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Abstract

A measure of the writhing of a curve is introduced and is used to extend the Călugăreanu decompo-
sition for closed curves, as well as the polar decomposition for curves bound between planes. The new
writhe measure is also shown to be able to assess changes in linking due to belt-trick and knotting type de-
formations, and further its utility is illustrated on examples taken from elastic rod parameter-continuation
studies. Finally C++ and Mathematica codes are made available and shown to be faster than existing
algorithms for the numerical computation of the writhe.

1 Introduction

Continuum representations are widely used to model the structure and mechanical properties of macro-
molecules [30, 8, 34, 9]. Whether it be nucleic acids (e.g. DNA) or amino acids (e.g. proteins), continuum
mechanics models of bio-macromolecules now take sequence effects and electrostatic interactions into account
and provide information on their large scale and long time behavior, information that is not accessible to
molecular dynamics approaches due to the exceedingly high computation costs. One of the prominent mem-
ber of the large family of bio-macromolecules is DNA, the carrier of our genes. As DNA is a twist-storing
polymer and since it has been shown that genes could be silenced by applying mechanical constraints on the
molecule, the behavior of DNA as an elastic filament is now widely studied both experimentally [33, 52] and
theoretically [44, 38]. There are two important geometrical considerations required for the realistic physical
modeling of such molecules. The first is the prevention of self-penetration when the structure comes into self-
contact whilst deforming. One of the most notable occurrences of self contact is the formation of plectonemes,
depicted in Figure 1(a), which is observed in single molecule micro-manipulation experiments of the torsional
response of DNA to applied moments [14, 46, 31], but also (on a vastly different scale) in twisted cables
engineering [19, 26]. The second is the twisted nature of the structure. Closed DNA plasmids for example are
known to be formed from strands whose backbone performs a fixed number of turns along its length when its
centerline is circular. Micro-manipulation experiments on linear DNA consist in applying a known number
of full twists to one end of the molecule, thereby injecting twisting/winding into the system (as in Figure
1(b)). In both cases the input winding is a conserved quantity in the sense that it will stay constant when the
molecule deforms without its ends rotating (e.g. Figure 1(b) to Figure 1(c)), provided no cutting or passing
through itself take place. Enforcing both conditions mathematically is a matter of preserving the systems
topology, and mathematical measures which can be used to enforce them are known as topological constraints.
The topology of thin elastic tubes and rods can be quantified through a pair of curves, one representing the
central axis of the rod, which is this curve that must not cross itself. The second curve lies on the tube surface
and represents its inherent twisting. This twisted curve can be defined through a normal vector field attached
to the central axis curve, the rate at which this field rotates determines the twist of the rod. The pair form a
structure known as a ribbon (Figure 1(d)). For rods which close on themselves the extent to which the ribbon
links itself is an integer-valued topological invariant known as the linking number. The linking number L is
invariant, i.e. it will remain unchanged for all deformations which forbid either of the curves from intersecting.
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(a) (b) (c) (d)

Figure 1: (a) A sequence of deformations leading to the formation of a plectoneme as the rod comes into self
contact and wraps around itself. (b) An initially flat pair of curves is subject to a number of full turns, and
(c) the system is eventually allowed to deform. (d) A tube with central axis (red) and the twisted curve (blue)
lying on its surface.

It has been used in variational problems to constrain the phase space of possible closed rod configurations
[10, 45, 30, 18]. This control is achieved through the decomposition of the linking number into the writhe
W and the twist T . The writhing is a measure of the contortion of the rod’s axis and the twist measures
the total rotation of the second curve about the tangent direction of the first. If the two curves are closed
(periodic) then the three components can be linked by the Călugăreanu formula[15, 16, 39, 21]

L =W + T , (1)

If the rod starts with a circular shape then W = 0 and the T represents the number of turns on the tube. As
the molecule deforms the total twisting is altered due to the contortion of the rods axis (supercoiling), this
contortion is represented in (1) by the writhe.

For open rods the L and W are more difficult to define and manipulate, but a few approaches have been
followed [43, 47]. Berger and Prior [11] introduced a topological measure called the net winding Lp which
was derived for a pair of curves bound between two parallel planes (e.g. the system in Figure 1(b)). The net-
winding is invariant to deformations which do not allow crossings of the ribbon and for which the ribbon’s ends
are forbidden from turning, this second requirement limits the input of winding into the system. Moreover a
quantity, termed the polar writhe Wp and playing the role ofW in (1), was introduced and an open equivalent
of (1) was dervied [11]

Lp =Wp + T , (2)

the twist T being the same quantity as in (1). This measure has been utilized in MHD studies of magnetic
flux ropes in the solar corona [49, 25, 27, 41, 17, 28, 22, 50]. It has not yet been utilized in elastic rod
modeling, where authors have instead artificially closed the rod in order to use the closed version of the
Călugăreanu formula, an approach which is fraught with difficulties and overly-restrictive constraints, as we
discuss in Section 3.3.

One aim of this note is to demonstrate the utility of the net winding-polar writhe approach to open ribbon
topological constraint, as well as its superiority to the closure approach. However, as it stands the (2) is not
applicable to rods for which a section of the rod passes above or below the bounding planes, see Figure 2.
In this note we demonstrate how the definition of the polar writhe can be extended to allow Equation (2)
to be applicable under such deformations. The issue of allowing ”over-the top deformations” is somewhat
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(a) (b) (c)

Figure 2: The of the formation of a ”knotted” tube from an unknotted tube. Pulling the end planes of (a)
apart would lead to a straight but twisted ribbon. Pulling on (c) would lead to a knotted ribbon which is
significantly less wound (we see later the change would be −4π windings).

complicated by the fact that open ribbons can shed integer number of twist/winding, even whilst its ends are
prevented form rotating, through either the Dirac belt trick or ”knotting” deformations such as depicted in
Figure 2. So we cannot in general expect topological constraint of open ribbons. In section (3.4) we show
how the polar writhe measure can be extended to track such changes in topology whilst also measuring the
continuous conversion between (polar) writhing and twisting of the ribbon.

2 Geometry and Topology

2.1 Ribbons, Tubes and the Darboux Vector

In this note we consider oriented embedded curves in Euclidean 3-space, [smin, smax] : r(s)→ E3, the Cartesian
basis for this space being labelled (x̂, ŷ, ẑ). The Euclidean norm of a vector v will be denoted ||v||. The
parametrization s may be arbitrary and, unless otherwise stated, curves will assumed to be twice differentiable
with respect to s. Throughout this note derivatives will be denoted with a dash. A tube surrounding r can
be generated using the unit tangent vector of r

d3(s) =
1

λ
r′(s) , λ = ||r′|| (3)

and a unit vector field d1(s) which lies in the normal plane of d3, that is d1 · d3 = 0, ||d1|| = 1, ∀s. We
complete an orthonormal basis with the vector product d2 = d3 × d1. At a specific parameter value s the
pair (d1,d2) span the circular cross section Ds, whose material points ps are specified by the pair (R, ξ) with

ps(R, ξ) = r(s) +R (d1(s) cos ξ + d2(s) sin ξ)

and Ds =
{
ps(R, ξ) |R ∈ [0, ε], ξ ∈ S1

}
. The set of all Ds on the interval s ∈ [0, L] constitute the tube body.

The ε-neighbourhood theorem asserts that, if r(s) is a non-self intersecting curve, then there is an ε sufficiently
small such that the tube does not intersect itself [23]. A ribbon can be obtained from the tube structure by
choosing a fixed angle ξ, say ξ = 0, so that we have a pair of curves r and

v(s) = r(s) + εd1(s) (4)
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which constitute the ribbon pair. By extension if ε is sufficiently small the two curves r and v do not intersect.
In what follows, components of a vector v expressed in the Euclidean co-ordinate system (x̂, ŷ, ẑ) will be
written as (vx, vy, vz), and components in the basis (d1,d2,d3) will be written in sans-serif font (v1, v2, v3).
The tube structure can be defined through a vector field u = u1d1 + u2d2 + u3d3, the Darboux vector. The
s-evolution of the orthonormal basis (d1,d2,d3) is given by the differential system:

d′j = λu(s)× dj(s) , j = 1, 2, 3 (5)

The system (5) is linear and assuming the functions uj are continuous its solution exists and is unique up to
a rotation and translation given by the initial conditions (see e.g. [5]). In Section 4 we consider curves for
which the functions uj have a finite number of discontinuities. If the functions uj are discontinuous at points
si (i = 1, · · · , n) then we have a set of continuous vectors ui from which we we can create a continuous ribbon
structure by first solving (5) on s ∈ [smin, s1], subject to some initial conditions, then choosing the values
(d1(s1),d2(s1),d3(s1)) as initial conditions for the solution of (5) on the domain s ∈ [s1, s2]. Repeating this
process iteratively on all domains s ∈ [sn, sn+1], and finally s ∈ [sn, smax], will create a continuous basis {dj}
on the domain s ∈ [smin, smax] which always exists and is uniquely specified by its initial conditions at smin.

2.2 Homotopy and Isotopy

In this note a homotopy between a pair of curves r and r? is defined by a continuous map [0, 1] : H(t)→ E3

for which
H(0) = r, H(1) = r?. (6)

An isotopy is a homotopy which is bijective ∀t, i.e., an isotopic deformation requires the curve never self-
intersects. We can extend the notion of an isotopy to a ribbon by demanding the maps r and d1 are isotopic
and in addition requiring the curves r and v do not intersect each other. The ε-neighbourhood theorem
asserts that if the ribbon’s width is sufficiently small we only require that the deformation of the axis curve
r is isotopic for the ribbon structure to be isotopic. In this note we define the notion of an end-restricted
isotopy for an open ribbon (r(smin) 6= r(smax)) as an isotopy for which d1(smin) and d1(smax) are unchanged
∀t. This implies the ribbon is not allowed to rotate at its ends (forbidding the input/loss of winding into/from
the system). For closed curves we require no such restrictions and we extend the definition of the set of
end-restricted isotopies to be the union of simple isotopies for closed ribbons and isotopies where d1(smin)
and d1(smax) are constant for open ribbons.

2.3 Link, Twist, and Writhe

The Link

Consider two oriented closed curves r and v which do not intersect. Their linking number (or link) L is given
by the following double integral

L(r,v) =
1

4π

∮
r

∮
v

[r′(s)× v′(s?)] · [r(s)− v(s?)]

||r(s)− v(s?)||3
dsds? (7)

The integral (7) can be interpreted in terms of the Gauss map m(s, s?)

m(s, s?) =
r(s)− v(s?)

||r(s)− v(s?)||
(8)

which defines a map to S2 indicating the direction of the vector joining the two points r(s) and v(s?). The
integrand of (7) assigns the scalar triple product

m ·
(

dm

ds
× dm

ds?

)
(9)

to each m. Assuming the vectors dm/ds and dm/ds? are in general position, projections of the curves onto a
plane along a direction specified by a unit vector n will lead to a finite number of self-crossings where m = n
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(a)

n

(b)

+1

-1

Figure 3: Depictions of the crossing number interpretation of linking. (a) shows an oriented link which is then
projected onto a plane along a direction n. The two figures in (b) represent the sign of the integrand (9) and
the projection to which it is equivalent. In this case of the knot in (a) the linking number is 1.

(as in Figure 3(a) and (b)). These crossings are assigned a number ±1 as depicted in Figure 3(c) which is
equal to the sign of triple product (9) evaluated for the pairs of points for which m = n. The signed total of
all crossings is known as the crossing number C(n) [36]. The crossing number can be shown to be independent
of n and further it can be shown that L = C(n)/2 as the double integral (7) represents twice the average over
all directions n of C(n). The linking number has the following properties for closed curves.

• L(r,v) is invariant to all isotopic deformations of two curves.

• L(r,v) is an integer.

• L(r,v) changes discontinuously by ±1 when the curves cross. The sign of the change is dictated by half
the net change in crossing given by the rules of Figure 3(c), i.e. a change from +1 to −1 would yield a
change in L(r,v) of −1.

A demonstration of these properties and the interpretation of (7) in terms of the crossing number can be
found in [42], as well as a fascinating insight into how Gauss may have made his original discovery of this
quantity and its invariance. Of course all these properties hold for ribbons, we denote the linking of a ribbon
as L(r,d1) to make it clear we are considering the linking of a ribbon rather than that of two arbitrary curves.
Crucially for this note the above-listed properties are not generally true for a pair of open curves.

The Twist

The twist T is the total rotation of d1 about d3,

T (r,d1) =
1

2π

∫ smax

smin

d3 · (d1 × d′1) ds =
1

2π

∫ smax

smin

u3 ds. (10)

This definition is independent of the choice of angle ξ used to obtain the ribbon from the tube [11]. T changes
continuously under both isotopic and homotopic deformations of r. The twist rate dT /ds is a variable in
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elastic rod theories [7, 4] and polymer models [10, 20, 13, 18]. A key result which we shall utilise in Section 4
is the fact that for any twice-differentiable curve r we can define a set uj for which T ′ = 0. This basis is often
called the natural basis and was introduced by Bishop [12]. If we denote this natural framing (d3,a1,a2) then
it is defined but the linear differential equation d′3

a′1
a′2

 = λ

 0 k1 k2
−k1 0 0
−k2 0 0

 d3

a1

a2

 (11)

This is equivalent to setting u2 = k1, u1 = −k2 and u3 = 0. The functions k1(s) and k2(s) can be obtained
form the curve r in terms of its curvature κ and torsion τ through

k1(r, s) = κ(r, s) cosψ(r, s) , k2(r, s) = κ(r, s) sinψ(r, s) , ψ(r, s) = ψ0 +

∫ s

smin

τ(r, t) dt (12)

κ(r, s) =
||r′ × r′′||
||r′||3

, τ(r, s) =
(r′ × r′′) · r′′′

||r′ × r′′||2

with ψ0 determined by the initial conditions [12].

The twist is also well defined for vector fields d1 which are only piecewise differentiable with a finite set of
discontinuities, meaning the curvatures uj are only piecewise differentiable. In this case we can still construct
a continuous frame as discussed in (2.1). If the set of discontinuities in our parameterisation s ∈ [smin, smax]
are labelled si, i = 1, 2 . . . n then

T (r,d1) =
1

2π

∫ s1

smin

d3 · (d1 × d′1) ds+
1

2π

n∑
i=1

∫ si+1

si

d3 · (d1 × d′1) ds+
1

2π

∫ smax

sn

d3 · (d1 × d′1) ds (13)

The Writhe

The writhe W represents the linking of the (closed) curve r with itself. It is given by the following double
integral

W(r) =
1

4π

∮
r

∮
v

[r′(s)× r′(s?)] · [r(s)− r(s?)]

||r(s)− r(s?)||3
dsds? (14)

Whilst superficially similar to the linking integral (7) it does not share its invariant property, but has the
following properties [2]:

• W(r) changes continuously for isotopic deformations of the r curve.

• As r crosses itself, W(r) jumps by ±2 depending on the crossing rules shown in Figure 3(c).

The primary interest in the quantity W is as part of a decomposition of the invariant linking number.

Călugăreanu Theorem

First demonstrated by Călugăreanu [15, 16] and derived in a more concise fashion by Pohl [39], the theorem
asserts that the linking number L(r,d1) of a ribbon can be decomposed into a sum of the twisting and
writhing, i.e.,

L(r,d1) = T (r,d1) +W(r). (15)

There appears to be a discrepancy with this formula. W can jump discontinuously by ±2 when r crosses itself,
this does not necessarily mean r and v have crossed each other simultaneously so the left and right hand side
cannot always be equal (remember that T must change continuously). The theorem actually asserts that if
the curves r and v do not cross themselves, and also do not cross each other, then L satisfies (15). However,
if the ribbon is significantly thin the crossing of r with itself will essentially be equivalent to v crossing itself.
With this, both W and L will change simultaneously by ±2 (there are two link changes). So, in the limit of
vanishing radius we can simply calculate W + T to obtain the linking, and discontinuous changes in W will
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u

Θ

x̂

v
r

(a) (b) (c)

Figure 4: (a) shows a pair of curves simply wound. (b) depicts the mid-curve cross-section highlighted in (a)
with the joining vector u and the angle Θ is makes with the x-axis shown. In (c) we see a plane z = const
pierced at several points by the curves. This leads to multiple angles Θij .

coincide with that of L. With this assumption we can use the writhe W to detect changes in topology of
the ribbon. We shall assume in what follows that the ribbon is always sufficiently thin. It is this context in
which the Călugăreanu theorem is used in thin elastic rod and polymer studies, e.g. [20, 13, 43, 29, 6, 35, 18]
amongst many.

If the curves are not closed then there exists no current evidence that the decomposition (15) is applicable
[37]. In any case the linking number is not a topological invariant in this scenario, so this question is not of
interest here. However, in the next section we will introduce an equivalent decomposition for open curves.

3 Topology for Open Curves

In this section we follow [11] and use the net winding as an invariant for ribbons whose ends are constrained.
This leads to an open equivalent of the Călugăreanu decomposition (15) where a quantity termed the polar
writhe is introduced.

3.1 The Net-Winding

We consider two curves r and v bound between two planes such as in Figure 4(a) and (c). Without loss
of generality we will assume these planes have ẑ as normal, that is are characterized by values z = const.
We parametrise the curves by their z co-ordinate and define the vector u(z) = v(z) − r(z) which lies in a
particular z-plane, along with the associated angle Θ(z) it makes with the x-axis, see Figure 4(b). The total
winding of this vector is given by

1

2π

∫ zmax

zmin

dΘ

dz
dz =

1

2π

∫ zmax

zmin

ẑ · (u× du
dz )

||u||2
dz. (16)

More general curves might turn back on themselves, as in Figure 4(c), for such curves drz/ds = 0 (resp.
dvz/ds = 0) at ”turning points”. Such curves are split into sections moving upwards or downwards in their z
co-ordinate, these sections being bounded by the turning points. If a curve has either an inflection point or
a section of curve whose z-component remains constant we do no split the curve at these points, so in what
follows when we use the term turning points we only consider points at which the curve turns back on itself
(d2rz/ds

2 6= 0). If the curve r (respectively v) has n (resp. m) such turning points then there are n + 1
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sections ri , i = 1, . . . n+ 1 (resp. m+ 1 sections vj , j = 1, . . .m+ 1). Each pair of sections shares a (possibly
empty) mutual range of z values z ∈ [zmin

ij , zmax
ij ]. In this range we use the vector uij(z) = vj(z)− ri(z) along

with the associated angle Θij(z) it makes with the x-axis. The net winding Lp(r,v) is then given by the
formula

Lp(r,v) =

n+1∑
i=1

m+1∑
j=1

σiσj
2π

∫ zmax
ij

zmin
ij

dΘij

dz
dz, (17)

where σi = +1 if the ri section is moving upward (that is driz/dz > 0), and σi = −1 if the section is moving
downward (that is driz/dz < 0). Similarly σj is defined as the sign of dvjz/dz. Also note that we define
zmin
11 = zmin at the lower plane, and zmax

(n+1)(m+1) = zmax at the upper plane. The lower and upper planes are
called bounding planes.

To give this quantity some context we note that the individual contributions to the sum (17) can be written
as

σiσj
2π

∫ zmax
ij

zmin
ij

dΘij

dz
dz = σiσj

(
Θij(z

max
ij )−Θij(z

min
ij )

2π
+ nij

)
(18)

where nij is the total number of full windings of Θij in the section ij. The angles Θij(z
min
ij ) and Θij(z

max
ij ) are

evaluated at the turning points, and each of them appears twice in the global sum in (17), but with opposite
signs. Hence these angles cancel out in the full sum (17) which reduces to

Lp(r,v) =
Θ(n+1)(m+1) −Θ11

2π
+

n+1∑
i=1

m+1∑
j=1

σiσj nij (19)

with Θ(n+1)(m+1) the end angle on the upper bounding plane, and Θ11 the angle on the lower bounding plane.
These end angles remain as they only appear once in the global sum in (17). We shall use (19) to measure
the error of some of our numerical calculations in Section 6.

As shown in [11], the net winding can be defined in terms of the Gauss map (8) with the restriction mz = 0.
Further it was shown that the scalar triple product

σiσj
ẑ · (u× du

dz )

||u||2
(20)

has the same sign as (9), and finally that the net winding is also equal to half the crossing number C(n) for
closed curves. Using this equivalence the following properties of Lp(r,v) were demonstrated

• Lp is invariant during isotopies of the two curves provided (i) mutual crossing is forbidden, (ii) the
end angles Θ11 and Θ(n+1)(m+1) remain fixed, and (iii) the curves remain between the bounding planes
rz(smin) = const and rz(smax) = const. For ribbons these are a subset of the end-restricted isotopies
defined in Section 2.2.

• If r and v pass through each other Lp jumps by ±1, following the rule of Figure 3.

• For closed curves Lp(r,v) = L(r,v).

We should add that the boundary planes can move, as for example a ribbon structure of fixed length which
is compressed leading to its ends to move toward each other (see e.g. Figure 4(a)-(c)). It is the prevention of
the loss of winding through the rotation of the angles Θ11 and Θ(n+1)(m+1) which is critical. The invariance
of Lp then asserts that the integer part of (19) can only change if the curves cross.

3.2 The Polar Writhe

The polar writhe Wp is the sum of local and non-local components

Wp(r) =Wpl(r) +Wpnl(r). (21)
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ri

ri+1

ri(i+1)

turning point

x̂Θi,i+1

Figure 5: An example of a curve which has non-local polar writhingWpnl . The curve is split at its ith turning
point into sections ri and ri+1. We see the vector ri(i+1) whose winding contributes to Wpnl.

Using its turning points we decompose r into n+ 1 sections ri , i = 1, . . . n+ 1. The local component is given
by the arc-length integral

Wpl(r) =

n+1∑
i=1

σi
2π

∫ smax
i

smin
i

ẑ · d3 × d′3
1 + ||ẑ · d3||

ds. (22)

The non local contribution can be defined in a similar fashion to the net-winding. We define Wpnl to be the
winding of all angles Θij made by the vector field rij = rj − ri of each pair of sections (double counted), i.e.

Wpnl(r) =

n+1∑
i=1

n+1∑
j=1

i 6=j

σiσj
2π

∫ zmax
ij

zmin
ij

dΘij

dz
dz. (23)

An example of such a calculation is shown in Figure 5. It was demonstrated in [11] that Wp has the following
properties

• Wp changes continuously during isotopic deformations.

• If r self-crosses, it jumps by ±2 depending on the crossing rules shown in Figure 3.

• The sum of the twist defined by (10) and Wp gives the net-winding of the ribbon with v = r + εd1

Lp(r,d1) = T (r,d1) +Wp(r). (24)

• For closed curves Wp(r) =W(r) and if the ribbon is closed (24) is equivalent to (15).

The decomposition (24) has been used to study the changing morphology of coronal flux tubes [17, 24, 41, 49].

As with the twist, the local polar writhe Wpl is also well-defined for curves whose tangent vector d3 is
only piecewise differentiable. This is not explicitly stated in [11] whereWpl is defined as the difference Lp−T
of a ribbon (r,d1)a. Consider a curve with no turning points for which the vector field d1 is only piecewise

aIts value is then shown to only depend on r.
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r

v

rc

vc

Figure 6: A depiction of a typical stadium closure, the closure section is shown opaquely.

differentiable. The integrals for L and T on a domain s ∈ [smin, smax] are split by the finite number l of
discontinuous points si of the functions ui defining d1. From [11] each difference Lp − T on the domain
s ∈ [si, si+1] is given by the expression

Wpl(r, si, si+1) =
σi
2π

∫ si+1

si

ẑ · d3 × d′3
1 + ||ẑ · d3||

ds. (25)

and the total Wpl value is

Wpl(r) =Wpl(r, smin, s1) +

l∑
i=1

Wpl(r, si, si+1) +Wpl(r, sl, smax). (26)

For curves which have n turning points we must make this decomposition for each component of the sum
(22).

3.3 Closures

Previous studies focused on imposing the twist-writhe decomposition on open ribbons in a topologically
meaningful fashion did so by extending the ribbon continuously to form a closed ribbon (as depicted in Figure
6). The closure is composed of functions [tmin, tmax] : rc(t),d1c(t)→ E3 satisfying

rc(tmin) = r(smax) , rc(tmax) = r(smin) (27a)

d3c(tmin) = d3(smax) , d3c(tmax) = d3(smin) (27b)

d1c(tmin) = d1(smax) , d1c(tmax) = d1(smin) (27c)

It is also required to not interlink or intersect the original ribbon. With this we can apply (15) to the closed
ensemble

L(r ∪ rc,d1 ∪ d1c) = T (r,d) + T (rc,d1c) +W(r ∪ rc). (28)

Only the twist is an additive quantity. In general the writhe calculation (14) must include contributions from
vectors rc − r which represent the writhing of the closure with the original curve. The idea is to close so
that L and T (rc,d1c) are known and fixed during deformations that vanish at s = smin and s = smax. The
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r1

r2

ruerc

(a) (b)

Figure 7: (a) depicts pair of curves form the knotting type deformation path detailed in Section 6.3. We
show an extension rue which is crossed during an end-restricted isotopy path from curve r1 to curve r2. Also
shown is a closure rc which is the union of the extension and a stadium-type curve. (b) shows an alternative
(planar) extension which is not crossed during the deformation.

decomposition (28) then gives a formula for the conservation of the twist of the open ribbon and the writhe
of the full curve r ∪ rc.

The values L(r ∪ rc,d1 ∪ d1c) and W(r ∪ rc) are certainly not independent of the closure, however there
is one choice which is generally preferable, the ”stadium closure” depicted in Figure 6, for which rc consists
of a straight curve section joined by a pair of semi-circles. It is always possible to construct this curve if
the end tangent vectors align, d3(smin) = d3(smax) [21, 3, 32, 43, 51, 47, 35]. This is true for a number of
relevant problems [3, 20, 13]. Further, for a restricted set of configurations the stadium closure is such that
W(r ∪ rc) = W(r)b. This possibility is comprehensively considered in [51] but the set of configurations for
which this is possible is far too restrictive for a general use [35] and we do not pursue the issue any further
here. Starostin [47] considered a still more general method of closing an open curve and ribbon using several
planar sections of curve, but they lead to rather complex expressions which rely on calculating contributions
from the closure. Crucially [47] demonstrated that in general W(r) 6=W(r ∪ rc).

Also [11] has its own results regarding Wp and closures. It was demonstrated that for any curve bound
between two planes there exists a closure for whichWp(r) =W(r∪rc) (this is true of the case shown in Figure
6). ConsequentlyWp of an open curve is always equivalent toW of some closed curve, but the calculation only
needs to be performed on the open curve section. However this misses the point somewhat; for ribbons bound
between two planes we already have an equivalent of the Călugăreanu decomposition which does not involve
a closure and which is topologically meaningful in that it is conserved for end-restricted isotopies. There is
never any reason to close the curves. Further it must be stressed that this open topological conservation does
not require any conditions on the alignment of the end positions or end tangents of r.

3.4 Over the Top Curves

As it stands (24) is not applicable to curves for whom a section crosses the bounding planes, see for example
the curves shown in Figure 7. More precisely if rz(smax) > rz(smin) and there is some subset or union of

bBy W(r) for an open curve, we mean that the integrals in formula (14) run from smin to smax without being closed.
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subsets of [smin, smax] for which either rz(s) > rz(smax) or rz(s) < rz(smin), then Lp(r,d1) is no longer an
invariant (an equivalent statement in the case where rz(smax) < rz(smin) should be obvious). The main goal
of the present work is to extend the definition of Wp so that the sum Wp + T is conserved in such cases.

Of course the issue of allowing such deformations is that they allow for the loss of total winding through
the belt trick or knotting, both admissible end-restricted isotopies. One way of detecting such changes is to
append a closure to the curve, as in Figure 6. Any deformations such as the knotting deformation shown in
Figure 2 will guarantee that this closure is crossed causing both the linking and writhing to jump by the same
integer value. This means we can track continuous conversion of writhing into twisting through the difference
L−W. This will also allow for the tracking of changes in the topological nature of the winding of the curve,
which the belt trick provides, through the ±2 change in linking. This would lead to the correct evaluation of
the final linking of the belt-trick deformation. However, one must take care in defining the closure. A poorly
chosen closure could add linking to the composite calculation L(r∪rc,d1∪d1c) by knotting the curve further.
We can always ensure this pitfall is avoided by applying a sufficiently large stadium closure to avoid knotting
with the original curve any further, as discussed in [43]. However, in order to accurately evaluate the writhing
of such curves one must take the contribution of the closure into account accurately leading to an excessive
computational cost and difficulty in developing a general code to construct an appropriate closure for any
given curve. Also if the end tangents are not aligned a general prescription for this closure procedure could
prove difficult.

By comparison, for the net winding it is sufficient to simply extend the curve upwards or downwards such
that the new extended curve is completely contained between its end planes, as for the composite curves
r1 ∪ rue or r2 ∪ rue in Figure 7(a) for example. We show in Section 4 that it is always sufficient to extend the
curve straight up (or down), from the original curve’s end points, along ẑ (resp. -ẑ). This would not produce
a differentiable curve when the end tangents do not align, but we show there always exists a differentiable
pair of curves, rue (up) and rde (down), which differ form straight line extension by an arbitrarily small amount
(Theorem 1 of Section 4) and whose extendedWp(r

d
e∪r∪rue ) measure is equal to the straight closure case. The

details of this extension are somewhat fiddly so we relegate them to Section 4. Before this we give an explicit
definition of the quantity W?

p , which does not require details of the extension re. We shall also demonstrate
its utility through example calculations in Section 6.

3.5 The Extended Polar Writhe Measure W?
p

In the proof of Theorem 1 in Section 4 we demonstrate that the extensions rue and rde can always be constructed
such that Wpl(r

d
e ∪ r∪ rue ) =Wpl(r): the local component only depends on the original curve’s geometry. For

the non-local component Wpnl(r
d
e ∪ r ∪ rue ) 6=Wpnl(r) and its definition requires a little alteration.

We assume here that the curve r has upward pointing tangents at both extremities: d3z(smin, smax) > 0.
As before there are n turning points along r and hence n + 1 sections. In a section i, if a point is such that
ri(s

+
i ) has its z coordinate equal to rz(smax), we record the angle Θ+

i made by the vector ri(s
+
i ) − r(smax)

and the x-axis. Otherwise Θ+
i is set to zero. Conversely if a point is such that ri(s

−
i ) has its z coordinate

equal to rz(smin), we record the angle Θ−i made by the vector ri(s
−
i )− r(smin) and the x-axis. Otherwise Θ−i

is set to zero. The non local polar writhe Wpnl(r) can then be written in terms of the following quantities
[11, 40]:

1. at each turning point k, the angle φk made by the tangent vector d3 with the x-axis

2. nij , the signed number of full turns made by Θij for sections i and j of the curve

3. the angles Θ+
i and Θ−i made by the curve’s end points and sections of the curve sharing a mutual z

value.

and we have

Wpnl(r) =
1

2π

 n∑
k=1

2 ηk φk +

n+1∑
i=1

n+1∑
j=1

i 6=j

σiσjnij +

n+1∑
i=1

(−1)i+1 Θ+
i + (−1)i Θ−i

 (29)
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(b)(a)

(i)

(ii)
(iii)(iv)

(v)

Extensions

rn+1

ri

ri

rn+1

Φi
Φii

Φiii

Φiv

Figure 8: Figures depicting a looped section of curve ri deforming over the top of the end point attached to
section rn+1. In (a) we see the envelope of points drawn out by the deforming path of the looped section, this
isoptopy path is represented by a set of curves (i)-(v) . Also shown are a subset of the possible extensions
one could create to make the sum Wp + T invariant, each of which would be crossed at some point during
this isotopy path. In (b) we see the set of angles Φi,Φii,Φiii and Φiv (Φv is not shown for clarity) which are
made by the vectors joining the points where the looped section ri intersects the plane z = rz(smax). As the
section passes over the end point the angle Φ gradually increases to 2π.

with ηk = +1 (respectively ηk = −1) if the kth turning point is a local minimum (respectively maximum)
in z. Crucially the sum Wp(r) + T (r,d1) is not generally invariant when there are end angles Θ+

i or Θ−i ,
we demonstrate this numerically in section (6). The extensions rde and rue will ensure that there are no end
angles Θ+ or Θ− made by the extended curve rde ∪ r ∪ rue with itself. Also rde and rue are straight lines with
no turning points, so the turning angle sum will not change under this extension, nor will the extensions have
any full windings with themselves. With this we can define a new quantity W?

p (r)

W?
p (r) =Wpl(r) +

1

2π

 n∑
k=1

2 ηk φk +

n+1∑
i=1

n+1∑
j=1

i6=j

σiσjnij

 (30)

The only contribution to the quantity W?
p from the extensions arises from integer winding of the union

rn+1 ∪ rue and any other section of the curve ri, i 6= n+ 1 and similarly union rde ∪ r1 with any other section
ri, i 6= 1.

Finally in Theorem 2 it is demonstrated that we can always define a ribbon structure vue = rue + εdu1e and
vde = rde + εdd1e, for which T (rue ,v

u
e ) = 0 and T (rde ,v

d
e) = 0, so the quantity

W?
p (r) + T (r,d1) (31)

is equivalent to the sum
Wp(r

d
e ∪ r ∪ rue ) + T (rde ∪ r ∪ rue ,d

d
1e ∪ d1 ∪ du1e) (32)

which is a pair of curves bound between two planes and hence invariant in any non-self-intersecting end-
isotopy. The results of [11] show this extension can always be extended to a closed curve r∪ rc for which (31)
is equivalent to

W(r ∪ rc) + T (r ∪ rc,d1 ∪ d1c). (33)

(There rc would comprise our extensions plus a classical closure curve as in Figure 7(a)). We demonstrate
this numerically in Section 6.

3.6 A Note on End-Angles and the Choice of Extension

A key difference between the writhing measuresWp(r) andW?
p (r) is the end-angles made by sections of r and

the end points r(smin) and r(smax), if they exist. Since the curve r is continuous, it can only rise above(below)
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the end-planes as one or several looped section(s), see for example Figure 8. Each looped section leads to

two such end angles Θ
+/−
i and Θ

+/−
i+1 , each prefaced with an opposing sign due to the functions σi σi+1 (as

the curve sections are moving up and down). Thus the sum of these angles (Φ ) will be (up to a sign) the
angle made by the vectors joining the two looped footpoints and the end point (Figure 8(b)). Now consider a
knotting or belt-trick type deformation, for which this looped section passes over the top of the curves ends,
Φ starts at 0 and gradually increases to 2π as the loop passes over the end point (Figure 8(b)). When the
loop passes back below the end plane the measure Wp there would have registered this integer change in
angle, which is counted twice in the sum Wp. The extensions rde and rue ensure that the quantity W?

p registers
this integer change half way through this deformation when the curve crosses the extension (as would have
occurred in the isotopy joining the two curves in Figure 7(a)).

Of course we could have chosen alternative extensions which avoid this crossing as shown in Figure 7(b).
However, as demonstrated in Figure 8(a) any such choice of closure would eventually have been crossed when
the 2π change in angle occurs. Since open curves are never really truly knotted (the sense of knotting is given
by the closure) there will always be some sense of ambiguity in the choice of closure/extension. Our extension
gives the sum Wp + T which would be obtained by pulling the end points of the curve in opposing directions
(ẑ and -ẑ) to yield the tightest possible configuration, either a tightened knot or a straight ribbon. We believe
this is a sensible and practical choice for separating the space of possible ribbon configurations into a set of
domains in which the sum Wp + T is conserved.

4 Constructing the Extension

In what follows we demonstrate that we can always define a curve re which extends the curve r from its
end points such that the maximum and minimum rz values of the original curve r are contained within the
z = const planes of the extension’s end points . We show this extension can always be chosen have no local
polar writhing Wpl(re) = 0 and that can be made arbitrarily close to a straight line curve section extending
along ẑ (or −ẑ) from r(smax) (or r(smin)), see e.g. Figure 7(a).

One way to ensure that Wpl(r) = 0 for any curve r is to require that

ẑ · d3 × d′3 = 0. (34)

for the whole curve. This is clearly true of curves with constant tangent vectors (straight lines). It is also
easy to see it is true of sections of curve with the following general form

r(t) = a (cos(b) cos(ct+ d), sin(b) cos(ct+ d), sin(ct+ d)) , (35)

with (a, b, c, d) arbitrary real constants. By constructing our extension re from a combination of circular
section and a straight line we ensure it will have no local writhing. Our extension curve re, it is the union of
the following curve sections

1. A circular section rr which re-orients the curve’s end tangent d(smax) (or −d(smin)) to point along ẑ
(resp. -ẑ).

2. A straight line joining the end of rr to a point with a z co-oridnate above (below) the maximum
(minimum) z value of the original curve.
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4.1 Explicit Form

We define the circular section as a curve [0, 1] : rr(t)→ E3 which takes the form

rr(t) = rri + a

[
εr

θr
(cosφr, sinφr,− sin θrc)− εr

dθr/dt
(cosφr cos θr(t), sinφr cos θr(t),− sin θr(t))

]
, (36)

rri =

{
r(smax), if rcez > rz(smax)
r(smin), if rcez < rz(smin)

, θr(t) =

{
θrc(1− t), if rcez > rz(smax)

θrc + t(π − θrc), if rcez < rz(smin)
,

a =

{
−1, if rcez > rz(smax)
1, if rcez < rz(smin)

θrc =

{
arccos(ẑ · d3(smax)), if rcez > rz(smax)

arccos(−ẑ · d3(smax)), if rcez < rz(smin)
, φr =

 arctan
(

ŷ·d3(smax)
x̂·d3(smax)

)
, if rcez > rz(smax)

arctan
(

ŷ·d3(smin)
x̂·d3(smin)

)
, if rcez < rz(smin)

.

The constant εr determines the velocity of the parametrisation (εr = 1 would make t the arclength parameter
of rr), it is also the total arclength of the curve as∫ 1

0

√
dr

dt
· dr

dt
= εr.

We are now ready for our first theorem.

Theorem 1 Given any curve r whose end tangents satisfy d3z(smin, smax) > 0, with a point so satisfying
rz(so) > rz(smax) (respectively rz(so) < rz(smin)) we can construct a differentiable curve re ∈ [smax,M ] (resp
re ∈ [M, smin]) and a composite curve r ∪ re (resp. re ∪ r). The end point re(M) of this composite curve has
the maximum (resp. minimum) rz(s) value on s ∈ [smin, smax]. Additionally we can always choose this curve
such that Wpl(re) = 0.

Proof of Theorem 1 If rz(so) > rz(smax), the closure re(t
e), with te ∈ [smax,M ], is

re(t
e) =

{
rr (te/εr) , if te ∈ [smax, ε

r],

rr(1) + (0, 0, rz(so) + β − rrz(1)) t−εr
M−εr if te ∈ [εr,M ].

(37)

with β > 0. If rz(so) > rz(smax) total the closure re(t
e), te ∈ [M, smin] is

re(t
e) =

{
rr(1) + (0, 0, rz(so)− β − rrz(1)) t−εr

M−εr if te ∈ [M, εr],

rr (1− te/εr) , if te ∈ [εr, smin],
(38)

again with β > 0. The parameter β ensures re(M) has the maximum/minimum rz value of the composite
r ∪ re (resp. re ∪ r).

Each individual section is infinitely differentiable but the whole curve re is only guaranteed to be once
differentiable at t = smax or smin and t = εr, thus the local polar writhe calculation is split into two separate
integrals,

Wpl(re) =Wpl(re, 0, ε
r) +Wpl(re, ε

r,M). (39)

We have already seen that the local writhe density
∂Wpl

∂te of both circular and straight line curves is zero, thus
∂Wpl

∂te vanishes on the whole domain te ∈ [0,M ] and hence Wpl(re) = 0 �

Next we show the ribbon (r,d1) can be extended with a ribbon section (re,d1e) which has no additional twist.

Theorem 2 The extension re given by either (37) or (38) can be extended to a ribbon with a vector field d1e,
such that d1e(smax) = d1(smax) (resp d1e(smin) = d1(smin)) and T (re,d1e) = 0.
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Proof of Theorem 2 From the curve re we construct a twist-free framing using (12). For the straight
curve section on ts ∈ (εr,M ] (resp ts ∈ [M, εr)) the second te derivative of re vanishes so k1 = k2 = 0. For
both cases the curve section rr has curvature

κ =
dθr

dt

εr
, τ = 0. (40)

If rz(so) > rz(smax) we have τ(re, t
e) = 0, ∀te ∈ [smax,M ] and

κ(re, t
e) =

{
dθr

dt /ε
r if te ∈ (smax, ε

r]
0 if te ∈ (εr,M ].

(41)

If rz(so) < rz(smin) we have τ(re, t
e) = 0, ∀te ∈ [M, smin] and

κ(re, t
e) =

{
0 if te ∈ [M, εr)
dθr

dt /ε
r if te ∈ [εr, smin)

(42)

Since the torsion τ is zero everywhere, we have θ(t) = θ0, ∀te giving k1(re, t
e) = κ(re, t

e) cos θ0 and k2(re, t
e) =

κ(re, t
e) sin θ0. So we have piecewise continuous profiles for k1(re, t) and k2(re, t) and we can construct a frame

{a3e(l),a1e(l),a2e(l)} on l ∈ [0,M − smax] (resp. l ∈ [0,M − smin]) through (11) which exists and is unique
up to its initial condition given by the value of θ0. In the case rz(so) < zmin we would have to construct the
frame from smin to M , so the orientation of its tangent vector a3e must oppose the vector d3 at smin. With
this we choose θ0 such that

a3e(0) =

{
d3(smax), , if rz(so) > zmax,
−d3(smin) , if rz(so) < zmin.

, a1e(0) =

{
d1(smax) , if rz(so) > zmax,
d1(smin) , if rz(so) < zmin.

,

a2e(0) =

{
d2(smax) , if rz(so) > zmax,
−d2(smin) , if rz(so) < zmin.

We have then defined a continuous vector field a1e which can be extended to a continuous twist free-ribbon

d1e(t
e) = a1e(t

e − smax),

ve(te) = re(t
e) + d1e(t

e).

with if rz(so) > zmax and

d1e(t
e) = a1e(t

e − smin),

ve(te) = re(t
e) + d1e(t

e).

if rz(so) < zmin, which satisfies the properties mentioned in the statement of the proof. �

4.2 The Parameter ε, Straight Extensions and Self-Crossings

We are free to choose the parameter ε, the size of the curved re-alignment section, to be as small as we like.
This parameter dictates the final end point of the curve re. If we focus on the case rz(so) > rz(smax) the x
and y co-ordinates of re(M) are given by.(

rx(smax) +
2ε sin2

(
θ
2

)
cos(φ)

θ
, ry(smax) +

2ε sin2
(
θ
2

)
sin(φ)

θ

)
, (43)

(note the limit θ → 0, the tangent vetcors pointing along ẑ (−ẑ) is well defined). The vertical straight line
used as an extension for defining W?

p (r) would be

rvertical = r(smax) + (0, 0, rz(so) + β − rz(smax)) . (44)

In the limit ε → 0 the coordinates (43) approach the coordinates of the original curve at s = smax and the
measure ∫ M

smax

||re − rvertical||dt. (45)
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converges to zero. A similar argument applies to any extension for the case rz(so) < rz(smin). It is this limit
which we assume for our definition of W?

p .

Finally a subset of the possible curve configurations would intersect this closure. As ε is made arbitrarily
small this means intersecting the straight line section. To avoid this we can simply add an (arbitrarily small
circular section to the line in order to avoid self crossing. In practice this amounts to assigning an angle to a
pair of points, the first one on the original curve r and the second one on the extension rue (or rde), both of
which are at the same point (with the straight closure). These points share the height: rz = zcross and we
simply assign to this angle the value of the previous angle at the next lowest height z < zcross (note that the
algorithm works on discretized curves).

5 The Elastic Rod Model

We summarize here the elastic rod model we are using. Equilibrium configurations are computed and their
topology is assessed. We use equilibrium solutions because they generate a rich variety of shapes, but also be-
cause they arise in polymer and mechanical engineering applications. The conservation of topology associated
with the sum (31) is not limited to equilibrium rod structures. It is true of dynamic elastic rod structures
and other non-elastic ribbon/tube models. This model simply affords a means by which the utility of the
extended polar writhe measure W?

p can be demonstrated.

Kinematics

A configuration for the elastic rod is determined by the centerline r(s) together with a material vector d1(s),
see e.g. [7, 4] for more comprehensive exposition of thin rod theory. The deformation of the rod’s centerline
and material is tracked using the Darboux vector u. In what follows the rod is inextensible and unshearable
and hence the parameter s is the arclength in both undeformed and deformed states, i.e. λ = ||r′|| = 1. The
rod has length L and we set smin = 0 and smax = L.

Mechanics

In the case of no external load (such as gravity, electrostatics, contact, . . .) the rod’s mechanics are determined
by the balance equations

n′ = 0, m′ + r′ × n = 0. (46)

where n and m are the internal resultant force and moment acting across the rod cross section s = const. To
complete the equations we assume a linear constitutive law for the moment:

m = K1 u1 d1 +K2 u2 d2 +K3 u3 d3 (47)

where K1, K2, and K3 are the bending and twist rigidities. As the rod is considered inextensible and
unshearable, no constitutive relation is given for the force n. Equation (47) is used to write the unknowns uj
as functions of the components mj . The complete set of equations is then given by (3), (5), and (46) for the
six unknown vectors r, dj , n, and m.

The Boundary Value Problem

In the following studies we pose and solve the following boundary value problem. At the s = 0 end of the rod
we specify the position and material frame:

r(0) = (0, 0, 0), d1(0) = (1, 0, 0), d2(0) = (0, 1, 0), d3(0) = (0, 0, 1). (48)

the force {nj(0)} and moment {mj(0)} components at s = 0 being six unknowns. At the other end s = L
of the rod we then need to provide six conditions. We chose to specify the position r(L) and three of the
nine components of the basis (d1,d2,d3), as orthonormality then constrains the remaining six components.
A continuation begins with a first solution of the equilibrium equations. We then chose to free one condition
among the six s = L conditions and we are left with a one dimensional family of solutions.
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6 Results

In what follows we compute the equilibrium shapes of an elastic rod strongly held at both extremities, that
is the position and the tangent are prescribed at both ends. In Section 6.1 the tangents are parallel and
aligned with the vector joining the two ends, in Section 6.2 the tangents are not parallel, and in Section 6.3
the tangents are parallel but not aligned with the vector joining the two ends. Encountered configurations
include straight and twisted, buckled, or knotted configurations. In each case we discretize the shapes r(s)
into N points and we calculate Wp(r), W?

p (r), and W(r ∪ rc), putting additional discretization points along
rc(t) in the last case.

Algorithms

For Case 1 and 3, calculations are performed using Mathematica. The quantity W(r∪ rc) is calculated using
the algorithm given in [48], and the quantitiesWp andW?

p are calculated using code the authors have written
which is available, see supplementary material. For Case 2, calculations are performed with C++. The
quantity W(r ∪ rc) is calculated using the same [48] algorithm and a second code due to Agarwal et al [1].
The second algorithm is, to the best of our knowledge, the quickest available for evaluating the double integral
(14). The quantities Wp and W?

p are calculated using code the authors have written which is available, see
supplementary material. In all three cases, calculations were performed on computers with typically 2 to 3
GHz Intel Core i5 CPUs. For our time plots we use T0 = 0.4 second as time unit. This is the time needed to
compute Wp with 1000 points for configuration A of Case 1, using Mathematica 8 (for comparison this time
is 0.01 second if one uses the C++ code).

6.1 Case 1: Parallel Tangents, Aligned Ends

We consider a rod with rigidities K1 = 1.0, K2 = 1.1, and K3 = 1.2 and of unit lengthc, L = 1, with position
and tangent prescribed at both ends. Moreover the tangents are parallel and aligned with the vector joining
the two ends. The s = 0 conditions are given by (48) and the six s = L conditions are given by:

rx(L) = 0, ry(L) = 0, rz(L) = (1−∆)L, d3x(L) = 0, d3y(L) = 0, αL = 0.3× 2π (49)

where αL (with 0 ≤ αL < 2π) is the rotation angle of d1(L) in the basis (x̂, ŷ). We start with a straight
configuration rz(L) = L that has T = 0.3, Wp = 0 , and Lp = T . Building a stadium closure rc we have
W(r ∪ rc) = 0 and L(r ∪ rc,d1 ∪ d1c) = T (r). The six unknowns at s = 0 take the values {n1, n2, n3} =
{0, 0,−169.05} and {m1,m2,m3} = {0, 0, 2.262}. The third condition in (49) involves the end-shortening
∆ = 1− rz(L)/L which is increased from ∆ = 0 (buckling) up to ∆ = 0.95.

In Figure 9(a) we see a plot of the tension n3(0) as a function of the end-shortening ∆, with four points
A,B,C,D corresponding to the configurations plotted in Figure 10. Figure 9(c) shows a plot of the quantities
W(r∪ rc), W?

p , and Wp as a function of ∆. The first is computed with N = 48 along the curve and N/4 = 12
additional points in the closure, and the last two with N = 200. The first two curves, W(r∪ rc) and W?

p , are
always very close to each other, only differing because of computations errors. The third curve, Wp, is very
close to the first two, except after ∆ ' 0.875 where it clearly departs from the first two. Moreover two jumps
are clearly visible for the three curves, and Figure 9(d) presents a close-up of the region of interest. Slightly
after configuration B the rod experiences a self-crossing which is associated with a writhe discontinuity of
−2. Then slightly before configuration C the rod experiences a double self-crossing which is associated with a
writhe discontinuity of −4. Finally at ∆ ' 0.875 the rod has a section that passes above the plane z = rz(L).
Starting for this point, Wp no longer yields correct values, and we see its curve departing form the other two
curves. In 9(e) and (f) we see the sum of the various writhe measures and the twist, this sum being constant
except for the discontinuous jumps, and for the sumWp(r)+T (r,d1) on the set of curves for whichW?

p 6=Wp.

If we now consider the quantities (31) and (33) and focus on their decimal parts to disregard the jumps,

cThe choices K1 = 1 and L = 1 imply that we use L as the length unit, K1/L2 as the force unit, and K1/L as the moment
unit throughout this study.

18



0.2 0.4 0.6 0.8 1.0
D

-6

-4

-2

0

2

4

A

B

C

D

n3 H0L
4 Π 2

0.2 0.4 0.6 0.8 1.0
D

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

A BCD

¶

¶
*

(a) (b)

0.2 0.4 0.6 0.8 1.0
D

-6

-4

-2

0

2
Wr

A BCD

Wp

0.80 0.82 0.84 0.86 0.88 0.90

-6

-4

-2

0

2

D

Wr

B C D
Wp

(c) (d)

0.2 0.4 0.6 0.8 1.0
D

-8

-6

-4

-2

0

2
Wr+Tw

A BCD

Wp+T

0.80 0.82 0.84 0.86 0.88 0.90
-8

-6

-4

-2

0

2

D

Wr+Tw

B C D
Wp+T

(e) (f)

Figure 9: Various plots for case 1. (a) depicts the bifurcation path. (b) shows the errors E (upper curve)
and E? (lower curve). (c) shows the various writhe values as a function of ∆, all values are indistinguishable
except near discontinuous jumps and for Wp where marked. (d) is a zoom of the region of interest in (c). (e)
shows sum writhe+twist which is constant for each writhe measure, except near discontinuous jumps and for
the sum Wp + T where indicated. (f) is a zoom of the region of interest in (e).
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(a) (b)

(c) (d)

Figure 10: Configurations A, B, C, and D for Case 1. (a) configuration A is prior to any intersections. (b)
configuration B is just before a self-intersecting event. (c) configuration C is just after a configuration with
two simultaneous intersections. (d) configuration D has a section of the curve above r(L).

we see that they should remain constant due to the fixed rotation αL. In other words the quantities

E? = mod
(
W?
p (r) + T (r,d1), 1

)
− αL/(2π) (50)

and
E = mod

(
W(r ∪ rc) + T (r ∪ rc,d1 ∪ d1c), 1

)
− αL/(2π) (51)

must be zero and we use them as a measure of the error of the algorithms, see figure 9(b).

In Figure 11(a) we plot (50) and (51), for configuration A only, as a function of the number of discretization
points N (for the double integral, the closure comprises N/4 additional points). The computation time is
given in Figure 11(b). We see that at fixed N the double integral algorithm is approximatively twice more
accurate, but requires a computation time several orders of magnitude longer. Finally Figure 11(c), which
plots the time required to achieved given accuracy, shows that the Polar Writhe algorithm is more than two
orders of magnitude more efficient.

6.2 Case 2: Non Aligned Ends

To showcase the utility of the polar writhe measure we consider a set of curves whose end points are neither
aligned in space (rx(L) 6= rx(0) and ry(L) 6= ry(0)), nor have their tangents aligned (d3(L) 6= d3(0)). The
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Figure 11: Plots detailing the convergence and timing of the various algorithms for configuration A of Case
1. (a) shows that the error is decreasing as 1/N2 for both the W?

p (upper curve) and W(r ∪ rc) (lower
curve) algorithms. (b) shows, as a function or N , the time needed for the algorithms to compute W?

p (lower
curve, scaling N1.0) and W(r ∪ rc) (upper curve, scaling N2). (c) gives the time needed to achieve a certain
accuracy, using the W?

p (lower curve) and W(r∪ rc) (upper curve) algorithms. Computations were performed
in Mathematica 8.

rigidities are here also K1 = 1.0, K2 = 1.1, and K3 = 1.2. The s = 0 conditions are still given by (48), but
the six s = L(= 1) conditions are now given by:

rx(L) = −0.12, ry(L) = 0.21, rz(L) = (1−∆)L, d3z(L) = 0.95, d1z(L) = 0, αL = ᾱ (52)

where αL (with 0 ≤ αL < 2π) is the rotation angle of d1(L) in the basis (x̂, ŷ). We fix ∆ = 0.72, and
we let ᾱ evolve from 0.095 × 2π to 0.96 × 2π. We start with a configuration having {n1(0), n2(0), n3(0)} =
{−52.72, 109.65, 93.65} and {m1(0),m2(0),m3(0)} = {−4.25,−10.68,−9.432} and we select the direction of
increasing m3(0). The condition d1z(L) = 0 imposes the vector d1(L) to lie in the x̂ − ŷ plane. The
continuation allows the controlled input of winding, i.e increasing Lp(r,v), by rotating the vector d1(L) in
this plane through changing the applied torque m3(0), see Figure 12(a).

Typical rod configurations obtained by this continuation are shown in Figure 13, where we see the rod
first coils into a left-handed spiral, configuration A. As the angle αL is increased the rod seems to form two
self contacting loops (configuration B), and finally coils into a right-handed spiral (configuration C). The
quantities W?

p (computed with N = 1000) and W(r ∪ rc) (computed with N = 1000 along the curve and
N/4 = 250 additional points along the closure) are plotted in Figure 12(c) and are virtually indistinguishable.
(Please note that as the rod remains within the end-planes, Wp = W?

p ). We see that in the vicinity of
configuration B the writhe actually jumps twice by + 2 units, i.e two consecutive crossings happen along the
bifurcation curve, see Figure 12(d). Configuration B appears to have two crossings because in Figure 13(b) it
is rendered with a finite thickness. Finally in Figure 12(b) computation times, for the writhe of configuration
C, are plotted as function of the number N of discretization points. These computations were performed in
C++ and we see a gain of approximatively two orders of magnitude when compared to the times obtained
in Case 1 (see Figure 11(b)) where computations were performed with Mathematica. As in Case 1, the Polar
Writhe algorithm is two (or more) orders of magnitude quicker than the classical double integral algorithm
[48], and approximatively two times quicker than the algorithm from [1].

6.3 Case 3: An Unknotting Deformation

To demonstrate the detection of a change in (pulled-tight) topology we consider a bifurcation path where a
section of the curve gradually loops over the s = L end of the curve. Here we choose the end tangents to be
parallel but the curves end-points to be non aligned, that is the s = 0 conditions are given by (48) and the
six s = L(= 1) conditions are:

rx(L) = 0.0397, ry(L) = −0.0304, rz(L) = (1−∆)L, d3z = 1, d1z = 0, αL = ᾱ (53)

where αL (with 0 ≤ αL < 2π) is the rotation angle of d1(s = L) in the basis (x̂, ŷ). Please also note that
here we choose K1 = 1, K2 = 3 = K3. We fix ∆ = 0.85, and we let ᾱ evolve from 5.01 to 4.95. We
start with a configuration having {n1(0), n2(0), n3(0)} = {−27.55, 20.41, 45.15} and {m1(0),m2(0),m3(0)} =
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Figure 12: Various plots for Case 2. (a) displays the bifurcation path. (b) shows the computation time for the
algorithms forW?

p (lower curve), the algorithm forW(r∪rc) from [1] (intermediate curve), and the algorithm
for W(r ∪ rc) from [48] (upper curve). (c) depicts the values of W(r ∪ rc) and W?

p as function of m3(0) (the
values are almost indistinguishable). The writhe has two jumps and configuration labelled B is after the first
jump and before the second. Computations were performed in C++.

{6.505,−9.425, 4.941} and we select the direction of increasing m3(0). Once again the condition d1z = 0 forces
the vector d1 to lie in the x̂− ŷ plane and we control the changing Lp(r,v) value by rotating the vector d1(L)
(changing ᾱ) through changing the torque m3(0). Figure 14 shows a plot of the quantitiesW(r∪rc), W?

p , and
Wp as a function of m3(0) while four configurations along the path are shown in Figure 15. The closure rc
used forW(r∪rc) is shown in Figure 15, we draw the readers attention to the fact that the looped section will
cross this closure before it crosses theW?

p extension. Initially the writhe values are virtually indistinguishable,
near 3.5 a value one might expect for a trefoil knot. In configuration A the entire curve r(s) lies between
the bounding planes, and the three writhe values coincide. As m3(0) is increased, a looped section of the
curve rises above the upper plane (see for example configuration B) and Wp now departs from the other
two writhe values, decreasing almost linearly as the looping occurs, confirming what we would expect from
Figure 8(b). Along the deformation path, the looped section never goes back down below the upper plane
and hence we have Wp 6=W?

p . Then, between configurations B and C, the curve r(s) crosses the closure rc(t)
and the W(r ∪ rc) value jumps by two units. Eventually, between configurations C and D, the curve crosses
the straight extension above point r(L) and the W?

p value jumps by two units, recovering the value given
by W(r ∪ rc). In conclusion we see that the choice of the closure in the computation of W(r ∪ rc) as well
as the choice of the extension curve in the computation of W?

p can play crucial roles splitting open ribbon
configurations into distinct toplogical domains.

6.4 Discussion

We see the error and convergence of the three algorithms are very similar. The algorithm for W?
p is the

quickest algorithm. However, the main advantage in the polar writhe formulation is the absence of closure.
For the particular examples used here the closures were relatively simple and crucially quite small so they did
not require too many points for accurate calculations. The most general closures introduced in the following
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Figure 13: Configurations A B and C for Case 2. (a) configuration A is a left-handed coil, (b) configuration
B resembles two self-crossing loops, while (c) configuration C is a right-handed coil. (d) For configuration C,
the closure rc used to compute W(r ∪ rc) is shown together with the curve r.

section can be significantly large and their contribution to the quantity W(r ∪ rc) must be calculated for
accurate evaluations. This could require a much larger number of points in the most general case. Moreover
the specific form the closure takes must always be explicitly quantified, making a general code hard to design.
The quantity W?

p never requires a closure for calculation so this is never an issue and a code which covers
all admissible cases is already available [supplementary material].

6.5 Conclusion

In conclusion we have illustrated how the Călugăreanu theorem can be extended to open curves lying in
between bounding planes by using quantities called the polar writhe and the net-winding, quantities formerly
introduced in [11]. Moreover we have extended the definition of these quantities to cope with cases where the
curve has sections that cross the bounding planes, and we have shown the relation between the classical and
extended polar writhe measures. By adding a closure section to the open curve, the double-integral writhe
can be computed and we have discussed its relation to the polar writhe, emphasizing the importance of the
choice of the closure. Finally we have introduced an algorithm to compute the extended polar writhe and we
have shown, on selected examples curves arising in the study of elastic rods mechanics, the efficiency of the
algorithm when compared to existing algorithms for computing the double-integral writhe.
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Figure 14: Plots for Case 3. (a) displays the bifurcation path. (b) The writhe measures Wp, W?
p , and

W(r ∪ rc) are plotted as functions of the torque. Labels A, B, C, and D correspond to the configurations in
Figure 15. The value given by Wp departs for the other two as soon as the configuration extends over the
upper plane. The value W(r ∪ rc) jumps as the configuration crosses the closure. The value given by W?

p

jumps when the extension is crossed.
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