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ESTIMATION OF THE JUMP SIZE DENSITY IN A MIXED COMPOUND

POISSON PROCESS.

F. COMTE1, C. DUVAL1, V. GENON-CATALOT1, AND J. KAPPUS2

Abstract. In this paper, we consider a mixed compound Poisson process, i.e. a random sum

of i.i.d. random variables where the number of terms is a Poisson process with random inten-

sity. We study nonparametric estimators of the jump density by specific deconvolution methods.

First, assuming that the random intensity has exponential distribution with unknown expecta-

tion, we propose two types of estimators based on the observation of an i.i.d. sample. Risks

bounds and adaptive procedures are provided. Then, with no assumption on the distribution of

the random intensity, we propose two nonparametric estimators of the jump density based on

the joint observation of the number of jumps and the random sum of jumps. Risks bounds are

provided, leading to unusual rates for one of the two estimators. The methods are implemented

and compared via simulations. February 25, 2015

Keywords. Adaptive methods, deconvolution, mixed compound Poisson process, nonparametric den-

sity estimation, penalization method.

1. Introduction

Compound Poisson processes are commonly used in many applied fields, especially in queuing

and risk theory (see e.g. Embrechts et al. (1997), Grandell (1997), Mikosch (2009)). The model

can be described as follows. Consider a Poisson process (N(t)) with intensity 1, (ξi, i ≥ 1) a

sequence of i.i.d. random variables with common density f independent of N and λ a positive

number. Then, (N(λt), t ≥ 0) is a Poisson process with intensity λ and Xλ(t) =
∑N(λt)

i=1 ξi is

a compound Poisson process with jump size density f . The process Xλ has independent and

stationary increments and is therefore a special case of Lévy process with Lévy density λf . Lots

of references on Lévy density estimation are available (see Comte and Genon-Catalot (2009),

Figueroa-Lopez (2009), Neumann and Reiss (2009), Ueltzhöfer and Klüppelberg (2011), Gu-

gushvili (2012)). Inference is generally based on a discrete observation of one sample path with

sampling interval ∆ and uses the n-sample of i.i.d. increments (Xλ(k∆)−Xλ((k−1)∆), k ≤ n).

For the special case of compound Poisson process, van Es et al. (2007) build a kernel type es-

timator of f in the low frequency setting (∆ fixed), assuming that the intensity λ is known. In
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Duval (2013) and in Comte et al. (2014), the same problem is considered with λ unknown and

in the high frequency setting (∆ = ∆n tends to 0 while n∆ tends to infinity).

In this paper, we consider the case where the intensity λ is not deterministic but random.

The model is now as follows. Let Λ be a positive random variable, independent of (N(t), t ≥ 0)

and of the sequence (ξi, i ≥ 1). Then,

(1) Y (t) =

N(Λt)∑

i=1

ξi

defines a mixed compound Poisson process (see Grandell (1997)). Given that Λ = λ, the con-

ditional distribution of (Y (t)) is identical to the distribution of (Xλ(t)). The mixed compound

Poisson model belongs to the more general class of mixed effects models where some param-

eters are (unobserved) random variables. Mixed effects models which are extremely popular,

are often used in studies in which repeated measurements are taken on a series of individuals

(see e.g. Davidian and Giltinan (1995), Pinhero and Bates (2000), Antonio and Beirlant (2007),

Belomestny (2011)). The randomness of parameters allows to account for the variability existing

between subjects.

Model (1) belongs to the general class of random sums of random variables, widely used in

a huge number of applications. For instance, in the field of non life insurance mathematics,

companies hold portfolios of n contracts or policies. For each contract j, they know, per year

(∆ = 1), the total claim amount
∑Mj

i=1 ξ
j
i where Mj is the number of claims (e.g. accidents) and

ξji is the claim size of the i−th claim of the j−th contract. Independence of contracts is generally

assumed. Modeling Mj as a mixed Poisson variable is also of common use (see Mikosch(2009)

and Grandell (1997)). Note that an insurance company may observe each individual claim and

the time the claim happens. Thus claim intensity and claim sizes can be estimated separately

by standard statistics. Nevertheless, it is interesting to compare estimators based on highly

detailed data (with exact claim amounts and times) to the ones proposed here which correspond

to aggregation over time or end-of-year data alone.

The model of random sums is also used in stochastic activity of neurons for instance to model

the amplitude of the endplate potential (see Tuckwell (1998), vol.2 chap.9). In such data, only

aggregated data are available, so that our methods provide an adequate solution in this context.

Note that, in Boegsted and Pitts (2010), the authors assume that the distribution of Mj is

general but known and construct a nonparametric plug in estimator of f . Below, we assume

that the distribution of Λ either contains unknown parameters or is completely unknown, so

that the distribution N(Λ∆) is unknown.

In this paper, we consider, for a given time ∆, i.i.d. observations (Yj(∆), j = 1, . . . , n) of Y (∆)

and our aim is to define and study nonparametric estimators of f . Note that, for deterministic

λ, the n-sample of increments (Xλ(k∆) −Xλ((k − 1)∆), k ≤ n) for one trajectory has exactly
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the same distribution as an i.i.d. sample (Xλ
j (∆), j = 1, . . . , n) for n trajectories at one instant

∆. Hence, the performances of estimation procedures based on i.i.d. data (Yj(∆), j = 1, . . . , n)

may be compared with those of procedures based on increments (Xλ(k∆)−Xλ((k−1)∆), k ≤ n)

for one trajectory.

To fix notations, let (Λj , j ≥ 1) be i.i.d. with distribution ν(dλ), let (Nj(t), j ≥ 1) be i.i.d.

Poisson processes with intensity 1 independent of (Λj , j ≥ 1) and consider, for ∆ > 0, the n-

sample (Yj(∆) =
∑Nj(Λj∆)

i=1 ξji , j = 1, . . . , n) where (ξji , j, i ≥ 1) are i.i.d. with density f , and the

sequence (ξji , j, i ≥ 1) is independent of (Λj , (Nj(t)), j ≥ 1). The paper is divided in two distinct

parts, one is semi-parametric (Section 2) and the other purely nonparametric (Section 3). In

both parts, our approach relies on deconvolution and requires the assumption that f belongs to

L
2(R).

In Section 2, we assume that the observation is (Yj(∆), j ≤ n) and that the unobserved random

intensities Λj ’s have an exponential distribution with unknown expectation µ. We define two

different nonparametric estimators of f . First (method 1), introducing

(2) Q∆(u) := E(eiuY (∆)1IY (∆)6=0), φ∆(u) := E(eiuY (∆)) and q∆ := P(Y (∆) 6= 0),

we observe that the Fourier transform f∗(u) of f satisfies f∗(u) = Q∆(u)/(q∆φ∆(u)). This

relation is specific to the case of Λ having an exponential distribution. We deduce an estimator

f̂∗(u) of f∗(u) based on empirical estimators of Q∆(u), φ∆(u), q∆. Then, by Fourier inversion,

we build a collection of nonparametric estimators f̂m(x) of f associated with a cut off parameter

m and propose a data driven selection m̂ of m leading to an adaptive estimator (Proposition 2,

Theorem 1). Non asymptotic risk bounds are proved.

However, if ∆ gets too small, the previous method deteriorates as q∆ becomes small and 1/q∆

is badly estimated (this is pointed out on simulations). This is why we investigate a second

method (method 2) which performs well for small ∆. The idea is that for µ∆ < 1, the following

series development holds:

(3) f∗(u) =
∑

k≥0

(1 + µ∆)(−µ∆)k(g∗∆(u))
k+1 =

K∑

k=0

(1 + µ∆)(−µ∆)k(g∗∆(u))
k+1 +O(∆K+1),

where g∆ is the conditional density of Y (∆) given Y (∆) 6= 0. We apply a method comparable

to the one developed in Comte et al. (2014) for non random intensity. Using estimators of g∗∆
and µ, we obtain an estimator of f∗(u) depending on a truncation parameter K. We build by

Fourier inversion estimators (f̂m,K)m and propose a data-driven choice m̂K of the cut-off m (see

Proposition 3 and Theorem 2).

In Section 3, we no longer assume that Λ has exponential distribution. For identifiabil-

ity purpose, we enrich the observation and assume that, in addition to (Yj(∆)), the sample

(Nj(Λj∆), j = 1, . . . , n) is observed. We do not assume that Λ admits a density and the method

works for deterministic (unknown) Λ. Here also, we define two estimators of f . The first one
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(method 3) is based on the following idea. Assuming that f∗(u) 6= 0 for all u, we check that

(4) ψ(u) :=
(f∗(u))′

f∗(u)
= i

G∆(u)

H∆(u)
, f∗(u) = exp

(∫ u

0
ψ(v)dv

)

where

(5) G∆(u) = E

(
Y (∆)

∆
eiuY (∆)

)
, H∆(u) = E

(
N(Λ∆)

∆
eiuY (∆)

)
.

Therefore, ψ(u) can be estimated by using empirical counterparts of G∆(u),H∆(u) leading to an

estimator of f∗(u). Afterwards, we proceed by deconvolution to define a collection of estimators

f̃m depending on a cut off parameter m. Proposition 4 gives the bound of the L
2-risk of f̃m for

fixed m. The risk bounds are non standard as well as the proof to obtain them and give rise to

unusual rates on standard examples when making the bias-variance trade-off. We propose an

heuristic penalization criterion to define a data-driven choice of the cut off parameter.

The second estimator of this part (method 4) is based on the fact that each time that

Nj(Λj∆) = 1, a random variable ξ is observed, or equivalently, the conditional distribution

of Yj(∆) given Nj(Λj∆) = 1 is exactly f .

Section 4 illustrates our methods on simulated data for different examples of jump densities

f and of distributions for Λ. It appears clearly that method 1 of Section 2 performs well for all

values of ∆ except very small ones contrary to method 2, as expected from theoretical results.

The methods of Section 3 (methods 3 and 4) perform well for all ∆ and for various distributions

for Λ, including the exponential. A complete discussion on numerical results is given. Section 5

contains the main proofs. Additional proofs and numerical results are given in Supplementary

material.

2. Semi-parametric strategies of estimation

In this section, we assume that Λ has an exponential distribution with parameter µ−1.

2.1. Parameter estimation when Λ is E(µ−1). For any distribution ν(dλ) of Λj , the distri-

bution of Nj(Λj∆) is given by:

(6) P(Nj(Λj∆) = m) =

∫ +∞

0
e−λ∆ (λ∆)m

m!
ν(dλ),m ≥ 0.

When Λj has density µ−1e−λµ−1
1Iλ>0, the computation is explicit:

P(Nj(Λj∆) = m) =

(
µ∆

µ∆+ 1

)m 1

µ∆+ 1
:= αm(µ,∆), m ≥ 0.(7)

Noting that

(8) P(Yj(∆) 6= 0) = P(Nj(Λj∆) 6= 0) = 1− α0(µ,∆) = 1− 1

1 + µ∆
=

µ∆

1+ µ∆
:= q∆,
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we get µ = ∆−1q∆/(1 − q∆). To estimate 1/q∆ and µ, we define for k a positive constant

(9) q̂∆ =
1

n

n∑

j=1

1IYj(∆)6=0,
1

q̃∆
=

1

q̂∆
1I
q̂∆≥k

√
∆/n

, µ̃ =
1

∆

q̂∆
1− q̂∆

1I
1−q̂∆≥k

√
∆/n

.

The following properties hold.

Proposition 1. Under the Assumption:

[A] The parameter µ belongs to a compact interval [µ0, µ1] with µ0 > 0,

and if n∆ ≥ 1, the estimators q̂∆, 1/q̃∆ and µ̃ given by (9) satisfy for all integer p ≥ 1,

E(q̂∆ − q∆)
2p ≤ C(p, µ1)

(
∆

n

)p

, E

(
1

q̃∆
− 1

q∆

)2p

≤ C ′(p,∆)

(
1

n∆3

)p

,

and

(10) E(µ̃− µ)2p ≤ C ′′(p,∆)

(n∆)p

where C(p, µ1) only depends on p and µ1, C
′(p,∆) = C ′(p) +O(∆), C ′′(p,∆) = C ′′(p) +O(∆),

and C ′(p,∆), C ′′(p,∆) only depend on p, µ0, µ1 and ∆.

Assumption [A] is needed but definition (9) does not require the knowledge of µ0, µ1.

2.2. Notation. The following notations are used below. For u : R → C integrable, we denote

its L1 norm and its Fourier transform respectively by

‖u‖1 =
∫

R

|u(x)|dx, u∗(y) =
∫

R

eiyxu(x)dx, y ∈ R.

When u, v are square integrable, we denote the L
2 norm and the L

2 scalar product by

‖u‖ =

(∫

R

|u(x)|2dx
)1/2

, 〈u, v〉 =
∫

R

u(x)v(x)dx with zz = |z|2.

We recall that, for any integrable and square-integrable functions u, u1, u2, the following relations

hold: (u∗)∗(x) = 2πu(−x) and 〈u1, u2〉 = (2π)−1〈u∗1, u∗2〉. The convolution product of u, v is

denoted by: u ⋆ v(x) =
∫
R
u(y)v̄(x− y)dy.

2.3. Estimation of f for fixed sampling interval (method 1). In this section, we propose

an estimator of f assuming that ∆ is fixed (heuristically, ∆ = 1). For Q∆, φ∆ defined in (2),

we have

φ∆(u) =

∫ +∞

0
µ−1e−λµ−1

exp (−λ∆(1− f∗(u)))dλ =
1

1 + µ∆(1− f∗(u))
.

Simple computations yield:

Q∆(u) = φ∆(u)−
1

1 + µ∆
=

µ∆f∗(u)
(1 + µ∆)(1 + µ∆(1− f∗(u)))

.
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Solving for f∗(u) yields the following formula

(11) f∗(u) =
1 + µ∆

µ∆

Q∆(u)

Q∆(u) +
1

1+µ∆

=
Q∆(u)

q∆φ∆(u)
.

This formula which is very specific to the case of Λj having exponential distribution with ex-

pectation µ suggests to estimate f∗(u) as follows:

(12) f̂∗(u) =
Q̂∆(u)

q̃∆φ̃∆(u)
with Q̂∆(u) =

1

n

n∑

j=1

eiuYj(∆)1IYj(∆)6=0,

1/q̃∆ is defined by (9), and, for k a constant,

(13)
1

φ̃∆(u)
=

1

φ̂∆(u)
1I|φ̂∆(u)|≥k/

√
n
, φ̂∆(u) =

1

n

n∑

j=1

eiuYj(∆).

Then, we apply Fourier inversion to (12), but as f̂∗ is not integrable, a cut off is required. We

propose thus

(14) f̂m(x) =
1

2π

∫ πm

−πm
e−iuxf̂∗(u)du.

Then we can bound the mean-square risk of the estimator as follows.

Proposition 2. Assume that Λ is E(µ−1), f ∈ L
2(R) and that [A] holds. Then the estimator

f̂m, for m ≤ n∆, given by (14) and (12) satisfies

E(‖f̂m − f‖2) ≤ ‖f − fm‖2 + 1

πnq∆

∫ πm

−πm

du

|φ∆(u)|2
+

c

n∆

where fm is such that f∗m = f∗1I[−πm,πm] and where the constant c does not depend on n or ∆.

The bias term ‖f − fm‖2 is decreasing with m while the variance term, of order m/n, is

increasing withm; this illustrates that a standard bias-variance compromise has to be performed.

If f belongs to the Sobolev ball defined by S(α,L) = {f ∈ L
2(R),

∫
|f∗(u)|2(1 + u2)αdu ≤ L},

‖f − fm‖2 = 1

2π

∫

|u|≥πm
|f∗(u)|2du ≤ L

2π
(1 + (πm)2)−α ≤ cLm

−2α.

Therefore, we find that, for m = mopt ≍ (n∆)1/(2α+1), E(‖f̂mopt − f‖2) = O((n∆)−2α/(2α+1)),

which is a standard nonparametric rate.

We propose a data driven way of selecting m, and we proceed classically by mimicking the

bias-variance compromise. Setting Mn = {1, . . . , n∆}, we select

(15) m̂ = arg min
m∈Mn

(
−‖f̂m‖2 + p̂en(m)

)
where p̂en(m) = κ

1

q̃∆

1

2πn

∫ πm

−πm

du

|φ̃∆(u)|2
.

Then we can prove the following result.
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Theorem 1. Assume that Λ is E(µ−1), f ∈ L
2(R) and that assumption [A] holds. Then for

any numerical constant κ such that κ ≥ κ0 = 96, we have

E(‖f̂m̂ − f‖2) ≤ c inf
m∈Mn

(
‖f − fm‖2 + κ

2πnq∆

∫ πm

−πm

du

|φ∆(u)|2
)
+
c′∆
n

where c is a numerical constant (c = 4 would suit) and c′∆ depends on ∆, µ0, µ1 and ‖f‖.

The bounds of Proposition 2 and Theorem 1 are non asymptotic and hold for all n and ∆.

However, if ∆ gets too small, the method deteriorates because q∆ becomes small and 1/q∆ is

badly estimated. Moreover c′∆ ∝ ∆−4.

Remark 1. Theorem 1 states that the estimator f̂m̂ is adaptive as the bias-variance compromise

is automatically realized. It also states that there is a minimal value κ0 such that for all

κ ≥ κ0, the adaptive risk bound holds. From our proof, we find κ0 = 96, which is not optimal.

Indeed, in simple models, a minimal value for κ0 may be computed. For instance, Birgé and

Massart (2007) prove that for Gaussian regression or white noise models, the method works for

all κ ≥ κ0 = 1 + η, η > 0, and explodes for κ = 1− η. Obtaining the minimal value in another

context is not obvious. This is why it is customary, when using a penalized method, to calibrate

the value κ in the penalty by preliminary simulations.

2.4. Estimation of f for small sampling interval (method 2). Now, we assume that

∆ = ∆n tends to 0 and that n∆ tends to infinity. We use an approach for small sampling

interval which is different from the previous one. We consider representation (3) for f∗, which

holds for µ∆ < 1. To estimate the terms of the series, we use Proposition 1 above, and (17)

together with Proposition A.1 stated and proved in Supplementary material and inspired by

Chesneau et al. (2013).

The distribution of Yj(∆) is given by:

PY (∆)(dx) = α0(µ,∆)δ0(dx) +
∑

m≥1

αm(µ,∆)f⋆ m(x)dx,

where αm(µ,∆),m ≥ 0 is defined by (7) and f⋆ m denotes the m-th convolution power of f .

The conditional distribution of Y (∆) given Y (∆) 6= 0 has density and Fourier transform given

by (see (2), (8))

g∆(x) =
1

q∆

∑

k≥1

αk(µ,∆)f⋆ k(x), g∗∆(u) =
Q∆(u)

q∆
.

Using (7), as µ∆|f∗(u)|/(1 + µ∆) < 1, the Fourier transform of g∆ is given by:

g∗∆(u) =

(
µ∆

1 + µ∆

)−1∑

k≥1

1

1 + µ∆

(
µ∆

1 + µ∆

)k

(f∗(u))k =
f∗(u)

1 + µ∆(1− f∗(u))

Thus |g∗∆(u)| ≤ |f∗(u)| which implies that

(16) ‖g∆‖ ≤ ‖f‖.
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Solving for f∗(u) yields: f∗(u) = (1 + µ∆)g∗∆(u)/(1 + µ∆g∗∆(u)). Now, if µ∆ < 1, then the

development (3) holds and we have to estimate µ and g∗∆. For µ we use the estimator µ̃ given

in (9). To estimate g∗∆(u), we set, see (9) and (12):

(17) g̃∗∆(u) =
ĝ∗∆(u)

max
(
1, |ĝ∗∆(u)|

) with ĝ∗∆(u) =
Q̂∆(u)

q̃∆
.

To estimate f∗, we plug g̃∗∆ and µ̃ in (3) and truncate the series up to order K:

f̂∗K(u) =
K∑

k=0

(−1)k(1 + µ̃∆)(µ̃∆)k(g̃∗∆(u))
k+1.

A practical choice of K is given below based on Proposition 3. Then, we proceed with Fourier

inversion with cut off, to define

f̂m,K(x) =
1

2π

∫ πm

−πm
f̂∗K(u)e−iuxdu.

We can prove the following result.

Proposition 3. Assume that f ∈ L
2(R), that [A] holds, that Λ is E(µ−1), and that 2µ1∆ < 1

and ∆ < 1. Then, for any m ≤ n∆, we have

E

(
‖f̂m,K − f‖2

)
≤ ‖fm − f‖2 + 12

(1 + µ∆)3

µ

m

n∆
+A(µ1∆)2K+2 +

EK

n∆
,

where fm is such that f∗m = f∗1I[−πm,πm], A = 4‖f‖2(1+µ1∆)2/(1−µ1∆)2 and EK is a constant

depending on K, µ0, µ1 and ‖f‖.

If f ∈ S(α,L), ‖f − fm‖2 ≤ cLm
−2α and choosing m = mopt ≍ (n∆)1/(2α+1) implies

E(‖f̂mopt,K − f‖2) ≤ c1(n∆)−2α/(2α+1) + c2∆
2K+2.

In practice, we choose K such that ∆2K+2 ≤ 1/(n∆), so that the third term in the risk bound

of Proposition 3 is negligible. That is

(18) K ≥ K0 :=
1

2

(
log(n)

| log(∆)| − 3

)
.

Now, we have to select m in a data driven way. To that aim, we propose

m̂K = arg min
m∈{1,...,[n∆]}

(
−‖f̂m,K‖2 + p̃en(m)

)
, p̃en(m) = κ′

(1 + µ̃∆)2

q̃∆

m

n
.

For the choice of κ′ in the penalty, we refer to Remark 1. The following holds.

Theorem 2. Assume that f ∈ L
2(R), that Λ is E(µ−1), that [A] holds and that 2µ1∆ < 1.

Then there exists a numerical constant κ′0 such that, for all κ′ ≥ κ′0, we have

E

(
‖f̂m̂K ,K − f‖2

)
≤ c inf

m∈{1,...,[n∆]}

(
‖fm − f‖2 + κ′

(1 + µ∆)3

µ

m

n∆

)
+A(µ1∆)2K+2 +

E′
K

n∆
,
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where c is a numerical constant, A is defined in Proposition 3 and E′
K is a constant depending

on K, µ0, µ1 and ‖f‖.

2.5. The case where Λ has Gamma distribution. The distribution (6) is also explicit when

Λ has Gamma distribution, with parameters (a, µ−1) together with Q∆, φ∆ as defined by (2).

Indeed, plugging the Gamma density in formula (6), we get

αm(a, µ,∆) =
Γ(a+m)

Γ(a)m!

(
1

1 + µ∆

)a( µ∆

1+ µ∆

)m

.

If a is integer, this is a negative binomial distribution bin−(a, 1/1 + µ∆). To estimate the

distribution of Λ, only one relation is available, which is P(Y (∆) = 0) = (1+µ∆)−a. Therefore,

we cannot estimate the two parameters a and µ. For instance if a is known, methods 1 and 2 of

Section 2 can be generalized, up to some additional but tedious computations.

3. Nonparametric strategies

In this section, we make no assumption on the distribution of Λ and turn to the estimation

of f , using both samples (Yj(∆), Nj(Λj∆))j . Observe that we cannot estimate f on the basis of

the sample (Yj(∆))j as in Section 2. Even in the case where the distribution of Λ is known up

to two parameters (see Section 2.5), there occurs an identifiability problem.

3.1. Method 3. We start from the characteristic function and for ν denoting the distribution

of Λ, we have, from (2),

φ∆(u) =

∫ +∞

0
exp (−λ∆(1− f∗(u)))ν(dλ)

and by derivation (see (5)),

(19) iG∆(u) = (f∗(u))′K∆(u), where K∆(u) = E(ΛeiuY (∆)).

For fixed Λ = λ, we get

E

(
N(λ∆)

∆
eiu

∑N(λ∆)
k=1 ξk

)
= f∗(u)E

(
λeiu

∑N(λ∆)
k=1 ξk

)

and therefore

H∆(u) = E

(
N(Λ∆)

∆
eiuY (∆)

)
= f∗(u)K∆(u).

We deduce that, if H∆ 6= 0, (4) holds. With the condition f∗(0) = 1, we obtain the formula

f∗(u) = exp

(∫ u

0
ψ(v)dv

)
,

where ψ = (f∗)′/f∗, see formula (4) (for u ≤ 0,
∫ u
0 = −

∫ 0
u ). We deduce an estimator by setting

(20) f̃m(x) =
1

2π

∫ πm

−πm
e−iuxf̃∗(u)du
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where

f̃∗(u) = f̂∗(u)1I{|f̂∗(u)|≤1} +
f̂∗(u)

|f̂∗(u)|
1I{|f̂∗(u)|>1} =

f̂∗(u)

max(1, |f̂∗(u)|)
,

with, for some constant k,

f̂∗(u) = exp

(∫ u

0
ψ̃(v)dv

)
, ψ̃(v) = i

Ĝ∆(v)

H̃∆(v)
, Ĝ∆(v) =

1

n∆

n∑

j=1

Yj(∆)eivYj (∆),

Ĥ∆(v) =
1

n∆

n∑

j=1

Nj(Λj∆)eivYj (∆),
1

H̃∆(v)
=

1

Ĥ∆(v)
1I{|Ĥ∆(v)|≥k(n∆)−1/2}.

We introduce the following assumption depending on an integer p.

[B] (i) ∀u ∈ R, f∗(u) 6= 0, and there exists K0 > 0 such that ∀u ∈ R, |K∆(u)| ≥ K0 (see (19)).

(ii)(p) E(ξ2p) < +∞, E(Λ2p) < +∞.

(iii) ‖G′
∆‖1 < +∞.

To justify assumption [B](i), consider the case where Λ follows an exponential distribution

E(µ−1). Then

K∆(u) =
µ

[1 + µ∆(1− f∗(u))]2
and K∆(u) ∼u→+∞

µ

[1 + µ∆]2
.

Thus H∆ is not lower bounded near infinity contrary to K∆(u).

Under [B] (ii), E[(Y (∆))2p] = ∆E(Λ)E(ξ2p) + o(∆). Indeed, we first compute the cumulants

of the conditional distribution of Y (∆) given Λ. Then we deduce the conditional moments using

the link between moments and cumulants. Integrating with respect to Λ gives the result. Note

that [B](ii) implies that G′
∆ exists, with

iG′
∆(u) = (f∗)′′(u)K∆(u) + i(f∗)′(u)E(ΛY (∆)eiuY (∆)).

If (f∗)′ and (f∗)′′ are integrable, [B](iii) holds. We can prove the following result.

Proposition 4. Assume that f ∈ L
2(R) and [B] hold. Let f̃m be given by (20) and let ∆ be

fixed, n∆ ≥ 1. Then the following bound holds:

E(‖f̃m − f‖2) ≤ ‖f − fm‖2 + c1
n∆

∫ πm

−πm
|f∗(u)|2



∫ |u|

0

dv

|f∗(v)|2 +

(∫ |u|

0

|(f∗)′(v)|
|f∗(v)|2 dv

)2

 du

+
c2

(n∆)p

∫ πm

−πm

(
1 +

(∫ |u|

0

∣∣∣∣
(f∗)′(v)
f∗(v)

∣∣∣∣
2

dv

)p)(∫ |u|

0

dv

|f∗(v)|2

)p

du

+
c3

(n∆)2p−1

∫ πm

−πm

(∫ |u|

0

dv

|f∗(v)|

)2p

du(21)
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where the constants ci, i = 1, 2, 3 depend on ‖G′
∆‖1, K0 and the moments of Λ and ξi up to

order 2p.

Note that the unknown function appears in the variance terms which is unusual in deconvo-

lution problems.

3.2. Rate of the estimator. We study the resulting rate on different examples.

• Gamma distribution. Let f ∼ Γ(α, 1). Then f∗(u) = (1− iu)−α and

(f∗)′(u)/f∗(u) = − iα

1− iu
.

Note that Assumption [B](iii) is fulfilled. We have ‖f − fm‖2 = O(m−2α+1) so that α > 1/2 is

required for consistency of the estimator. For the variance terms, using the bound (21), we have

V1 :=

∫ πm

−πm
|f∗(u)|2



∫ |u|

0

dv

|f∗(v)|2 +

(∫ |u|

0

|(f∗)′(v)|
|f∗(v)|2 dv

)2

 du = O(m2),

V2 :=

∫ πm

−πm

(
1 +

(∫ |u|

0

∣∣∣∣
(f∗)′(v)
f∗(v)

∣∣∣∣
2

dv

)p)(∫ |u|

0

dv

|f∗(v)|2

)p

du = O(m(2α+1)p+1),

and

V3 :=

∫ πm

−πm

(∫ |u|

0

dv

|f∗(v)|

)2p

du = O(m(2α+1)p+1).

Optimizing the bias and V1/(n∆) yieldsmopt,1 ≍ (n∆)1/(2α+1) and a rate O((n∆)−(2α−1)/(2α+1)).

Optimizing the bias and V2/(n∆)p yields mopt,2 ≍ (n∆)1/(1+2α(1+1/p)) and a rate

O((n∆)−(2α−1)/(2α+1+2α/p)).

Optimizing the bias and V3/(n∆)2p−1 yields mopt,3 ≍ (n∆)(2p−1)/(2p(α+1)+2α) and a rate

O((n∆)−(2α−1)(2p−1)/(2p(α+1)+2α)).

For p ≥ 2 the rate is of order (n∆)−(2α−1)/(2α+1+ 2α
p
), which is close to (n∆)−(2α−1)/(2α+1) for

large p. Thus, as p can be as large as desired, V1 and V2 get comparable.

• Gaussian distribution. Let us consider f∗(u) = e−u2/2, (f∗)′(u)/f∗(u) = −u. Assump-

tion [B](iii) is fulfilled. We use Lemma 4 recalled in Section 5.4, to derive ‖f − fm‖2 =

O(m−1e−(πm)2), V1 = O(m), V2 = O(m2p−1ep(πm)2) and V3 = O(m−2p−1ep(πm)2). We choose

(πmopt)
2 =

p

p+ 1
log(n∆)− 2p

p+ 1
log(log(n∆)),

and get the rate

(n∆)
− p

p+1 (log n∆)
p−1
p+1 .

Note that optimizing the bias and V1/(n∆) leads to the rate
√

log(n∆)/(n∆). Here again, for

large p, the two terms V1 and V2 are comparable.
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3.3. Cut off selection. As previously, we need to propose a data-driven selection of the cut

off. The bias is estimated up to a constant by −‖f̃m‖2. The penalty is built by estimating the

variance term of the risk bound. Here, we have three variance terms and we do not know which

term to choose to build a penalty. Thus we select m as in method 1 (Section 2.3):

m̃ = argmin
m

(−‖f̃m‖2 + p̂en(m))

where p̂en(m) is defined in (15) and built using the Yj(∆)’s only. The numerical results confirm

that this strategy works well.

3.4. Method 4. A simple procedure is available for estimating f based on the joint observation

(Nj(Λj∆), Yj(∆))1≤j≤n. Note that

P(Nj(Λj∆) = 1) := α1(ν,∆) = ∆

∫ +∞

0
e−λ∆λν(dλ) > 0

and that the conditional distribution of Yj(∆) given Nj(Λj∆) = 1 is identical to the distribution

of ξj1. Hence, let us set, for k a positive constant:

(22)
1

α̃1
=

1

α̂1
1I
α̂1≥k

√
∆/n

, α̂1 =
1

n

n∑

i=1

1I(Nj(Λj∆)=1),

(23) f̌m(x) =
1

2πα̃1

∫ πm

−πm
e−iux

(
1

n

n∑

i=1

eiuYj(∆)1I(Nj(Λj∆)=1)

)
du.

The following property holds.

Proposition 5. Assume that f ∈ L
2(R), E(Λ) < +∞, E(Λe−Λ∆) ≥ k0 and n∆ ≥ 1∨ 4k2

k20
. Then

f̌m defined by (23) satisfies

E(‖f̌m − f‖2) ≤ ‖f − fm‖2 + 4m

nα1(ν,∆)

(
1 +

2k2∆

α1(ν,∆)

1

nα1(ν,∆)

)

where fm is such that f∗m = f∗1I[−πm,πm]

Note that α1(ν,∆) = ∆(E(Λ)+o(1)). The variance term is of order O(m/(n∆)). We propose

the following adaptive choice for m:

m̌ = arg min
m≤n∆

(
−‖f̌m‖2 + κ′′

nα̃1

)
.

The proof of Proposition 5 follows the same lines as the analogous Proposition 2 and is omitted.

The proof of adaptiveness of f̌m̌ is also omitted.

The interest of this estimator is obviously its simplicity. However, it strongly depends on the

observed value nα̂1. If this value is too small, the estimator performs poorly, as illustrated in

the numerical simulations.
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4. Illustrations of the methods

In this section, we illustrate the estimators with data driven cut off on simulated data. The

truncation constant k is always taken equal to 0.5 (equations (9) and (13)), except in (22)

where k = 0. In all tables, the L2-risks are computed for f a Gaussian N (0, 3) and Λ either an

exponential distribution with mean 1, or a uniform distribution on [5, 6], a translated exponential

E(2) + 5, a translated Beta distribution Beta(2, 2) + 5, a Gamma distribution Γ(6, 3/2). To

compute L2-risks, we perform 1000 Monte-Carlo iterations.

The cut off m is selected among 200 equispaced values between 0.01 and 2. All methods

require the calibration of the constants κ, κ′, κ′′ in penalties. After preliminary experiments, we

take κ = 0.21 (method 1) and κ′ = κ′′ = 5 (methods 2, 4).

Method 1 works for fixed values of ∆ (∆ = 1, 2), but also for small values (0.1 to 0.9). However,

when ∆ gets too small (0.01), the risk increases. On the other hand, method 2 completely fails

for ∆ = 1, as predicted by the theory (A = +∞ in the risk bound of Proposition 3 when

µ∆ = 1); for ∆ = 0.5, 0.9, methods 1 and 2 have comparable risks while for ∆ ≤ 0.1, method 2

is better. The cut off values are rather small and stable (standard deviations are of order 10−2).

The value K is taken of order sup(1,K0) for K0 defined in formula (18) (see Tables B.1, B.2 in

Supplementary material).

In Figure 1, 50 estimated curves of a Gaussian mixture by methods 1 and 2 are plotted, for

different sample sizes n = 500, 2000, 5000. The two methods distinguish well the two modes and

are improved as n increases.

Table 1. Mean of the L2-risks for methods 1, 3 and 4. ∆ = 1, Λ ∼ E(1) and f is N (0, 3);

standard deviation in parenthesis.

n Method 1 Method 3 Method 4

200 5.6 · 10−3 (5.7 · 10−3) 5.8 · 10−3 (5.9 · 10−3) 6.0 · 10−3 (4.6 · 10−3)

500 2.7 · 10−3 (2.5 · 10−3) 2.9 · 10−3 (5.0 · 10−3) 2.5 · 10−3 (2.2 · 10−3)

1000 1.5 · 10−3 (1.7 · 10−3) 1.8 · 10−3 (1.7 · 10−3) 1.4 · 10−3 (1.1 · 10−3)

2000 7.9 · 10−4 (5.7 · 10−4) 1.1 · 10−3 (8.0 · 10−4) 7.3 · 10−4 (5.5 · 10−4)

5000 3.7 · 10−4 (2.9 · 10−4) 5.3 · 10−4 (4.0 · 10−4) 3.1 · 10−4 (2.3 · 10−4)

In Table 1 we compare method 1 to methods 3, 4 when Λ is exponential. They behave

similarly, with good results even for small values of n. Method 4 performs surprisingly well

and is stable. In Table 2, we change the distribution of Λ and therefore we show no results for

method 1, since it does not work in that case, neither in theory nor in practice. The chosen
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m̂ = 0.45 (0.08) m̂ = 0.52 (0.02) m̂ = 0.56 (0.05)

m̂5 = 0.49 (0.04) m̂5 = 0.54 (0.02) m̂5 = 0.61 (0.09)

Figure 1. Estimation of f for a Gaussian mixture 0.4N (−2, 1)+0.6N (3.1) for n = 500 (first

column) n = 2000 (second column) and n = 5000 (third column) with method 1 (first line) and

method 2 (second line, K = 5) for ∆ = 1/2. True density (bold black line) and 50 estimated

curves (green lines). Λ ∼ E(1). ¯̂m, ¯̂m5 is the mean of cutoff values with s.d. in parenthesis.

distributions for Λ make method 4 perform worse than method 3. For n ≤ 1000, method 3 better

than method 4. For larger n, the methods become equivalent. Method 4 fails here because the

number nα̂1 (see (22)) is too small.

In Figure 2, 50 estimated curves of a Gumbel distribution by methods 1 and 3 are plotted,

for different sample sizes n = 500, 2000, for Λ an exponential E(1) and a uniform U([1, 2]).
Columns 1 and 2 allow to compare methods 1 and 3 when Λ is exponential. Method 3 has good

performances without knowledge of the distribution of Λ. In all cases, the values of m are small

and stable.

5. Main proofs

The proofs of Proposition 1, Proposition 3 and Theorem 2 are given in Supplementary mate-

rial, as well as the proofs of Lemmas 1 and 2 stated hereafter.

First we state a useful lemma, similar to Lemma 2.1 p. 310 in Neumann (1997), proved in

Section A.1. of Supplementary material.

Lemma 1. ∀u ∈ R, E(| 1

φ̃∆(u)
− 1

φ∆(u)
|2p) ≤ cp

(
1

|φ∆(u)|2p
∧ n−p

|φ∆(u)|4p
)
.
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Table 2. Mean of the L2-risks for methods 3 and 4; standard deviation in parenthesis. ∆ = 1,

Λ ∼ U([5, 6]), E(2) + 5, Beta(2, 2) + 5, Γ(6, 3/2) and f is N (0, 3).

Λ n Method 3 Method 4

U [5, 6] 200 1.7 · 10−2 (1.3 · 10−2) 5.6 · 10−2 (1.5 · 10−2)

500 1.1 · 10−2 (7.4 · 10−3) 2.8 · 10−2 (1.7 · 10−2)

1000 8.7 · 10−3 (7.9 · 10−3) 1.3 · 10−2 (9.7 · 10−3)

Beta(2, 2) + 5 200 1.6 · 10−2 (1.1 · 10−2) 5.6 · 10−2 (1.6 · 10−2)

500 1.2 · 10−2 (8.5 · 10−3) 2.9 · 10−2 (2.1 · 10−2)

1000 8.9 · 10−3 (7.4 · 10−3) 1.3 · 10−2 (9.1 · 10−3)

E(2) + 5 200 1.6 · 10−2 (1.2 · 10−2) 5.6 · 10−2 (1.5 · 10−2)

500 1.1 · 10−2 (8.6 · 10−3) 2.7 · 10−2 (1.6 · 10−2)

1000 8.3 · 10−3 (6.4 · 10−3) 1.3 · 10−2 (8.5 · 10−3)

Γ(6, 3/2) 200 2.6 · 10−2 (1.4 · 10−2) 6.3 · 10−2 (2.2 · 10−2)

500 1.8 · 10−2 (1.0 · 10−2) 4.3 · 10−2 (1.8 · 10−2)

1000 1.5 · 10−2 (8.9 · 10−3) 2.2 · 10−2 (1.3 · 10−2)

m̂ = 0.57 (0.10) m̂ = 0.57 (0.10) m̂ = 0.65 (0.08)

m̂ = 0.72 (0.08) m̂ = 0.70 (0.08) m̂ = 0.78 (0.11)

Figure 2. Estimation of f for a Gumbel distribution with c.d.f. F (x) = exp(− exp(−x)),

x > 0. n = 500 (first line) n = 2000 (second line) with method 1 (first column) and method

3 (second and third column) for ∆ = 1. In the first two columns Λ is E(1) and in the third Λ

is U [1, 2]. True density (bold black line) and 50 estimated curves (green lines). The value m̂ is

the mean over the 50 selected m̂’s (with standard deviation in parenthesis).
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5.1. Proof of Proposition 2. We use the fact that |φ∆(u)|−1 ≤ 1 + 2µ∆, q−1
∆ ≤ 1 + 1/(µ0∆),

‖f∗‖2 = 2π‖f‖2, Proposition 1 and Lemma 1. Rosenthal’s inequality (see Hand and Heyde (1980),

p.23) implies for p ≥ 1,

(24) E

(
|Q̂∆(u)−Q∆(u)|2p

)
≤ C(2p)

n2p
(nq∆ + (nq∆)

p) ≤ cp(µ1 + µp1)

(
∆

n

)p

.

Then we have the decomposition, using (11),

(25) f̂∗(u)− f∗(u) = T0(u) +

6∑

i=1

Ti(u), with T0(u) =
Q̂∆(u)−Q∆(u)

q∆φ∆(u)
,

T1(u) =
( 1

q̃∆
− 1

q∆

)
q∆f

∗(u), T2(u) = φ∆(u)f
∗(u)

( 1

φ̃∆(u)
− 1

φ∆(u)

)
,

T3(u) =Q∆(u)
( 1

q̃∆
− 1

q∆

)( 1

φ̃∆(u)
− 1

φ∆(u)

)
, T4(u) =

Q̂∆(u)−Q∆(u)

φ∆(u)

( 1

q̃∆
− 1

q∆

)

T5(u) =(Q̂∆(u)−Q∆(u))
( 1

φ̃∆(u)
− 1

φ∆(u)

)( 1

q̃∆
− 1

q∆

)
,

T6(u) =
Q̂∆(u)−Q∆(u)

q∆

( 1

φ̃∆(u)
− 1

φ∆(u)

)
.

Then,

∫ πm

−πm
|f̂∗(u)− f∗(u)|2du ≤ 2

∫ πm

−πm
|T0(u)|2du+ 12

6∑

i=1

∫ πm

−πm
|Ti(u)|2du.

First from (24), we have E

(∫ πm

−πm
|T0(u)|2du

)
≤ 1

nq∆

∫ πm

−πm

du

|φ∆(u)|2
. For the following bounds,

we use constants c, c′ which may change from line to line but depend neither on n nor on ∆.

We have by Proposition 1

E

(∫ πm

−πm
|T1(u)|2du

)
=

∫ πm

−πm
|f∗(u)|2duE

(
q2∆

∣∣∣ 1
q̃∆

− 1

q∆

∣∣∣
2
)

≤ c

n∆
2π‖f‖2,

and analogously by Lemma 1, E
(∫ πm

−πm |T2(u)|2du
)
≤ c′‖f‖2/n. Then as m ≤ n∆, with both

Lemma 1 and Proposition 1, we get

E

(∫ πm

−πm
|T3(u)|2du

)
≤ c

n2∆

∫ πm

−πm

du

|φ∆(u)|4
≤ c′

n
.

The three last terms are bounded in the same way. Remark that ‖f̂m − f‖2 = ‖f − fm‖2 +
‖fm − f̂m‖2 as f − fm and f̂m − fm have Fourier transforms with disjoint supports and that∫ πm
−πm |f̂∗(u)−f∗(u)|2du = 2π‖f̂m−fm‖2. Gathering all the terms gives the result of Proposition

2.�
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5.2. Proof of Theorem 1. Let Sm = {t ∈ L
2(R), t∗ = t∗1I[−πm,πm]}, and consider the contrast

γn(t) = ‖t‖2 − 2
2π 〈t∗, f̂∗〉. Clearly, f̂m = argmint∈Sm γn(t) and γn(f̂m) = −‖f̂m‖2. Moreover, we

note that

(26) γn(t)− γn(s) = ‖t− f‖2 − ‖s − f‖2 − 2

2π
〈t∗ − s∗, f̂∗ − f∗〉.

By definition of m̂, we have γn(f̂m̂) + p̂en(m̂) ≤ γn(fm) + p̂en(m). This with (26) implies

(27) ‖f̂m̂ − f‖2 ≤ ‖f − fm‖2 + p̂en(m) +
2

2π
〈f̂∗m̂ − f∗m, f̂

∗ − f∗〉 − p̂en(m̂).

Writing that

2〈f̂∗m̂ − f∗m, f̂
∗ − f∗〉 ≤ 2‖f̂∗m̂ − f∗m‖ sup

t∈Sm̂∨m,‖t‖=1
|〈t∗, f̂∗ − f∗〉|

≤ 1

4
‖f̂∗m̂ − f∗m‖2 + 4 sup

t∈Sm̂∨m,‖t‖=1
〈t∗, f̂∗ − f∗〉2

≤ 1

2
‖f̂∗m̂ − f∗‖2 + 1

2
‖f∗ − f∗m‖2 + 4 sup

t∈Sm̂∨m,‖t‖=1
〈t∗, f̂∗ − f∗〉2,

plugging this in (27) and gathering the terms, we get

(28)
1

2
‖f̂m̂ − f‖2 ≤ 3

2
‖f − fm‖2 + p̂en(m) +

4

2π
sup

t∈Sm̂∨m,‖t‖=1
〈t∗, f̂∗ − f∗〉2 − p̂en(m̂).

Now, we write the decomposition

〈t∗, f̂∗ − f∗〉 = 1

q∆

〈
t∗,

Q̂∆ −Q∆

φ∆

〉
+R(t)

where R(t) =
∑6

i=1〈t∗, Ti〉 and the Ti’s are defined by (25).

Clearly, the proof of Proposition 2, the Cauchy Schwarz inequality and ‖t∗‖2 = 2π lead to

E

(
supt∈Sm̂∨m,‖t‖=1

∣∣R(t)
∣∣2
)
≤ c/(n∆). Thus, we have to study

sup
t∈Sm̂∨m,‖t‖=1

q−1
∆

〈
t∗, (Q̂∆ −Q∆)/φ∆

〉
,

for which, we can prove (see the proof in A.3. of Supplementary material):

Lemma 2. Under the Assumptions of Theorem 1, let

p(m, m̂) =
3

2πnq∆

∫ π(m∨m̂)

−π(m∨m̂)

du

|φ∆(u)|2
.

We have

E

(
1

2π
sup

t∈Sm̂∨m,‖t‖=1

〈
t∗,

Q̂∆ −Q∆

q∆φ∆

〉2 − p(m, m̂)

)

+

≤ c

n∆
.
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Let us define

Ω =

{∣∣∣∣
1

q̃∆
− 1

q∆

∣∣∣∣ ≤
1

2q∆

}
and pen(m) =

1

2πnq∆

∫ πm

−πm

du

|φ∆(u)|2
.

We have p(m,m′) ≤ 3pen(m) + 3pen(m′) and on Ω, we have, ∀m ∈ Mn,

E(p̂en(m)1IΩ) ≤ 3

2

κ

2πnq∆
E

(∫ πm

−πm

du

|φ̃∆(u)|2

)

≤ 3κ

2πnq∆

∫ πm

−πm

du

|φ∆(u)|2
+

3κ

2πnq∆

∫ πm

−πm
E



∣∣∣∣∣

1

φ̃∆(u)
− 1

φ∆(u)

∣∣∣∣∣

2

 du

≤ 3κ pen(m) +
3κ

2πnq∆

2πm(1 + 2µ∆)4

n
≤ 3κ pen(m) +

c

n
.

Using (28) and Lemma 2, we derive

E(‖f̂m̂ − f‖21IΩ) ≤ 3‖f − fm‖2 + 6κpen(m) + E ([16p(m, m̂)− 2p̂en(m̂)]1IΩ) +
c

n∆

≤ 3‖f − fm‖2 + 6(κ+ 8)pen(m) + 2E ([24pen(m̂)− p̂en(m̂)]1IΩ) +
c

n∆
.(29)

Now we note that, as 1/q∆ ≤ 2/q̃∆ on Ω,

E ([24pen(m̂)− p̂en(m̂)]1IΩ) = E

[(
24

2πnq∆

∫ πm̂

−πm̂

du

|φ∆(u)|2
− κ

2πnq̃∆

∫ πm̂

−πm̂

du

|φ̃∆(u)|2

)
1IΩ

]

≤ E

[(
96

2πnq̃∆

∫ πm̂

−πm̂

du

|φ̃∆(u)|2
− κ

2πnq̃∆

∫ πm̂

−πm̂

du

|φ̃∆(u)|2

)
1IΩ

]

+E




 96

2πnq̃∆

∫ πm̂

−πm̂

∣∣∣∣∣
1

φ̃∆(u)
− 1

φ∆(u)

∣∣∣∣∣

2

du


 1IΩ


 .

Now we choose κ ≥ 96 (which makes the first r.h.s. difference negative or zero), use that

on Ω, 1/q̃∆ ≤ (3/2)(1/q∆) and that m̂ ≤ n∆ which, together with Lemma 1 implies that

E ([24pen(m̂)− p̂en(m̂)]1IΩ) ≤ c/n. Plugging this in (29) yields, for κ ≥ κ0 = 96 that, ∀m ∈ Mn,

E(‖f̂m̂ − f‖21IΩ) ≤ 3‖f − fm‖2 + 6(κ+ 8)pen(m) +
c

n∆
.

On the other hand

P(Ωc) = P

(∣∣∣∣
1

q̃∆
− 1

q∆

∣∣∣∣ >
1

2q∆

)
≤ (2q∆)

8
E

(∣∣∣∣
1

q̃∆
− 1

q∆

∣∣∣∣
8
)

≤ (2q∆)
8C ′(4,∆)

1

∆12n4
≤ c

(n∆)4
,

where the last line follows from Proposition 1. Moreover ‖f̂m̂ − f‖2 = ‖f̂m̂ − fm̂‖2 + ‖f − fm̂‖2.
Now, ‖f − fm̂‖2 ≤ ‖f‖2 and as ‖f̂m̂ − fm̂‖2 ≤ ‖f̂n∆ − fn∆‖2 ≤ cn3, we obtain that

E(‖f̂m̂ − f‖21IΩc) ≤ c

n∆4
:= c′∆/n.
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This, together with (29) implies the result given in Theorem 1. �

5.3. Proofs of Section 3. The following bound is obtained as is Lemma 1:

(30) E

(∣∣∣∣
1

H̃(v)
− 1

H(v)

∣∣∣∣
2p
)

≤ cp inf
(
(n∆)−p|H(v)|−4p, |H(v)|−2p

)
.

We state a useful Lemma:

Lemma 3. Assume that [B] (i)-(ii)(p) hold. Then recalling that ψ = iG∆/H∆ (see (4)), we

have

E

(∣∣∣ψ̃(v)− ψ(v)
∣∣∣
2p
)

≤ κp
(n∆)p

1 + |ψ(v)|2p
|H∆(v)|2p

.

Proof of Lemma 3. We omit the index ∆ for simplicity. We have

(31) ψ̃ − ψ = i

(
Ĝ

H̃
− G

H

)
= i(Ĝ−G)

(
1

H̃
− 1

H

)
+ i

Ĝ−G

H
+ iG

(
1

H̃
− 1

H

)

so that a bound on (31) follows from bounding E(|Ĝ(v)−G(v)|2p) and E

(
|H̃−1(v)−H−1(v)|2p

)

for p = 1, 2. Clearly

(32) E(|Ĝ(v)−G(v)|2) = 1

n∆2
Var(Y1(∆)eivY1(∆)) ≤ E(|Y1(∆)|2/∆)

n∆
,

where E(|Y1(∆)|2/∆) = EΛEξ2 + ∆E(Λ2)(E(ξ))2. And for general p, the Rosenthal inequality

yields

E(|Ĝ(v)−G(v)|2p) ≤ C(2p)

(n∆)2p

{
n22pE(|Y1(∆)|2p) + [nVar(Y1(∆)eivY1(∆))]p

}

≤ c(
1

(n∆)2p−1
+

1

(n∆)p
)(33)

since [B](ii)(p) holds and n∆ ≥ 1. Next the bound on E

(
|H̃−1 −H−1|2p

)
is given by (32). We

conclude using (31), (32), (33) and (30). �

Proof of Proposition 4. Let

R(u) =

∫ u

0

(
Ĝ(v)

H̃(v)
− G(v)

H(v)

)
dv.

Then to compute the risk of the estimator, we write:

‖f̃m − f‖2 = ‖f − fm‖2 + ‖f̃m − fm‖2 = ‖f − fm‖2 + 1

2π

∫ πm

−πm
|f̃∗(u)− f∗(u)|2du
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|f̃∗(u)− f∗(u)|2 ≤ |f̃∗(u)− f∗(u)|21I|R(u)|<1 + |f̃∗(u)− f∗(u)|21I|R(u)|≥1

≤ |f̂∗(u)− f∗(u)|21I|R(u)|<1 + 41I|R(u)|≥1

≤ |f∗(u)|2 |exp(R(u))− 1|2 1I|R(u)|<1 + 41I|R(u)|≥1

≤ e2|f∗(u)|2|R(u)|21I|R(u)|≤1 + 4|R(u)|1I|R(u)|>1.

We prove now

(34) E(|R(u)|21I|R(u)|≤1) ≤
c

n∆


M1

∫ |u|

0

dv

|H(v)|2 +

(∫ |u|

0

|G(v)|
|H(v)|2 dv

)2

 ,

E(|R(u)|1I|R(u)|>1) ≤ c

{(
Mp +

(∫ |u|

0

∣∣∣∣
G(v)

H(v)

∣∣∣∣
2

dv

)p)(
1

n∆

∫ |u|

0

dv

|H(v)|2

)p

+
E(|Y1(∆)|2p/∆)

(n∆)2p−1

(∫ |u|

0

dv

|H(v)|

)2p


(35)

with Mp = [‖G′‖p1 + E
1/2(Y 2p

1 (∆)/∆)].

By decomposition (31), we write that |R(u)| ≤ R1(u) +R2(u) +R3(u) with

R1(u) =

∣∣∣∣∣

∫ u

0

Ĝ(v)−G(v)

H(v)
dv

∣∣∣∣∣ , R2(u) =

∣∣∣∣
∫ u

0
G(v)

(
1

H̃(v)
− 1

H(v)

)
dv

∣∣∣∣

R3(u) =

∣∣∣∣
∫ u

0
(Ĝ(v) −G(v))

(
1

H̃(v)
− 1

H(v)

)
dv

∣∣∣∣ .

Let Aj := {|R(u)| ≤ 1} ∩ {Rj(u) = maxk∈{1,2,3}Rk(u)}, then

E(|R(u)|21I|R(u)|≤1) ≤ 9E(R2
1(u)1IA1) + 9E(R2

2(u)1IA2) + E(|R(u)|1IA3)

≤ 9E(R2
1(u)) + 9E(R2

2(u)) + 3E(R3(u)1IA3).(36)

Then

E(R2
1(u)) ≤ 1

n∆2

∫ u

0

∫ u

0

E(Y 2
1 (∆)ei(v−w)Y1(∆))

H(v)H(−w) dvdw

≤ 1

n∆

(∫ u

0

∫ u

0

1

|H(v)|2 |G
′(v − w)|dvdw

)1/2(∫ u

0

∫ u

0

1

|H(w)|2 |G
′(v − w)|dvdw

)1/2

≤ ‖G′‖1
n∆

∫ u

0

dv

|H(v)|2 .(37)

Moreover

E(R2
2(u)) ≤

∫ u

0

∫ u

0
G(v)G(−w)E

[(
1

H̃(v)
− 1

H(v)

)(
1

H̃(−w)
− 1

H(−w)

)]
dvdw

≤ c

n∆

∫ u

0

∫ u

0

|G(v)G(−w)|
|H(v)|2|H(w)|2 dvdw =

c

n∆

(∫ u

0

|G(v)|
|H(v)|2 dv

)2

.(38)
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Lastly E(R3(u)) ≤
∫ u

0
E
1/2(|Ĝ(v)−G(v)|2)E1/2

(∣∣∣∣
1

H̃(v)
− 1

H(v)

∣∣∣∣
2
)
dv

≤ c
E
1/2(Y 2

1 (∆)/∆)

n∆

∫ u

0

1

|H(v)|2 dv(39)

We plug (37)-(39) in (36) and we obtain (34). Let now Bj := {|R(u)| > 1} ∩ {Rj(u) =

maxk∈{1,2,3}Rk(u)}. On Bj, |R(u)| ≤ 3Rj(u) and thus 3Rj(u) > 1. Then

E(|R(u)|1I|R(u)|>1) ≤ 3(E(R1(u)1IB1) + E(R2(u)1IB2) + E(R3(u)1IB3))

≤ 9p(E(R2p
1 (u)) + E(R2p

2 (u))) + 3pE(Rp
3(u)1IB3).(40)

By applying Rosenthal’s inequality and using the bound obtained in (37), we get

E(R2p
1 (u)) ≤ c


‖G′‖p1

(
1

n∆

∫ |u|

0

dv

|H(v)|2

)p

+
E(|Y1(∆)|2p/∆)

(n∆)2p−1

(∫ |u|

0

dv

|H(v)|

)2p

 .

For R2 we write

E(R2p
2 (u)) ≤

(∫ |u|

0

( |G(v)|
|H(v)|

)2

dv

)p

E

[(∫ |u|

0
|H(v)|2

∣∣∣∣
1

H̃(v)
− 1

H(v)

∣∣∣∣
2

dv

)p]
.

Now we apply the Hölder inequality and inequality (30),

E(R2p
2 (u)) ≤

(∫ |u|

0

( |G(v)|
|H(v)|

)2

dv

)p(∫ |u|

0

dv

|H(v)|2

)p−1 ∫ |u|

0

|H(v)|4p
|H(v)|2 E

(∣∣∣∣
1

H̃(v)
− 1

H(v)

∣∣∣∣
2p
)
dv

≤ c

(∫ |u|

0

( |G(v)|
|H(v)|

)2

dv

)p(
1

n∆

∫ |u|

0

dv

|H(v)|2

)p

.

For R3 we apply the Hölder inequality again, and then the Cauchy Schwarz inequality, (33) and

(30), to obtain

E(Rp
3(u)) ≤

(∫ |u|

0

dv

|H(v)|2

)p−1 ∫ |u|

0

|H(v)|2p
|H(v)|2 E

((
|Ĝ(v) −G(v)|

∣∣∣∣
1

H̃(v)
− 1

H(v)

∣∣∣∣
)p)

dv

≤
(∫ |u|

0

dv

|H(v)|2

)p−1 ∫ |u|

0

|H(v)|2p
|H(v)|2 E

1/2
(
|Ĝ(v)−G(v)|2p

)
E
1/2

(∣∣∣∣
1

H̃(v)
− 1

H(v)

∣∣∣∣
2p
)
dv

≤ c E1/2(|Y1(∆)|2p/∆)

(
1

n∆

∫ |u|

0

dv

|H(v)|2

)p

.

Plugging the three bounds in (40) gives (35). �
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5.4. Auxiliary result.

Lemma 4. Consider c, s nonnegative real numbers, and γ a real such that 2γ > −1 if c = 0

or s = 0. Then, for all m > 0,
∫m
−m(x2 + 1)γ exp(c|x|s)dx ≈ m2γ+1−secm

s
, and if in addition

2γ > 1 if c = 0 or s = 0,
∫∞
m (x2 + 1)−γ exp(−c|x|s)dx ≈ m−2γ+1−se−cms

.

The proof of this lemma is based on integration by parts and is omitted. See also Lemma 2

p. 35 in Butucea and Tsybakov (2008a).
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function estimation. Ann. Statist. 39, 2205-2242.
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