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The extended polar writhe: a tool for open curves mechanics

A measure of the writhing of a curve is introduced and is used to extend the Cȃlugȃreanu decomposition for closed curves, as well as the polar decomposition for curves bound between planes. The new writhe measure is also shown to be able to assess changes in linking due to belt-trick and knotting type deformations, and further its utility is illustrated on examples taken from elastic rod parameter-continuation studies. Finally C++ and Mathematica codes are made available and shown to be faster than existing algorithms for the numerical computation of the writhe.

Introduction

Continuum representations are widely used to model the structure and mechanical properties of macromolecules [START_REF] Manning | A continuum rod model of sequence-dependent DNA structure[END_REF][START_REF] Balaeff | Elastic rod model of a DNA loop in the lac operon[END_REF][START_REF] Neukirch | Chirality of coiled-coils: elasticity matters[END_REF][START_REF] Baouendi | Solution structure of a truncated anti-MUC1 DNA aptamer determined by mesoscale modeling and NMR[END_REF]. Whether it be nucleic acids (e.g. DNA) or amino acids (e.g. proteins), continuum mechanics models of bio-macromolecules now take sequence effects and electrostatic interactions into account and provide information on their large scale and long time behavior, information that is not accessible to molecular dynamics approaches due to the exceedingly high computation costs. One of the prominent member of the large family of bio-macromolecules is DNA, the carrier of our genes. As DNA is a twist-storing polymer and since it has been shown that genes could be silenced by applying mechanical constraints on the molecule, the behavior of DNA as an elastic filament is now widely studied both experimentally [START_REF] Mosconi | Measurement of the torque on a single stretched and twisted DNA using magnetic tweezers[END_REF][START_REF] Van Loenhout | Dynamics of DNA supercoils[END_REF] and theoretically [START_REF] Schöpflin | Probing the elasticity of DNA on short length scales by modeling supercoiling under tension[END_REF][START_REF] Perez | What controls DNA looping[END_REF]. There are two important geometrical considerations required for the realistic physical modeling of such molecules. The first is the prevention of self-penetration when the structure comes into selfcontact whilst deforming. One of the most notable occurrences of self contact is the formation of plectonemes, depicted in Figure 1(a), which is observed in single molecule micro-manipulation experiments of the torsional response of DNA to applied moments [START_REF] Bustamante | Ten years of tension: single-molecule DNA mechanics[END_REF][START_REF] Steven B Smith | Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads[END_REF][START_REF] Marko | The micromechanics of DNA[END_REF], but also (on a vastly different scale) in twisted cables engineering [START_REF] Coyne | Analysis of the formation and elimination of loops in twisted cable[END_REF][START_REF] Lazarus | Contorting a heavy and naturally curved elastic rod[END_REF]. The second is the twisted nature of the structure. Closed DNA plasmids for example are known to be formed from strands whose backbone performs a fixed number of turns along its length when its centerline is circular. Micro-manipulation experiments on linear DNA consist in applying a known number of full twists to one end of the molecule, thereby injecting twisting/winding into the system (as in Figure 1(b)). In both cases the input winding is a conserved quantity in the sense that it will stay constant when the molecule deforms without its ends rotating (e.g. Figure 1(b) to Figure 1(c)), provided no cutting or passing through itself take place. Enforcing both conditions mathematically is a matter of preserving the systems topology, and mathematical measures which can be used to enforce them are known as topological constraints. The topology of thin elastic tubes and rods can be quantified through a pair of curves, one representing the central axis of the rod, which is this curve that must not cross itself. The second curve lies on the tube surface and represents its inherent twisting. This twisted curve can be defined through a normal vector field attached to the central axis curve, the rate at which this field rotates determines the twist of the rod. The pair form a structure known as a ribbon (Figure 1(d)). For rods which close on themselves the extent to which the ribbon links itself is an integer-valued topological invariant known as the linking number. The linking number L is invariant, i.e. it will remain unchanged for all deformations which forbid either of the curves from intersecting. It has been used in variational problems to constrain the phase space of possible closed rod configurations [START_REF] Craig | Elastic model of supercoiling[END_REF][START_REF] Shi | The kirchhoff elastic rod, the nonlinear schrödinger equation, and DNA supercoiling[END_REF][START_REF] Manning | A continuum rod model of sequence-dependent DNA structure[END_REF][START_REF] Bernard | Theory of supercoiled elastic rings with self-contact and its application to DNA plasmids[END_REF]. This control is achieved through the decomposition of the linking number into the writhe W and the twist T . The writhing is a measure of the contortion of the rod's axis and the twist measures the total rotation of the second curve about the tangent direction of the first. If the two curves are closed (periodic) then the three components can be linked by the Cȃlugȃreanu formula [START_REF] Cȃlugȃreanu | L'intégrale de Gauss et l'analyse des noeuds tridimensionnels[END_REF][START_REF] Cȃlugȃreanu | Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants[END_REF][START_REF] William F Pohl | The self-linking number of a closed space curve (Gauss integral formula treated for disjoint closed space curves linking number)[END_REF][START_REF] Fuller | Decomposition of the linking number of a closed ribbon: a problem from molecular biology[END_REF]]

L = W + T , (1) 
If the rod starts with a circular shape then W = 0 and the T represents the number of turns on the tube. As the molecule deforms the total twisting is altered due to the contortion of the rods axis (supercoiling), this contortion is represented in (1) by the writhe.

For open rods the L and W are more difficult to define and manipulate, but a few approaches have been followed [START_REF] Rossetto | Writhing geometry of open DNA[END_REF][START_REF] Starostin | On the writhing number of a non-closed curve[END_REF]. Berger and Prior [START_REF] Mitchell | The writhe of open and closed curves[END_REF] introduced a topological measure called the net winding L p which was derived for a pair of curves bound between two parallel planes (e.g. the system in Figure 1(b)). The netwinding is invariant to deformations which do not allow crossings of the ribbon and for which the ribbon's ends are forbidden from turning, this second requirement limits the input of winding into the system. Moreover a quantity, termed the polar writhe W p and playing the role of W in [START_REF] Pankaj | Computing the writhing number of a polygonal knot[END_REF], was introduced and an open equivalent of (1) was dervied [START_REF] Mitchell | The writhe of open and closed curves[END_REF] L p = W p + T ,

the twist T being the same quantity as in [START_REF] Pankaj | Computing the writhing number of a polygonal knot[END_REF]. This measure has been utilized in MHD studies of magnetic flux ropes in the solar corona [START_REF] Toeroek | The writhe of helical structures in the solar corona[END_REF][START_REF] Janse | The topological changes of solar coronal magnetic fields. III. reconnected field topology produced by current-sheet dissipation[END_REF][START_REF] Bc Low | Absolute magnetic helicity and the cylindrical magnetic field[END_REF][START_REF] Prior | On the shape of force-free field lines in the solar corona[END_REF][START_REF] Cobo | Twist, writhe, and helicity in the inner penumbra of a sunspot[END_REF][START_REF] Bc Low | Newtonian and non-newtonian magnetic-field relaxations in solar-coronal MHD[END_REF][START_REF] Guo | Twist accumulation and topology structure of a solar magnetic flux rope[END_REF][START_REF] Török | The evolution of writhe in kink-unstable flux ropes and erupting filaments[END_REF]. It has not yet been utilized in elastic rod modeling, where authors have instead artificially closed the rod in order to use the closed version of the Cȃlugȃreanu formula, an approach which is fraught with difficulties and overly-restrictive constraints, as we discuss in Section 3.3.

One aim of this note is to demonstrate the utility of the net winding-polar writhe approach to open ribbon topological constraint, as well as its superiority to the closure approach. However, as it stands the (2) is not applicable to rods for which a section of the rod passes above or below the bounding planes, see Figure 2. In this note we demonstrate how the definition of the polar writhe can be extended to allow Equation (2) to be applicable under such deformations. The issue of allowing "over-the top deformations" is somewhat

(a) (b) (c)
Figure 2: The of the formation of a "knotted" tube from an unknotted tube. Pulling the end planes of (a) apart would lead to a straight but twisted ribbon. Pulling on (c) would lead to a knotted ribbon which is significantly less wound (we see later the change would be -4π windings).

complicated by the fact that open ribbons can shed integer number of twist/winding, even whilst its ends are prevented form rotating, through either the Dirac belt trick or "knotting" deformations such as depicted in Figure 2. So we cannot in general expect topological constraint of open ribbons. In section (3.4) we show how the polar writhe measure can be extended to track such changes in topology whilst also measuring the continuous conversion between (polar) writhing and twisting of the ribbon.

2 Geometry and Topology

Ribbons, Tubes and the Darboux Vector

In this note we consider oriented embedded curves in Euclidean 3-space, [s min , s max ] : r(s) → E 3 , the Cartesian basis for this space being labelled (x, ŷ, ẑ). The Euclidean norm of a vector v will be denoted ||v||. The parametrization s may be arbitrary and, unless otherwise stated, curves will assumed to be twice differentiable with respect to s. Throughout this note derivatives will be denoted with a dash. A tube surrounding r can be generated using the unit tangent vector of r

d 3 (s) = 1 λ r (s) , λ = ||r || (3) 
and a unit vector field d 1 (s) which lies in the normal plane of d 3 , that is

d 1 • d 3 = 0, ||d 1 || = 1, ∀s.
We complete an orthonormal basis with the vector product

d 2 = d 3 × d 1 .
At a specific parameter value s the pair (d 1 , d 2 ) span the circular cross section D s , whose material points p s are specified by the pair (R, ξ) with

p s (R, ξ) = r(s) + R (d 1 (s) cos ξ + d 2 (s) sin ξ)
and

D s = p s (R, ξ) | R ∈ [0, ], ξ ∈ S 1 .
The set of all D s on the interval s ∈ [0, L] constitute the tube body. The -neighbourhood theorem asserts that, if r(s) is a non-self intersecting curve, then there is an sufficiently small such that the tube does not intersect itself [START_REF] Morris | Differential topology[END_REF]. A ribbon can be obtained from the tube structure by choosing a fixed angle ξ, say ξ = 0, so that we have a pair of curves r and

v(s) = r(s) + d 1 (s) (4) 
which constitute the ribbon pair. By extension if is sufficiently small the two curves r and v do not intersect.

In what follows, components of a vector v expressed in the Euclidean co-ordinate system (x, ŷ, ẑ) will be written as (v x , v y , v z ), and components in the basis (d 1 , d 2 , d 3 ) will be written in sans-serif font (v 1 , v 2 , v 3 ). The tube structure can be defined through a vector field u = u 1 d 1 + u 2 d 2 + u 3 d 3 , the Darboux vector. The s-evolution of the orthonormal basis (d 1 , d 2 , d 3 ) is given by the differential system:

d j = λ u(s) × d j (s) , j = 1, 2, 3 (5) 
The system ( 5) is linear and assuming the functions u j are continuous its solution exists and is unique up to a rotation and translation given by the initial conditions (see e.g. [START_REF] Vi | Ordinary differential equations, translated by ra silverman[END_REF]). In Section 4 we consider curves for which the functions u j have a finite number of discontinuities. If the functions u j are discontinuous at points 

s i (i = 1, • • • , n) then

Homotopy and Isotopy

In this note a homotopy between a pair of curves r and r is defined by a continuous map [0, 1] :

H(t) → E 3 for which H(0) = r, H(1) = r . ( 6 
)
An isotopy is a homotopy which is bijective ∀t, i.e., an isotopic deformation requires the curve never selfintersects. We can extend the notion of an isotopy to a ribbon by demanding the maps r and d 1 are isotopic and in addition requiring the curves r and v do not intersect each other. The -neighbourhood theorem asserts that if the ribbon's width is sufficiently small we only require that the deformation of the axis curve r is isotopic for the ribbon structure to be isotopic. In this note we define the notion of an end-restricted isotopy for an open ribbon (r(s min ) = r(s max )) as an isotopy for which d 1 (s min ) and d 1 (s max ) are unchanged ∀t. This implies the ribbon is not allowed to rotate at its ends (forbidding the input/loss of winding into/from the system). For closed curves we require no such restrictions and we extend the definition of the set of end-restricted isotopies to be the union of simple isotopies for closed ribbons and isotopies where d 1 (s min ) and d 1 (s max ) are constant for open ribbons.

Link, Twist, and Writhe

The Link Consider two oriented closed curves r and v which do not intersect. Their linking number (or link) L is given by the following double integral

L(r, v) = 1 4π r v [r (s) × v (s )] • [r(s) -v(s )] ||r(s) -v(s )|| 3 ds ds (7) 
The integral [START_REF] Audoly | Elasticity and Geometry[END_REF] can be interpreted in terms of the Gauss map m(s, s )

m(s, s ) = r(s) -v(s ) ||r(s) -v(s )|| (8) 
which defines a map to S 2 indicating the direction of the vector joining the two points r(s) and v(s ). The integrand of (7) assigns the scalar triple product

m • dm ds × dm ds (9) 
to each m. Assuming the vectors dm/ds and dm/ds are in general position, projections of the curves onto a plane along a direction specified by a unit vector n will lead to a finite number of self-crossings where m = n (as in Figure 3(a) and (b)). These crossings are assigned a number ±1 as depicted in Figure 3(c) which is equal to the sign of triple product (9) evaluated for the pairs of points for which m = n. The signed total of all crossings is known as the crossing number C(n) [START_REF] Orlandini | The writhe of a self-avoiding walk[END_REF]. The crossing number can be shown to be independent of n and further it can be shown that L = C(n)/2 as the double integral (7) represents twice the average over all directions n of C(n). The linking number has the following properties for closed curves.

• L(r, v) is invariant to all isotopic deformations of two curves.

• L(r, v) is an integer.

• L(r, v) changes discontinuously by ±1 when the curves cross. The sign of the change is dictated by half the net change in crossing given by the rules of Figure 3(c), i.e. a change from +1 to -1 would yield a change in L(r, v) of -1.

A demonstration of these properties and the interpretation of [START_REF] Audoly | Elasticity and Geometry[END_REF] in terms of the crossing number can be found in [START_REF] Renzo | Gauss' linking number revisited[END_REF], as well as a fascinating insight into how Gauss may have made his original discovery of this quantity and its invariance. Of course all these properties hold for ribbons, we denote the linking of a ribbon as L(r, d 1 ) to make it clear we are considering the linking of a ribbon rather than that of two arbitrary curves. Crucially for this note the above-listed properties are not generally true for a pair of open curves.

The Twist

The twist T is the total rotation of d 1 about d 3 ,

T (r, d 1 ) = 1 2π smax smin d 3 • (d 1 × d 1 ) ds = 1 2π smax smin u 3 ds. ( 10 
)
This definition is independent of the choice of angle ξ used to obtain the ribbon from the tube [START_REF] Mitchell | The writhe of open and closed curves[END_REF]. T changes continuously under both isotopic and homotopic deformations of r. The twist rate dT /ds is a variable in elastic rod theories [START_REF] Audoly | Elasticity and Geometry[END_REF][START_REF] Antman | Nonlinear problems of elasticity[END_REF] and polymer models [START_REF] Craig | Elastic model of supercoiling[END_REF][START_REF] Fain | Conformations of linear DNA[END_REF][START_REF] Bouchiat | Elastic rod model of a supercoiled DNA molecule[END_REF][START_REF] Bernard | Theory of supercoiled elastic rings with self-contact and its application to DNA plasmids[END_REF]. A key result which we shall utilise in Section 4 is the fact that for any twice-differentiable curve r we can define a set u j for which T = 0. This basis is often called the natural basis and was introduced by Bishop [START_REF] Bishop | There is more than one way to frame a curve[END_REF]. If we denote this natural framing (d 3 , a 1 , a 2 ) then it is defined but the linear differential equation

  d 3 a 1 a 2   = λ   0 k 1 k 2 -k 1 0 0 -k 2 0 0     d 3 a 1 a 2   (11) 
This is equivalent to setting u 2 = k 1 , u 1 = -k 2 and u 3 = 0. The functions k 1 (s) and k 2 (s) can be obtained form the curve r in terms of its curvature κ and torsion τ through k 1 (r, s) = κ(r, s) cos ψ(r, s) , k 2 (r, s) = κ(r, s) sin ψ(r, s) , ψ(r, s) = ψ 0 + s smin τ (r, t) dt ( 12)

κ(r, s) = ||r × r || ||r || 3 , τ (r, s) = (r × r ) • r ||r × r || 2
with ψ 0 determined by the initial conditions [START_REF] Bishop | There is more than one way to frame a curve[END_REF].

The twist is also well defined for vector fields d 1 which are only piecewise differentiable with a finite set of discontinuities, meaning the curvatures u j are only piecewise differentiable. In this case we can still construct a continuous frame as discussed in (2.1). If the set of discontinuities in our parameterisation s ∈ [s min , s max ] are labelled s i , i = 1, 2 . . . n then

T (r, d 1 ) = 1 2π s1 smin d 3 • (d 1 × d 1 ) ds + 1 2π n i=1 si+1 si d 3 • (d 1 × d 1 ) ds + 1 2π smax sn d 3 • (d 1 × d 1 ) ds (13)
The Writhe

The writhe W represents the linking of the (closed) curve r with itself. It is given by the following double integral

W(r) = 1 4π r v [r (s) × r (s )] • [r(s) -r(s )] ||r(s) -r(s )|| 3 ds ds ( 14 
)
Whilst superficially similar to the linking integral [START_REF] Audoly | Elasticity and Geometry[END_REF] it does not share its invariant property, but has the following properties [START_REF] Aldinger | Formulae for the calculation and estimation of writhe[END_REF]:

• W(r) changes continuously for isotopic deformations of the r curve.

• As r crosses itself, W(r) jumps by ±2 depending on the crossing rules shown in Figure 3(c).

The primary interest in the quantity W is as part of a decomposition of the invariant linking number.

Cȃlugȃreanu Theorem

First demonstrated by Cȃlugȃreanu [START_REF] Cȃlugȃreanu | L'intégrale de Gauss et l'analyse des noeuds tridimensionnels[END_REF][START_REF] Cȃlugȃreanu | Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants[END_REF] and derived in a more concise fashion by Pohl [START_REF] William F Pohl | The self-linking number of a closed space curve (Gauss integral formula treated for disjoint closed space curves linking number)[END_REF], the theorem asserts that the linking number L(r, d 1 ) of a ribbon can be decomposed into a sum of the twisting and writhing, i.e., L(r,

d 1 ) = T (r, d 1 ) + W(r). (15) 
There appears to be a discrepancy with this formula. W can jump discontinuously by ±2 when r crosses itself, this does not necessarily mean r and v have crossed each other simultaneously so the left and right hand side cannot always be equal (remember that T must change continuously). The theorem actually asserts that if the curves r and v do not cross themselves, and also do not cross each other, then L satisfies [START_REF] Cȃlugȃreanu | L'intégrale de Gauss et l'analyse des noeuds tridimensionnels[END_REF]. However, if the ribbon is significantly thin the crossing of r with itself will essentially be equivalent to v crossing itself. With this, both W and L will change simultaneously by ±2 (there are two link changes). So, in the limit of vanishing radius we can simply calculate W + T to obtain the linking, and discontinuous changes in W will If the curves are not closed then there exists no current evidence that the decomposition ( 15) is applicable [START_REF] Panagiotou | The linking number and the writhe of uniform random walks and polygons in confined spaces[END_REF]. In any case the linking number is not a topological invariant in this scenario, so this question is not of interest here. However, in the next section we will introduce an equivalent decomposition for open curves.

Topology for Open Curves

In this section we follow [START_REF] Mitchell | The writhe of open and closed curves[END_REF] and use the net winding as an invariant for ribbons whose ends are constrained. This leads to an open equivalent of the Cȃlugȃreanu decomposition [START_REF] Cȃlugȃreanu | L'intégrale de Gauss et l'analyse des noeuds tridimensionnels[END_REF] where a quantity termed the polar writhe is introduced.

The Net-Winding

We consider two curves r and v bound between two planes such as in Figure 4(a) and (c). Without loss of generality we will assume these planes have ẑ as normal, that is are characterized by values z = const. We parametrise the curves by their z co-ordinate and define the vector u(z) = v(z) -r(z) which lies in a particular z-plane, along with the associated angle Θ(z) it makes with the x-axis, see Figure 4(b). The total winding of this vector is given by 1 2π

z max z min dΘ dz dz = 1 2π z max z min ẑ • (u × du dz ) ||u|| 2 dz. ( 16 
)
More general curves might turn back on themselves, as in Figure 4(c), for such curves dr z /ds = 0 (resp. dv z /ds = 0) at "turning points". Such curves are split into sections moving upwards or downwards in their z co-ordinate, these sections being bounded by the turning points. If a curve has either an inflection point or a section of curve whose z-component remains constant we do no split the curve at these points, so in what follows when we use the term turning points we only consider points at which the curve turns back on itself (d 2 r z /ds 2 = 0). If the curve r (respectively v) has n (resp. m) such turning points then there are n + 1 sections r i , i = 1, . . . n + 1 (resp. m + 1 sections v j , j = 1, . . . m + 1). Each pair of sections shares a (possibly empty) mutual range of

z values z ∈ [z min ij , z max ij ].
In this range we use the vector u ij (z) = v j (z) -r i (z) along with the associated angle Θ ij (z) it makes with the x-axis. The net winding L p (r, v) is then given by the formula

L p (r, v) = n+1 i=1 m+1 j=1 σ i σ j 2π z max ij z min ij dΘ ij dz dz, (17) 
where σ i = +1 if the r i section is moving upward (that is dr iz /dz > 0), and σ i = -1 if the section is moving downward (that is dr iz /dz < 0). Similarly σ j is defined as the sign of dv jz /dz. Also note that we define z min 11 = z min at the lower plane, and z max (n+1)(m+1) = z max at the upper plane. The lower and upper planes are called bounding planes.

To give this quantity some context we note that the individual contributions to the sum (17) can be written as

σ i σ j 2π z max ij z min ij dΘ ij dz dz = σ i σ j Θ ij (z max ij ) -Θ ij (z min ij ) 2π + n ij ( 18 
)
where n ij is the total number of full windings of Θ ij in the section ij. The angles Θ ij (z min ij ) and Θ ij (z max ij ) are evaluated at the turning points, and each of them appears twice in the global sum in [START_REF] Cobo | Twist, writhe, and helicity in the inner penumbra of a sunspot[END_REF], but with opposite signs. Hence these angles cancel out in the full sum [START_REF] Cobo | Twist, writhe, and helicity in the inner penumbra of a sunspot[END_REF] which reduces to

L p (r, v) = Θ (n+1)(m+1) -Θ 11 2π + n+1 i=1 m+1 j=1 σ i σ j n ij (19) 
with Θ (n+1)(m+1) the end angle on the upper bounding plane, and Θ 11 the angle on the lower bounding plane. These end angles remain as they only appear once in the global sum in [START_REF] Cobo | Twist, writhe, and helicity in the inner penumbra of a sunspot[END_REF]. We shall use [START_REF] Coyne | Analysis of the formation and elimination of loops in twisted cable[END_REF] to measure the error of some of our numerical calculations in Section 6.

As shown in [START_REF] Mitchell | The writhe of open and closed curves[END_REF], the net winding can be defined in terms of the Gauss map [START_REF] Balaeff | Elastic rod model of a DNA loop in the lac operon[END_REF] with the restriction m z = 0. Further it was shown that the scalar triple product

σ i σ j ẑ • (u × du dz ) ||u|| 2 (20) 
has the same sign as [START_REF] Baouendi | Solution structure of a truncated anti-MUC1 DNA aptamer determined by mesoscale modeling and NMR[END_REF], and finally that the net winding is also equal to half the crossing number C(n) for closed curves. Using this equivalence the following properties of L p (r, v) were demonstrated

• L p is invariant during isotopies of the two curves provided (i) mutual crossing is forbidden, (ii) the end angles Θ 11 and Θ (n+1)(m+1) remain fixed, and (iii) the curves remain between the bounding planes r z (s min ) = const and r z (s max ) = const. For ribbons these are a subset of the end-restricted isotopies defined in Section 2.2.

• If r and v pass through each other L p jumps by ±1, following the rule of Figure 3.

• For closed curves L p (r, v) = L(r, v).
We should add that the boundary planes can move, as for example a ribbon structure of fixed length which is compressed leading to its ends to move toward each other (see e.g. Figure 4(a)-(c)). It is the prevention of the loss of winding through the rotation of the angles Θ 11 and Θ (n+1)(m+1) which is critical. The invariance of L p then asserts that the integer part of ( 19) can only change if the curves cross.

The Polar Writhe

The polar writhe W p is the sum of local and non-local components

W p (r) = W pl (r) + W pnl (r). ( 21 
)
r i r i+1 r i(i+1)
turning point The curve is split at its i th turning point into sections r i and r i+1 . We see the vector r i(i+1) whose winding contributes to W pnl .

x Θ i,i+1
Using its turning points we decompose r into n + 1 sections r i , i = 1, . . . n + 1. The local component is given by the arc-length integral

W pl (r) = n+1 i=1 σ i 2π s max i s min i ẑ • d 3 × d 3 1 + ||ẑ • d 3 || ds. ( 22 
)
The non local contribution can be defined in a similar fashion to the net-winding. We define W pnl to be the winding of all angles Θ ij made by the vector field r ij = r j -r i of each pair of sections (double counted), i.e.

W pnl (r) = n+1 i=1 n+1 j=1 i =j σ i σ j 2π z max ij z min ij dΘ ij dz dz. ( 23 
)
An example of such a calculation is shown in Figure 5. It was demonstrated in [START_REF] Mitchell | The writhe of open and closed curves[END_REF] that W p has the following properties

• W p changes continuously during isotopic deformations.

• If r self-crosses, it jumps by ±2 depending on the crossing rules shown in Figure 3.

• The sum of the twist defined by [START_REF] Craig | Elastic model of supercoiling[END_REF] and W p gives the net-winding of the ribbon with

v = r + d 1 L p (r, d 1 ) = T (r, d 1 ) + W p (r). ( 24 
)
• For closed curves W p (r) = W(r) and if the ribbon is closed ( 24) is equivalent to [START_REF] Cȃlugȃreanu | L'intégrale de Gauss et l'analyse des noeuds tridimensionnels[END_REF].

The decomposition [START_REF] Inoue | Buildup and release of magnetic twist during the x3.4 solar flare of 2006 december 13[END_REF] has been used to study the changing morphology of coronal flux tubes [START_REF] Cobo | Twist, writhe, and helicity in the inner penumbra of a sunspot[END_REF][START_REF] Inoue | Buildup and release of magnetic twist during the x3.4 solar flare of 2006 december 13[END_REF][START_REF] Prior | On the shape of force-free field lines in the solar corona[END_REF][START_REF] Toeroek | The writhe of helical structures in the solar corona[END_REF].

As with the twist, the local polar writhe W pl is also well-defined for curves whose tangent vector d 3 is only piecewise differentiable. This is not explicitly stated in [START_REF] Mitchell | The writhe of open and closed curves[END_REF] where W pl is defined as the difference L p -T of a ribbon (r, d 1 ) a . Consider a curve with no turning points for which the vector field d 1 is only piecewise a Its value is then shown to only depend on r. differentiable. The integrals for L and T on a domain s ∈ [s min , s max ] are split by the finite number l of discontinuous points s i of the functions u i defining d 1 . From [START_REF] Mitchell | The writhe of open and closed curves[END_REF] each difference L p -T on the domain s ∈ [s i , s i+1 ] is given by the expression

W pl (r, s i , s i+1 ) = σ i 2π si+1 si ẑ • d 3 × d 3 1 + ||ẑ • d 3 || ds. ( 25 
)
and the total W pl value is

W pl (r) = W pl (r, s min , s 1 ) + l i=1 W pl (r, s i , s i+1 ) + W pl (r, s l , s max ). ( 26 
)
For curves which have n turning points we must make this decomposition for each component of the sum [START_REF] Guo | Twist accumulation and topology structure of a solar magnetic flux rope[END_REF].

Closures

Previous studies focused on imposing the twist-writhe decomposition on open ribbons in a topologically meaningful fashion did so by extending the ribbon continuously to form a closed ribbon (as depicted in Figure 6). The closure is composed of functions [t min , t max ] :

r c (t), d 1c (t) → E 3 satisfying r c (t min ) = r(s max ) , r c (t max ) = r(s min ) (27a) d 3c (t min ) = d 3 (s max ) , d 3c (t max ) = d 3 (s min ) (27b) d 1c (t min ) = d 1 (s max ) , d 1c (t max ) = d 1 (s min ) (27c)
It is also required to not interlink or intersect the original ribbon. With this we can apply [START_REF] Cȃlugȃreanu | L'intégrale de Gauss et l'analyse des noeuds tridimensionnels[END_REF] to the closed ensemble

L(r ∪ r c , d 1 ∪ d 1c ) = T (r, d) + T (r c , d 1c ) + W(r ∪ r c ). ( 28 
)
Only the twist is an additive quantity. In general the writhe calculation ( 14) must include contributions from vectors r c -r which represent the writhing of the closure with the original curve. The idea is to close so that L and T (r c , d 1c ) are known and fixed during deformations that vanish at s = s min and s = s max . The The values L(r ∪ r c , d 1 ∪ d 1c ) and W(r ∪ r c ) are certainly not independent of the closure, however there is one choice which is generally preferable, the "stadium closure" depicted in Figure 6, for which r c consists of a straight curve section joined by a pair of semi-circles. It is always possible to construct this curve if the end tangent vectors align, d 3 (s min ) = d 3 (s max ) [START_REF] Fuller | Decomposition of the linking number of a closed ribbon: a problem from molecular biology[END_REF][START_REF] Alexander | The ambiguous twist of love[END_REF][START_REF] Moroz | Torsional directed walks, entropic elasticity, and DNA twist stiffness[END_REF][START_REF] Rossetto | Writhing geometry of open DNA[END_REF][START_REF] Van Der Heijden | On end rotation for open rods undergoing large deformations[END_REF][START_REF] Starostin | On the writhing number of a non-closed curve[END_REF][START_REF] Neukirch | Writhe formulas and antipodal points in plectonemic DNA configurations[END_REF]. This is true for a number of relevant problems [START_REF] Alexander | The ambiguous twist of love[END_REF][START_REF] Fain | Conformations of linear DNA[END_REF][START_REF] Bouchiat | Elastic rod model of a supercoiled DNA molecule[END_REF]. Further, for a restricted set of configurations the stadium closure is such that W(r ∪ r c ) = W(r) b . This possibility is comprehensively considered in [START_REF] Van Der Heijden | On end rotation for open rods undergoing large deformations[END_REF] but the set of configurations for which this is possible is far too restrictive for a general use [START_REF] Neukirch | Writhe formulas and antipodal points in plectonemic DNA configurations[END_REF] and we do not pursue the issue any further here. Starostin [START_REF] Starostin | On the writhing number of a non-closed curve[END_REF] considered a still more general method of closing an open curve and ribbon using several planar sections of curve, but they lead to rather complex expressions which rely on calculating contributions from the closure. Crucially [START_REF] Starostin | On the writhing number of a non-closed curve[END_REF] demonstrated that in general W(r) = W(r ∪ r c ).

Also [START_REF] Mitchell | The writhe of open and closed curves[END_REF] has its own results regarding W p and closures. It was demonstrated that for any curve bound between two planes there exists a closure for which W p (r) = W(r ∪ r c ) (this is true of the case shown in Figure 6). Consequently W p of an open curve is always equivalent to W of some closed curve, but the calculation only needs to be performed on the open curve section. However this misses the point somewhat; for ribbons bound between two planes we already have an equivalent of the Cȃlugȃreanu decomposition which does not involve a closure and which is topologically meaningful in that it is conserved for end-restricted isotopies. There is never any reason to close the curves. Further it must be stressed that this open topological conservation does not require any conditions on the alignment of the end positions or end tangents of r.

Over the Top Curves

As it stands [START_REF] Inoue | Buildup and release of magnetic twist during the x3.4 solar flare of 2006 december 13[END_REF] is not applicable to curves for whom a section crosses the bounding planes, see for example the curves shown in Figure 7. More precisely if r z (s max ) > r z (s min ) and there is some subset or union of b By W(r) for an open curve, we mean that the integrals in formula [START_REF] Bustamante | Ten years of tension: single-molecule DNA mechanics[END_REF] run from s min to smax without being closed.

subsets of [s min , s max ] for which either r z (s) > r z (s max ) or r z (s) < r z (s min ), then L p (r, d 1 ) is no longer an invariant (an equivalent statement in the case where r z (s max ) < r z (s min ) should be obvious). The main goal of the present work is to extend the definition of W p so that the sum W p + T is conserved in such cases.

Of course the issue of allowing such deformations is that they allow for the loss of total winding through the belt trick or knotting, both admissible end-restricted isotopies. One way of detecting such changes is to append a closure to the curve, as in Figure 6. Any deformations such as the knotting deformation shown in Figure 2 will guarantee that this closure is crossed causing both the linking and writhing to jump by the same integer value. This means we can track continuous conversion of writhing into twisting through the difference L -W. This will also allow for the tracking of changes in the topological nature of the winding of the curve, which the belt trick provides, through the ±2 change in linking. This would lead to the correct evaluation of the final linking of the belt-trick deformation. However, one must take care in defining the closure. A poorly chosen closure could add linking to the composite calculation L(r ∪ r c , d 1 ∪ d 1c ) by knotting the curve further. We can always ensure this pitfall is avoided by applying a sufficiently large stadium closure to avoid knotting with the original curve any further, as discussed in [START_REF] Rossetto | Writhing geometry of open DNA[END_REF]. However, in order to accurately evaluate the writhing of such curves one must take the contribution of the closure into account accurately leading to an excessive computational cost and difficulty in developing a general code to construct an appropriate closure for any given curve. Also if the end tangents are not aligned a general prescription for this closure procedure could prove difficult.

By comparison, for the net winding it is sufficient to simply extend the curve upwards or downwards such that the new extended curve is completely contained between its end planes, as for the composite curves r 1 ∪ r u e or r 2 ∪ r u e in Figure 7(a) for example. We show in Section 4 that it is always sufficient to extend the curve straight up (or down), from the original curve's end points, along ẑ (resp. -ẑ). This would not produce a differentiable curve when the end tangents do not align, but we show there always exists a differentiable pair of curves, r u e (up) and r d e (down), which differ form straight line extension by an arbitrarily small amount (Theorem 1 of Section 4) and whose extended W p (r d e ∪r∪r u e ) measure is equal to the straight closure case. The details of this extension are somewhat fiddly so we relegate them to Section 4. Before this we give an explicit definition of the quantity W p , which does not require details of the extension r e . We shall also demonstrate its utility through example calculations in Section 6.

The Extended Polar Writhe Measure W p

In the proof of Theorem 1 in Section 4 we demonstrate that the extensions r u e and r d e can always be constructed such that W pl (r d e ∪ r ∪ r u e ) = W pl (r): the local component only depends on the original curve's geometry. For the non-local component W pnl (r d e ∪ r ∪ r u e ) = W pnl (r) and its definition requires a little alteration. We assume here that the curve r has upward pointing tangents at both extremities: d 3z (s min , s max ) > 0. As before there are n turning points along r and hence n + 1 sections. In a section i, if a point is such that r i (s + i ) has its z coordinate equal to r z (s max ), we record the angle Θ + i made by the vector r i (s + i ) -r(s max ) and the x-axis. Otherwise Θ + i is set to zero. Conversely if a point is such that r i (s - i ) has its z coordinate equal to r z (s min ), we record the angle Θ - i made by the vector r i (s - i ) -r(s min ) and the x-axis. Otherwise Θ - i is set to zero. The non local polar writhe W pnl (r) can then be written in terms of the following quantities [START_REF] Mitchell | The writhe of open and closed curves[END_REF][START_REF] Prior | The theory and applications of writhing[END_REF]:

1. at each turning point k, the angle φ k made by the tangent vector d 3 with the x-axis 2. n ij , the signed number of full turns made by Θ ij for sections i and j of the curve 3. the angles Θ + i and Θ - i made by the curve's end points and sections of the curve sharing a mutual z value. and we have with η k = +1 (respectively η k = -1) if the k th turning point is a local minimum (respectively maximum) in z. Crucially the sum W p (r) + T (r, d 1 ) is not generally invariant when there are end angles Θ + i or Θ - i , we demonstrate this numerically in section [START_REF] Asgari | Writhe in the stretch-twist-fold dynamo[END_REF]. The extensions r d e and r u e will ensure that there are no end angles Θ + or Θ -made by the extended curve r d e ∪ r ∪ r u e with itself. Also r d e and r u e are straight lines with no turning points, so the turning angle sum will not change under this extension, nor will the extensions have any full windings with themselves. With this we can define a new quantity W p (r)

W pnl (r) = 1 2π     n k=1 2 η k φ k + n+1 i=1 n+1 j=1 i =j σ i σ j n ij + n+1 i=1 (-1) i+1 Θ + i + (-1) i Θ - i     (29) (b) (a) (i) (ii) (iii) (iv) (v) Extensions r n+1 r i r i r n+1 Φ i Φ ii Φ iii Φ iv
W p (r) = W pl (r) + 1 2π     n k=1 2 η k φ k + n+1 i=1 n+1 j=1 i =j σ i σ j n ij     (30)
The only contribution to the quantity W p from the extensions arises from integer winding of the union r n+1 ∪ r u e and any other section of the curve r i , i = n + 1 and similarly union r d e ∪ r 1 with any other section r i , i = 1. 

W p (r) + T (r, d 1 ) (31) 
is equivalent to the sum

W p (r d e ∪ r ∪ r u e ) + T (r d e ∪ r ∪ r u e , d d 1e ∪ d 1 ∪ d u 1e ) ( 32 
)
which is a pair of curves bound between two planes and hence invariant in any non-self-intersecting endisotopy. The results of [START_REF] Mitchell | The writhe of open and closed curves[END_REF] show this extension can always be extended to a closed curve r ∪ r c for which [START_REF] Marko | The micromechanics of DNA[END_REF] is equivalent to

W(r ∪ r c ) + T (r ∪ r c , d 1 ∪ d 1c ). ( 33 
)
(There r c would comprise our extensions plus a classical closure curve as in Figure 7(a)). We demonstrate this numerically in Section 6.

A Note on End-Angles and the Choice of Extension

A key difference between the writhing measures W p (r) and W p (r) is the end-angles made by sections of r and the end points r(s min ) and r(s max ), if they exist. Since the curve r is continuous, it can only rise above(below) the end-planes as one or several looped section(s), see for example Figure 8. Each looped section leads to two such end angles Θ +/i and Θ

+/-i+1 , each prefaced with an opposing sign due to the functions σ i σ i+1 (as the curve sections are moving up and down). Thus the sum of these angles (Φ ) will be (up to a sign) the angle made by the vectors joining the two looped footpoints and the end point (Figure 8(b)). Now consider a knotting or belt-trick type deformation, for which this looped section passes over the top of the curves ends, Φ starts at 0 and gradually increases to 2π as the loop passes over the end point (Figure 8(b)). When the loop passes back below the end plane the measure W p there would have registered this integer change in angle, which is counted twice in the sum W p . The extensions r d e and r u e ensure that the quantity W p registers this integer change half way through this deformation when the curve crosses the extension (as would have occurred in the isotopy joining the two curves in Figure 7(a)).

Of course we could have chosen alternative extensions which avoid this crossing as shown in Figure 7(b). However, as demonstrated in Figure 8(a) any such choice of closure would eventually have been crossed when the 2π change in angle occurs. Since open curves are never really truly knotted (the sense of knotting is given by the closure) there will always be some sense of ambiguity in the choice of closure/extension. Our extension gives the sum W p + T which would be obtained by pulling the end points of the curve in opposing directions (ẑ and -ẑ) to yield the tightest possible configuration, either a tightened knot or a straight ribbon. We believe this is a sensible and practical choice for separating the space of possible ribbon configurations into a set of domains in which the sum W p + T is conserved.

Constructing the Extension

In what follows we demonstrate that we can always define a curve r e which extends the curve r from its end points such that the maximum and minimum r z values of the original curve r are contained within the z = const planes of the extension's end points . We show this extension can always be chosen have no local polar writhing W pl (r e ) = 0 and that can be made arbitrarily close to a straight line curve section extending along ẑ (or -ẑ) from r(s max ) (or r(s min )), see e.g. Figure 7(a).

One way to ensure that W pl (r) = 0 for any curve r is to require that

ẑ • d 3 × d 3 = 0. ( 34 
)
for the whole curve. This is clearly true of curves with constant tangent vectors (straight lines). It is also easy to see it is true of sections of curve with the following general form

r(t) = a (cos(b) cos(ct + d), sin(b) cos(ct + d), sin(ct + d)) , (35) 
with (a, b, c, d) arbitrary real constants. By constructing our extension r e from a combination of circular section and a straight line we ensure it will have no local writhing. Our extension curve r e , it is the union of the following curve sections 1. A circular section r r which re-orients the curve's end tangent d(s max ) (or -d(s min )) to point along ẑ (resp. -ẑ).

2. A straight line joining the end of r r to a point with a z co-oridnate above (below) the maximum (minimum) z value of the original curve.

converges to zero. A similar argument applies to any extension for the case r z (s o ) < r z (s min ). It is this limit which we assume for our definition of W p .

Finally a subset of the possible curve configurations would intersect this closure. As is made arbitrarily small this means intersecting the straight line section. To avoid this we can simply add an (arbitrarily small circular section to the line in order to avoid self crossing. In practice this amounts to assigning an angle to a pair of points, the first one on the original curve r and the second one on the extension r u e (or r d e ), both of which are at the same point (with the straight closure). These points share the height: r z = z cross and we simply assign to this angle the value of the previous angle at the next lowest height z < z cross (note that the algorithm works on discretized curves).

The Elastic Rod Model

We summarize here the elastic rod model we are using. Equilibrium configurations are computed and their topology is assessed. We use equilibrium solutions because they generate a rich variety of shapes, but also because they arise in polymer and mechanical engineering applications. The conservation of topology associated with the sum [START_REF] Marko | The micromechanics of DNA[END_REF] is not limited to equilibrium rod structures. It is true of dynamic elastic rod structures and other non-elastic ribbon/tube models. This model simply affords a means by which the utility of the extended polar writhe measure W p can be demonstrated.

Kinematics

A configuration for the elastic rod is determined by the centerline r(s) together with a material vector d 1 (s), see e.g. [START_REF] Audoly | Elasticity and Geometry[END_REF][START_REF] Antman | Nonlinear problems of elasticity[END_REF] for more comprehensive exposition of thin rod theory. The deformation of the rod's centerline and material is tracked using the Darboux vector u. In what follows the rod is inextensible and unshearable and hence the parameter s is the arclength in both undeformed and deformed states, i.e. λ = ||r || = 1. The rod has length L and we set s min = 0 and s max = L.

Mechanics

In the case of no external load (such as gravity, electrostatics, contact, . . .) the rod's mechanics are determined by the balance equations

n = 0, m + r × n = 0. ( 46 
)
where n and m are the internal resultant force and moment acting across the rod cross section s = const. To complete the equations we assume a linear constitutive law for the moment:

m = K 1 u 1 d 1 + K 2 u 2 d 2 + K 3 u 3 d 3 (47) 
where K 1 , K 2 , and K 3 are the bending and twist rigidities. As the rod is considered inextensible and unshearable, no constitutive relation is given for the force n. Equation ( 47) is used to write the unknowns u j as functions of the components m j . The complete set of equations is then given by ( 3), [START_REF] Vi | Ordinary differential equations, translated by ra silverman[END_REF], and (46) for the six unknown vectors r, d j , n, and m.

The Boundary Value Problem

In the following studies we pose and solve the following boundary value problem. At the s = 0 end of the rod we specify the position and material frame:

r(0) = (0, 0, 0), d 1 (0) = (1, 0, 0), d 2 (0) = (0, 1, 0), d 3 (0) = (0, 0, 1). ( 48 
)
the force {n j (0)} and moment {m j (0)} components at s = 0 being six unknowns. At the other end s = L of the rod we then need to provide six conditions. We chose to specify the position r(L) and three of the nine components of the basis (d 1 , d 2 , d 3 ), as orthonormality then constrains the remaining six components.

A continuation begins with a first solution of the equilibrium equations. We then chose to free one condition among the six s = L conditions and we are left with a one dimensional family of solutions.

Results

In what follows we compute the equilibrium shapes of an elastic rod strongly held at both extremities, that is the position and the tangent are prescribed at both ends. In Section 6.1 the tangents are parallel and aligned with the vector joining the two ends, in Section 6.2 the tangents are not parallel, and in Section 6.3 the tangents are parallel but not aligned with the vector joining the two ends. Encountered configurations include straight and twisted, buckled, or knotted configurations. In each case we discretize the shapes r(s) into N points and we calculate W p (r), W p (r), and W(r ∪ r c ), putting additional discretization points along r c (t) in the last case.

Algorithms

For Case 1 and 3, calculations are performed using Mathematica. The quantity W(r ∪ r c ) is calculated using the algorithm given in [START_REF] Swigon | The elastic rod model for DNA and its application to the tertiary structure of DNA minicircles in mononucleosomes[END_REF], and the quantities W p and W p are calculated using code the authors have written which is available, see supplementary material. For Case 2, calculations are performed with C++. The quantity W(r ∪ r c ) is calculated using the same [START_REF] Swigon | The elastic rod model for DNA and its application to the tertiary structure of DNA minicircles in mononucleosomes[END_REF] algorithm and a second code due to Agarwal et al [START_REF] Pankaj | Computing the writhing number of a polygonal knot[END_REF].

The second algorithm is, to the best of our knowledge, the quickest available for evaluating the double integral [START_REF] Bustamante | Ten years of tension: single-molecule DNA mechanics[END_REF]. The quantities W p and W p are calculated using code the authors have written which is available, see supplementary material. In all three cases, calculations were performed on computers with typically 2 to 3 GHz Intel Core i5 CPUs. For our time plots we use T 0 = 0.4 second as time unit. This is the time needed to compute W p with 1000 points for configuration A of Case 1, using Mathematica 8 (for comparison this time is 0.01 second if one uses the C++ code).

Case 1: Parallel Tangents, Aligned Ends

We consider a rod with rigidities K 1 = 1.0, K 2 = 1.1, and K 3 = 1.2 and of unit length c , L = 1, with position and tangent prescribed at both ends. Moreover the tangents are parallel and aligned with the vector joining the two ends. The s = 0 conditions are given by ( 48) and the six s = L conditions are given by:

r x (L) = 0, r y (L) = 0, r z (L) = (1 -∆)L, d 3x (L) = 0, d 3y (L) = 0, α L = 0.3 × 2π ( 49 
)
where α L (with 0 ≤ α L < 2π) is the rotation angle of d 1 (L) in the basis (x, ŷ). We start with a straight configuration r z (L) = L that has T = 0.3, W p = 0 , and L p = T . Building a stadium closure r c we have W(r ∪ r c ) = 0 and L(r ∪ r c , d 1 ∪ d 1c ) = T (r). The six unknowns at s = 0 take the values {n 1 , n 2 , n 3 } = {0, 0, -169.05} and {m 1 , m 2 , m 3 } = {0, 0, 2.262}. The third condition in [START_REF] Toeroek | The writhe of helical structures in the solar corona[END_REF] involves the end-shortening ∆ = 1 -r z (L)/L which is increased from ∆ = 0 (buckling) up to ∆ = 0.95.

In Figure 9(a) we see a plot of the tension n 3 (0) as a function of the end-shortening ∆, with four points A, B, C, D corresponding to the configurations plotted in Figure 10. Figure 9(c) shows a plot of the quantities W(r ∪ r c ), W p , and W p as a function of ∆. The first is computed with N = 48 along the curve and N/4 = 12 additional points in the closure, and the last two with N = 200. The first two curves, W(r ∪ r c ) and W p , are always very close to each other, only differing because of computations errors. The third curve, W p , is very close to the first two, except after ∆ 0.875 where it clearly departs from the first two. Moreover two jumps are clearly visible for the three curves, and Figure 9(d) presents a close-up of the region of interest. Slightly after configuration B the rod experiences a self-crossing which is associated with a writhe discontinuity of -2. Then slightly before configuration C the rod experiences a double self-crossing which is associated with a writhe discontinuity of -4. Finally at ∆ 0.875 the rod has a section that passes above the plane z = r z (L). Starting for this point, W p no longer yields correct values, and we see its curve departing form the other two curves. In 9(e) and (f) we see the sum of the various writhe measures and the twist, this sum being constant except for the discontinuous jumps, and for the sum W p (r)+T (r, d 1 ) on the set of curves for which W p = W p .

If we now consider the quantities [START_REF] Marko | The micromechanics of DNA[END_REF] and [START_REF] Mosconi | Measurement of the torque on a single stretched and twisted DNA using magnetic tweezers[END_REF] and focus on their decimal parts to disregard the jumps, we see that they should remain constant due to the fixed rotation α L . In other words the quantities

E = mod W p (r) + T (r, d 1 ), 1 -α L /(2π) (50) 
and

E = mod W(r ∪ r c ) + T (r ∪ r c , d 1 ∪ d 1c ), 1 -α L /(2π) (51) 
must be zero and we use them as a measure of the error of the algorithms, see figure 9(b).

In Figure 11(a) we plot ( 50) and ( 51), for configuration A only, as a function of the number of discretization points N (for the double integral, the closure comprises N/4 additional points). The computation time is given in Figure 11(b). We see that at fixed N the double integral algorithm is approximatively twice more accurate, but requires a computation time several orders of magnitude longer. Finally Figure 11(c), which plots the time required to achieved given accuracy, shows that the Polar Writhe algorithm is more than two orders of magnitude more efficient.

Case 2: Non Aligned Ends

To showcase the utility of the polar writhe measure we consider a set of curves whose end points are neither aligned in space (r x (L) = r x (0) and r y (L) = r y (0)), nor have their tangents aligned (d 3 (L) = d 3 (0)). The rigidities are here also K 1 = 1.0, K 2 = 1.1, and K 3 = 1.2. The s = 0 conditions are still given by ( 48), but the six s = L(= 1) conditions are now given by:

r x (L) = -0.12, r y (L) = 0.21, r z (L) = (1 -∆)L, d 3z (L) = 0.95, d 1z (L) = 0, α L = ᾱ (52) 
where α L (with 0 ≤ α L < 2π) is the rotation angle of d 1 (L) in the basis (x, ŷ). We fix ∆ = 0.72, and we ᾱ evolve from 0.095 × 2π to 0.96 × 2π. We start with a configuration having {n 1 (0), n 2 (0), n 3 (0)} = {-52.72, 109.65, 93.65} and {m 1 (0), m 2 (0), m 3 (0)} = {-4.25, -10.68, -9.432} and we select the direction of increasing m 3 (0). The condition d 1z (L) = 0 imposes the vector d 1 (L) to lie in the xŷ plane. The continuation allows the controlled input of winding, i.e increasing L p (r, v), by rotating the vector d 1 (L) in this plane through changing the applied torque m 3 (0), see Figure 12(a).

Typical rod configurations obtained by this continuation are shown in Figure 13, where we see the rod first coils into a left-handed spiral, configuration A. As the angle α L is increased the rod seems to form two self contacting loops (configuration B), and finally coils into a right-handed spiral (configuration C). The quantities W p (computed with N = 1000) and W(r ∪ r c ) (computed with N = 1000 along the curve and N/4 = 250 additional points along the closure) are plotted in Figure 12(c) and are virtually indistinguishable. (Please note that as the rod remains within the end-planes, W p = W p ). We see that in the vicinity of configuration B the writhe actually jumps twice by + 2 units, i.e two consecutive crossings happen along the bifurcation curve, see Figure 12(d). Configuration B appears to have two crossings because in Figure 13(b) it is rendered with a finite thickness. Finally in Figure 12(b) computation times, for the writhe of configuration C, are plotted as function of the number N of discretization points. These computations were performed in C++ and we see a gain of approximatively two orders of magnitude when compared to the times obtained in Case 1 (see Figure 11(b)) where computations were performed with Mathematica. As in Case 1, the Polar Writhe algorithm is two (or more) orders of magnitude quicker than the classical double integral algorithm [START_REF] Swigon | The elastic rod model for DNA and its application to the tertiary structure of DNA minicircles in mononucleosomes[END_REF], and approximatively two times quicker than the algorithm from [START_REF] Pankaj | Computing the writhing number of a polygonal knot[END_REF].

Case 3: An Unknotting Deformation

To demonstrate the detection of a change in (pulled-tight) topology we consider a bifurcation path where a section of the curve gradually loops over the s = L end of the curve. Here we choose the end tangents to be parallel but the curves end-points to be non aligned, that is the s = 0 conditions are given by ( 48) and the six s = L(= 1) conditions are:

r x (L) = 0.0397, r y (L) = -0.0304, r z (L) = (1 -∆)L, d 3z = 1, d 1z = 0, α L = ᾱ ( 53 
)
where α L (with 0 ≤ α L < 2π) is the rotation angle of d 1 (s = L) in the basis (x, ŷ). Please also note that here we choose K 1 = 1, K 2 = 3 = K 3 . We fix ∆ = 0.85, and we let ᾱ evolve from 5.01 to 4.95. We start with a configuration having {n 1 (0), n 2 (0), n 3 (0)} = {-27.55, 20.41, 45.15} and {m 1 (0), m 2 (0), m 3 (0)} = 

Discussion

We see the error and convergence of the three algorithms are very similar. The algorithm for W p is the quickest algorithm. However, the main advantage in the polar writhe formulation is the absence of closure.

For the particular examples used here the closures were relatively simple and crucially quite small so they did not require too many points for accurate calculations. The most general closures introduced in the following section can be significantly large and their contribution to the quantity W(r ∪ r c ) must be calculated for accurate evaluations. This could require a much larger number of points in the most general case. Moreover the specific form the closure takes must always be explicitly quantified, making a general code hard to design. The quantity W p never requires a closure for calculation so this is never an issue and a code which covers all admissible cases is already available [supplementary material].

Conclusion

In conclusion we have illustrated how the Cȃlugȃreanu theorem can be extended to open curves lying in between bounding planes by using quantities called the polar writhe and the net-winding, quantities formerly introduced in [START_REF] Mitchell | The writhe of open and closed curves[END_REF]. Moreover we have extended the definition of these quantities to cope with cases where the curve has sections that cross the bounding planes, and we have shown the relation between the classical and extended polar writhe measures. By adding a closure section to the open curve, the double-integral writhe can be computed and we have discussed its relation to the polar writhe, emphasizing the importance of the choice of the closure. Finally we have introduced an algorithm to compute the extended polar writhe and we have shown, on selected examples curves arising in the study of elastic rods mechanics, the efficiency of the algorithm when compared to existing algorithms for computing the double-integral writhe. 

Figure 1 :

 1 Figure 1: (a) A sequence of deformations leading to the formation of a plectoneme as the rod comes into self contact and wraps around itself. (b) An initially flat pair of curves is subject to a number of full turns, and (c) the system is eventually allowed to deform. (d) A tube with central axis (red) and the twisted curve (blue) lying on its surface.

Figure 3 :

 3 Figure 3: Depictions of the crossing number interpretation of linking. (a) shows an oriented link which is then projected onto a plane along a direction n. The two figures in (b) represent the sign of the integrand (9) and the projection to which it is equivalent. In this case of the knot in (a) the linking number is 1.

Figure 4 :

 4 Figure 4: (a) shows a pair of curves simply wound. (b) depicts the mid-curve cross-section highlighted in (a) with the joining vector u and the angle Θ is makes with the x-axis shown. In (c) we see a plane z = const pierced at several points by the curves. This leads to multiple angles Θ ij .

Figure 5 :

 5 Figure 5: An example of a curve which has non-local polar writhing W pnl .The curve is split at its i th turning point into sections r i and r i+1 . We see the vector r i(i+1) whose winding contributes to W pnl .

Figure 6 :

 6 Figure 6: A depiction of a typical stadium closure, the closure section is shown opaquely.

Figure 7 :

 7 Figure 7: (a) depicts pair of curves form the knotting type deformation path detailed in Section 6.3. We show an extension r u e which is crossed during an end-restricted isotopy path from curve r 1 to curve r 2 . Also shown is a closure r c which is the union of the extension and a stadium-type curve. (b) shows an alternative (planar) extension which is not crossed during the deformation.

Figure 8 :

 8 Figure 8: Figures depicting a loopedsection of curve r i deforming over the top of the end point attached to section r n+1 . In (a) we see the envelope of points drawn out by the deforming path of the looped section, this isoptopy path is represented by a set of curves (i)-(v) . Also shown are a subset of the possible extensions one could create to make the sum W p + T invariant, each of which would be crossed at some point during this isotopy path. In (b) we see the set of angles Φ i , Φ ii , Φ iii and Φ iv (Φ v is not shown for clarity) which are made by the vectors joining the points where the looped section r i intersects the plane z = r z (s max ). As the section passes over the end point the angle Φ gradually increases to 2π.

Finally in Theorem 2

 2 it is demonstrated that we can always define a ribbon structure v u e = r u e + d u 1e and v d e = r d e + d d 1e , for which T (r u e , v u e ) = 0 and T (r d e , v d e ) = 0, so the quantity

Figure 9 :Figure 10 :

 910 Figure 9: Various plots for case 1. (a) depicts the bifurcation path. (b) shows the errors E (upper curve) and E (lower curve). (c) shows the various writhe values as a function of ∆, all values are indistinguishable except near discontinuous jumps and for W p where marked. (d) is a zoom of the region of interest in (c). (e) shows sum writhe+twist which is constant for each writhe measure, except near discontinuous jumps and for the sum W p + T where indicated. (f) is a zoom of the region of interest in (e).
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Figure 11 :

 11 Figure 11: Plots detailing the convergence and timing of the various algorithms for configuration A of Case 1. (a) shows that the error is decreasing as 1/N 2 for both the W p (upper curve) and W(r ∪ r c ) (lower curve) algorithms. (b) shows, as a function or N , the time needed for the algorithms to compute W p (lower curve, scaling N 1.0 ) and W(r ∪ r c ) (upper curve, scaling N 2 ). (c) gives the time needed to achieve a certain accuracy, using the W p (lower curve) and W(r ∪ r c ) (upper curve) algorithms. Computations were performed in Mathematica 8.

Figure 12 :

 12 Figure 12: Various plots for Case 2. (a) displays the bifurcation path. (b) shows the computation time for the algorithms for W p (lower curve), the algorithm for W(r ∪ r c ) from [1] (intermediate curve), and the algorithm for W(r ∪ r c ) from [48] (upper curve). (c) depicts the values of W(r ∪ r c ) and W p as function of m 3 (0) (the values are almost indistinguishable). The writhe has two jumps and configuration labelled B is after the first jump and before the second. Computations were performed in C++.

Figure 13 :

 13 Figure 13: Configurations A B and C for Case 2. (a) configuration A is a left-handed coil, (b) configuration B resembles two self-crossing loops, while (c) configuration C is a right-handed coil. (d) For configuration C, the closure r c used to compute W(r ∪ r c ) is shown together with the curve r.

Figure 14 :Figure 15 :

 1415 Figure 14: Plots for Case 3. (a) displays the bifurcation path. (b) The writhe measures W p , W p , and W(r ∪ r c ) are plotted as functions of the torque. Labels A, B, C, and D correspond to the configurations in Figure15. The value given by W p departs for the other two as soon as the configuration extends over the upper plane. The value W(r ∪ r c ) jumps as the configuration crosses the closure. The value given by W p jumps when the extension is crossed.

  we have a set of continuous vectors u i from which we we can create a continuous ribbon structure by first solving (5) on s ∈ [s min , s 1 ], subject to some initial conditions, then choosing the values (d 1 (s 1 ), d 2 (s 1 ), d 3 (s 1 )) as initial conditions for the solution of (5) on the domain s ∈ [s 1 , s 2 ]. Repeating this process iteratively on all domains s ∈ [s n , s n+1 ], and finally s ∈ [s n , s max ], will create a continuous basis {d j } on the domain s ∈ [s min , s max ] which always exists and is uniquely specified by its initial conditions at s min .

c The choices K 1 = 1 and L = 1 imply that we use L as the length unit, K 1 /L 2 as the force unit, and K 1 /L as the moment unit throughout this study.
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Explicit Form

We define the circular section as a curve [0, 1] : r r (t) → E 3 which takes the form r r (t) = r ri + a r θ r (cos φ r , sin φ r , -sin θ rc ) -r dθ r /dt (cos φ r cos θ r (t), sin φ r cos θ r (t), -sin θ r (t)) ,

r ri = r(s max ), if r ce z > r z (s max ) r(s min ), if r ce z < r z (s min )

, θ r (t) = θ rc (1 -t), if r ce z > r z (s max ) θ rc + t(π -θ rc ), if r ce z < r z (s min )

.

The constant r determines the velocity of the parametrisation ( r = 1 would make t the arclength parameter of r r ), it is also the total arclength of the curve as

We are now ready for our first theorem. 

with β > 0. If r z (s o ) > r z (s max ) total the closure r e (t e ), t e ∈ [M, s min ] is

again with β > 0. The parameter β ensures r e (M ) has the maximum/minimum r z value of the composite r ∪ r e (resp. r e ∪ r).

Each individual section is infinitely differentiable but the whole curve r e is only guaranteed to be once differentiable at t = s max or s min and t = r , thus the local polar writhe calculation is split into two separate integrals,

We have already seen that the local writhe density Next we show the ribbon (r, d 1 ) can be extended with a ribbon section (r e , d 1e ) which has no additional twist.

Theorem 2

The extension r e given by either [START_REF] Panagiotou | The linking number and the writhe of uniform random walks and polygons in confined spaces[END_REF] or [START_REF] Perez | What controls DNA looping[END_REF] can be extended to a ribbon with a vector field d 1e , such that d 1e (s max ) = d 1 (s max ) (resp d 1e (s min ) = d 1 (s min )) and T (r e , d 1e ) = 0.

Proof of Theorem 2 From the curve r e we construct a twist-free framing using [START_REF] Bishop | There is more than one way to frame a curve[END_REF]. For the straight curve section on t s ∈ ( r , M ] (resp t s ∈ [M, r )) the second t e derivative of r e vanishes so k 1 = k 2 = 0. For both cases the curve section r r has curvature

If r z (s o ) > r z (s max ) we have τ (r e , t e ) = 0, ∀t e ∈ [s max , M ] and

If r z (s o ) < r z (s min ) we have τ (r e , t e ) = 0, ∀t e ∈ [M, s min ] and

Since the torsion τ is zero everywhere, we have θ(t) = θ 0 , ∀t e giving k 1 (r e , t e ) = κ(r e , t e ) cos θ 0 and k 2 (r e , t e ) = κ(r e , t e ) sin θ 0 . So we have piecewise continuous profiles for k 1 (r e , t) and k 2 (r e , t) and we can construct a frame {a 3e (l), a 1e (l), a 2e (l)} on l ∈ [0, M -s max ] (resp. l ∈ [0, M -s min ]) through [START_REF] Mitchell | The writhe of open and closed curves[END_REF] which exists and is unique up to its initial condition given by the value of θ 0 . In the case r z (s o ) < z min we would have to construct the frame from s min to M , so the orientation of its tangent vector a 3e must oppose the vector d 3 at s min . With this we choose θ 0 such that

We have then defined a continuous vector field a 1e which can be extended to a continuous twist free-ribbon 

The Parameter , Straight Extensions and Self-Crossings

We are free to choose the parameter , the size of the curved re-alignment section, to be as small as we like. This parameter dictates the final end point of the curve r e . If we focus on the case r z (s o ) > r z (s max ) the x and y co-ordinates of r e (M ) are given by. r x (s max ) + 2 sin 2 θ 2 cos(φ) θ , r y (s max ) + 2 sin 2 θ 2 sin(φ) θ ,

(note the limit θ → 0, the tangent vetcors pointing along ẑ (-ẑ) is well defined). The vertical straight line used as an extension for defining W p (r) would be r vertical = r(s max ) + (0, 0, r z (s o ) + β -r z (s max )) .

In the limit → 0 the coordinates (43) approach the coordinates of the original curve at s = s max and the measure M smax ||r e -r vertical || dt. [START_REF] Shi | The kirchhoff elastic rod, the nonlinear schrödinger equation, and DNA supercoiling[END_REF]