table reducible to the halting problem. Well-known basis theorems [START_REF] Downey | Relativizing Chaitin's halting probability[END_REF][START_REF] Jockusch | Π 0 1 classes and degrees of theories[END_REF] given now the following corollary.

Corollary 18. For each of the properties low, superlow, low for Ω and hyperimmune-free, there exists an order-deep K set which also has this respective property.

Proof. There exists low sets A of PA-complete degree [START_REF] Odifreddi | Classical Recursion Theory: The Theory of Functions and Sets of Natural Numbers[END_REF]. By Theorem 17 there exists an order-deep K set B ≡ T A . Since A is low it follows that B is low.

The reason one uses PA-complete sets instead of merely Martin-Löf random sets (which also satisfy all basis theorems), is that Martin-Löf random sets are not weakly-useful; indeed, it is known that they are not even O(1)-deep K . This stands in contrast to the following result.

Corollary 19. There are two Martin-Löf random sets A and B such that A ⊕ B is order-deep K .

Proof. Barmpalias, Lewis and Ng [START_REF] Barmpalias | The importance of Π 0 1 -classes in effective randomness[END_REF] showed that every PA-complete degree is the join of two Martin-Löf random degrees; hence there are Martin-Löf random sets A, B such that A ⊕ B is a hyperimmune-free PA-complete set. Thus, by Theorem 16 there is a weakly-useful set Turing reducible to A ⊕ B which, due to the hyperimmunefreeness, is indeed truth-table reducible to A ⊕ B. It follows that A ⊕ B is itself weakly-useful and therefore order-deep K by Theorem 14.

No K-trivial is O(1)-deep K

A key property of depth is that "easy" sets should not be deep. Bennett [START_REF] Bennett | Logical depth and physical complexity. The Universal Turing Machine, A Half-Century Survey[END_REF] showed that no recursive set is deep. Here we improve this result by observing that no K-trivial set is deep. It follows easily from equivalent characterisations of K-triviality (see [START_REF] Downey | Algorithmic Randomness and Complexity[END_REF][START_REF] Nies | Computability and Randomness[END_REF]), but our proof is self-contained. As we will see this result is close to optimal.

Theorem 20. No K-trivial set is O(1)-deep K .

Proof. Let A be K-trivial and c ∈ N such that ∀n ∈ N, K(A n) ≤ K(n) + c. Let d be such that for every string x, K(x) ≥ K(|x|) -d and let g(n) = n 2 . There exists a constant d such that the set M = {n ∈ N : [START_REF] Downey | Algorithmic Randomness and Complexity[END_REF] p. 139). Note that M is co-r.e., i.e., there exists uniformly recursive approximations

K g (n) ≤ K(n) + d } is infinite (see
M 1 ⊇ M 2 ⊇ . . . ⊇ M of M . Let c = lim inf n∈M |{σ ∈ {0, 1} n : K(σ) ≤ K g (n) + c}|. By Theorem 1 (with r = n + K(n) -K g (n) -c), c < ∞. Consider the function f (n) = min s {n ∈ M s or there exist c strings σ ∈ {0, 1} n with K s (σ) ≤ K g (n) + c}.
By modifying f on the finitely many values before the liminf is reached, f is recursive. Wlog f is bounded by a time bound which we also denote f . We have ∃ ∞ n ∈ M such that K f (A n) ≤ K(n) + c + d thus for each of these infinitely many n's we have K

f (A n) -K(A n) ≤ K(n) + c + d -K(n) + d = c + d + d , i.e., A is not O(1)-deep K .
Call a set A ultracompressible if for every recursive order g and all n, K(A n) ≤ + K(n) + g(n). The following theorem shows that our result is close to optimal.

Theorem 21 (Lathrop and Lutz [START_REF] Lathrop | Recursive computational depth[END_REF]). There is an ultracompressible set A which is O(1)-deep K .

Theorem 22 (Herbert [START_REF] Herbert | Weak Lowness Notions for Kolmogorov Complexity[END_REF]). There is a set A which is not K-trivial but which satisfies that for every ∆ 0 2 order g and all n, K(

A n) ≤ + K(n) + g(n).
It would be interesting to know whether such sets as found by Herbert can be O(1)-deep K . The result of Herbert is optimal, Csima and Montalbán [START_REF] Csima | A minimal pair of K-degrees[END_REF] showed that such sets do not exist when using ∆ 0 4 orders and Baartse and Barmpalias [START_REF] Baartse | On the Gap Between Trivial and Nontrivial Initial Segment Prefix-Free Complexity[END_REF] improved this non-existence to the level ∆ 0 3 . We also point to related work of Hirschfeldt and Weber [START_REF] Hirschfeldt | Finite Self-Information[END_REF].

Theorem 23 (Baartse and Barmpalias [START_REF] Baartse | On the Gap Between Trivial and Nontrivial Initial Segment Prefix-Free Complexity[END_REF]). There is a ∆ 0 3 order g such that a set A is K-trivial iff K(A n) ≤ + K(n) + g(n) for all n.

Infinitely Often Depth and Conditional Depth

Bennett observed in [START_REF] Bennett | Logical depth and physical complexity. The Universal Turing Machine, A Half-Century Survey[END_REF] that being infinitely often Bennett deep is meaningless, because all recursive sets are infinitely often deep. A possibility for a more meaningful notion of infinitely often depth, is to consider a depth notion where the length of the input is given as an advice. We call this notion i.o. depth. Now assume that A is not infinitely often O(1)-deep C . Then there is a total function t = Φ e and a k > c such that C(τ | |τ |) ≥ C t (τ | |τ |) -k for all prefixes τ of A. It follows that in particular never a σ m with S σm consisting of prefixes of A is selected in the above algorithm using e, k. This then implies that for almost all n and the majority of the m in the interval from 4 n to 4 n+1 (which are those for which σ m does not get defined) it holds that C t (τ | m) ≤ e + 3k for the unique τ ∈ S A(1)A(4 Results of Franklin and Stephan [START_REF] Franklin | Schnorr trivial sets and truth-table reducibility[END_REF] imply that for every Schnorr trivial set and every order h it holds that A is not i.o. h-deep C , as for every order h there is a time bound t such that the function n → C t (A n | n) grows slower than h. Thus, the second and third points cannot be generalised to i.o. order-deep C .

It also follows that there are high truth-table degrees and hyperimmune-free Turing degrees which do not contain any i.o. order-deep C set. These are obtained by considering examples for Schnorr trivial sets such as the following ones: all maximal sets and, for every partial recursive {0, 1}-valued function ψ whose domain is a maximal set, all sets A satisfying ∀x ψ(x) ↓ ⇒ A(x) = ψ(x).

Conclusion

We conclude that the choice of the depth magnitude has consequences on the computational power of the corresponding deep sets, and that larger magnitudes is not necessarily preferable over smaller magnitudes. Therefore choosing the appropriate depth magnitude for one's purpose is delicate, as the corresponding depth notions might be very different. When the depth magnitude is large, we proved that depth and highness coincide. We showed that this is not the case for smaller depth magnitude by constructing a low order deep set, but the set is not r.e. We therefore ask whether there is a low O(1)-deep K r.e. set.

From our results, for magnitudes of order O(1), K-depth behaves better than C-depth. To further strengthen that observation we ask whether there is an MLR O(1)-deep C set.

Theorem 7 .

 7 Every many-one degree contains a set which is not O(1)-deep C . Proof. The recursive many-one degrees consist only of sets which are not O(1)-deep C . So consider any set A different from both ∅ and N and let B = {2 2 p : p ∈ A}. Given any k, choose m = A(0) + 2A(1) + . . . + 2 k A(k) and let n be any number between 2 m and 2 m+1 which has C-complexity m. Now on one hand C(B n) ≥ + C(n) ≥ m and on the other hand, one can compute m from the m-digit binary number representing n and one can compute A(0), A(1), . . . , A(k) from m and using B(2 2 p) = A(p) one can compute B n from the binary representation of n and its length m so that C t (B n) ≤ m + c for some time bound t and some constant c independent of n and m. This shows that A is not O(1)-deep C . Clearly A ≤ m B. Furthermore, B ≤ m A by mapping all values of form 2 2 p to p and all other values to a fixed non-element of A.

)A(16)...A(4 n) ∩ {0, 1} m . There are at most 2 e+3k+2 many strings σ ∈ {0, 1} n+1 such that at least half of the members τ of S σ satisfy that C(τ | |τ |) ≤ e + 3k and there is a constant c such that for almost all n the corresponding σ satisfy C(σ|n) ≤ e + 3k + c . It follows that C(τ | |τ |) ≤ e + 3k + c for some constant c and almost all n and all τ ∈ S A(1)A(4)A(16)...A(4 n) ; in other words, C(τ | |τ |) ≤ e + 3k + c for some constant c and almost all prefixes τ of A. Hence A is recursive [19, Exercise 2.3.4 on page 131].For the third item, note that Merkle, Kjos-Hanssen and Stephan[START_REF] Kjos-Hanssen | Kolmogorov complexity and the recursion theorem[END_REF] Theorem 2.7] showed that a set A has DNR Turing degree iff there is a function f ≤ T A such that C(f (n)) ≥ n for all n. It will be shown that sets which are neither recursive nor i.o. O(1)-deep C will permit to construct such a function f ≤ T A and are thus DNR.Assume now that there is a time bound t and a constant c such that, for all n, C(A n | n)+c ≥ C t (A n | n). Now, for input n, one searches relative to A for an m such that C t (A m | m) ≥ n + c and lets f (n) = A m for the so found m. As A is not recursive this search terminates for every n and obviously f ≤ T A. By assumption, C(A m | m) + c ≥ n + c and, assuming a suitable compatibility between conditional and normal Kolmogorov complexity,C(A m) ≥ n, that is, C(f (n)) ≥ n.Due to these connections, non-recursive and non-high r.e. sets are a natural example of sets where all members of the Turing degree satisfy that they are i.o. O(1)-deep C but not O(1)-deep C .

Definition 24. A set A is i.o. O(1)-deep K if for every c ∈ N and for every time bound t there are infinitely many n satisfying K

If we replace K with C in the above definition, we call the corresponding notion i.o. O(1)-deep C . The fact that all recursive sets are infinitely often deep in Bennett's approach does no longer hold for i.o. depth as defined above.

Proof. Let A be recursive and t be a time bound. Wlog A is recursive in time t, i.e., for every n ∈ N we have

The following shows that very little computational power is needed to compute an i.o. deep set.

Theorem 26. 1. There is a Π 0 1 -class such that every member is i.o. εn-deep C for all ε < 1. In particular there is such a set of hyperimmune-free degree. Furthermore, every hyperimmune Turing degree contains such a set.

Every nonrecursive many-one degree contains an

Proof. This result is obtained by splitting the natural numbers recursively into intervals

1 -class such that for each n = e, k where t = Φ e is defined up to b n , a string τ ∈ {0, 1} bn-an+1 is selected such that for all σ ∈ {0, 1} an , C t (στ) ≥ b n -2a n -2 and then it is fixed that all members A of the Π 0 1 -class have to satisfy A(x) = τ (x -a n) for all x ∈ I n . Since there are 2 bn-an+1 strings τ and for each program of size below b n -2a n -2 can witness that only 2 an many τ are violating C t (στ) ≥ |τ | -|σ| for some σ ∈ {0, 1} an , there will be less than 2 bn-an+1 -2 bn-an many τ that get disqualified and so the search finds such a τ whenever Φ e is defined up to b n . Hence, for every total t = Φ e , there are infinitely many intervals I n with n of the form e, k such that on these 1 -class is εn-deep C for every ε < 1. Note that there are hyperimmune-free sets inside this Π 0 1 -class, as it has only nonrecursive members. Furthermore, one can see that the proof also can be adjusted to constructing a single set in a hyperimmune Turing degree rather than constructing a full Π 0 1 -class. In that case one takes some function f in this degree which is not dominated by any recursive function and then one permits for each n = e, k the time Φ e (b n) in the case that Φ e (b n) < f (k) and chooses τ accordingly and one takes τ = 0 bn-an+1 in the case that Φ e does not converge on all values below b n within time f (k) otherwise. This construction is recursive in the given degree and a slight modification of this construction would permit to code the degree into the set A. In other word, for every A ⊆ {4 n : n ∈ N}, S A(1)A(4)A(16)...A(4 n) contains those τ which are a prefix of A and for which τ (4 n) is defined but not τ (4 n+1). For each e, k, n where Φ e is a total function t, we now try to find inductively for m = 4 n + 1, 4 n + 2, . . . , 4 n+1 strings σ m ∈ {0, 1} n+1 such that whenever σ m is found then it is different from all those σ m which have been found for some m < m and the unique τ ∈ S σm ∩ {0, 1} m satisfies C t (τ | m) ≥ e + 3k. Note that due to the resource-bound on C t one can for each m < m check whether σ m exists and take this information into account when trying to find σ m . Therefore, for those m where σ m exists, the τ ∈ S σm ∩ {0, 1} m can be computed from m, e and k and hence C(τ | m) ≤ e + k + c for some constant c independent of e, k, n, m.