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Abstract. This paper is dedicated to intentional BDI agents evolving in
ambient environment. The planning management framework we propose,
looks for efficient guidance to improve the satisfaction of the agent’s in-
tentions with respect to the possible concurrent plans and the current
context of the agent. Adopting the idea that ”location” and ”time” are
key stones information in the activity of the agent, we show how to
enforce guidance by ordering the different possible plans. As a major
contribution, we demonstrate two original utility functions that are de-
signed from the past-experiences of the action executions, and that can
be combined accordingly to the current balance policy of the agent.

Keywords: Ambient agent, BDI, plan selection, contextual guidance,
past-experiences.

1 Introduction

Designing and developing applications for Ambient Intelligence (AmI) systems
involves different challenges in several computing areas as well as intelligent sys-
tems research, sensor networks, mobile technologies and interaction within user
centered design. Multi-Agent Systems (MAS) are a powerful approach to design
AmI systems to function potentially within dynamic environments. They offer
interesting frameworks and support for autonomy, proactivity, societal coopera-
tion and context-awareness needed for such systems.

To deal with MAS, we need to capture the desired properties in the right
way as well as modeling agent’s abilities and functionalities. The Belief-Desire-
Intention (BDI) model can flexibly handle the entire modeling and developing
of rational agents in AmI systems, based on well-structured and goal-driven
aspects, e.g. [1, 2].

However, some AmI applications are really complex [3]. The environment
can be open so that the agents may enter and leave. Moreover, agents can move
between locations. In fact, the agents must adapt their decisions and behavior
to cope with dynamic and unexpected changes of the context. It is necessary to
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increase the agent reactiveness and consistency, contributing to better flexibility
and resilience properties.

In [1], new possibilities of modeling AmI systems are presented, not only
by referring to MAS and BDI agents, but also by embedding a formal and
automated planning management mechanism. Plans are consistent w.r.t. the in-
tentions of the agent and can be achieved concurrently. Based on an underlying
model of actions and processes, a contextual planning system (CPS) was demon-
strated, that can be exploited to maximize the satisfaction of intentions, taking
the spatial information into account.

However, we argue that the former mechanism, which looks for guidance, can
be improved by a learning from the past-experiences of actions. For instance,
taking into account the failure of actions can be used to evaluate a pertinence of
some plan wherein this action occurs, e.g. [4]. Closer to our aim, the work of [5]
evaluates the contribution of each plan in terms of utility and preference, seen
as parameters for the optimization.

The utility functions we introduce evaluate plans on safety and speed notions.
Both can be based on concrete information issued from the executions of actions.
In particular, safety criteria is based on the outcomes of the past-experiences
whereas speed criteria is learned from the durations of these experiences. We need
to define a reinforcement technique adapted to AmI agents and the unexpected
changes of their contexts. In particular, our approach to predict the outcome
and the duration of some action in a plan does not rely on recurrent learning
principles but rather on a systematic analysis of some pertinent situated past-
experiences.

In this paper, we present a method to organize the filtering of past-experiences
according to spatio-temporal strategies. In fact, location is a very fundamental
context information to evaluate an action but time is another important data.
For example, it is not really interesting to take the highway, at the time it is
crowded. This can be captured by a study of the duration of previous trans-
portations via the highway, made at some time during the business day.

The remaining of the paper is organized as follows: Section 2 describes the
functional architecture of our planning process, together with its guidance mech-
anism based on the capability of an agent to reason on the future actions, on the
basis of its knowledge about past experiences. Section 3 shows how the possible
plans to satisfy the intentions of the agent can be expressed compactly with the
AgLOTOS specification language. From such an expression, the derived CPS
structure is built automatically to process the agent guidance. Section 4 de-
tails the acquisition of past-experiences and their exploitation. In Section 5, the
spatio-temporal guidance mechanism is presented, based on the CPS informa-
tion enriched by the past-experiences of actions. Section 6 presents related work,
then Section 7 concludes our paper.
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Fig. 1. Extended BDI model with contextual planning architecture

2 Contextual Planning Architecture

The overall agent architecture, we deal with, is standardly based on several
processes. Triggered by some events expressing the context changes, the mental
process is assumed to be highly deductive and rational, based on BDI structures
(Beliefs, Desires and Intentions).

Figure 1 brings out a functional view of our planning process, in charge to offer
some plan to execute (σ) from the current set of intentions (I). It is composed
of two modules:

– The Plan Factory builds the so-called agent plan which globally corresponds
to the current set of intentions. The LibP library is used to exploit the
different alternative of plans that must be specified for each intention. With
respect to the current spatial context of the agent, a CPS is built, made of
the different allowed interleaving of the actions in plans. By its traces, the
CPS represents all the possible plans that can be realized.

– The Guidance module is able to enrich the CPS information taking profit
from the past-experiences of actions, that are stored in the so-called Learned
Contextual Experiences (LCE) module. This results in a structure called CPS
with learning (CPS-L for short), which can be used to searching the optimal
trace w.r.t. the spatio-temporal context of the agent.

Our approach to specify the agent behavior is strongly related to the fact
that the mental process can proactively decide to revise its set of intentions, at
real time. Let us illustrate two nominal cases [1]:

– the agent can decide to investigate the first action of one of the best possible
plans offered by the planning process, but can decide to revise some of the
intentions, in case there is no plan to select, in respect to the current context.

– face to unexpected changes of context, the agent can update some of its
intentions. This causes the revising of a part of the agent plan automatically.
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3 From Concurrent Planning to Contextual Guidance

3.1 Agent Plan Structure

Figure 2 highlights the tree plan structure of the agent plan (P ). At the second
level, each intention plan corresponds to the achievement of one intention. At the
last level, elementary plans are those and only those obtained from the library
of plans (LibP).

The plan structure is formally captured by using a formal description lan-
guage, namely AgLOTOS. It introduces modularity and concurrency aspects to
compose and schedule different sub-plans, viewed as processes [1]. Let us now
briefly recall the AgLOTOS-based specifications for plans.

Agent plan level. The set of intention plans can be globally handled by using
the concurrent ||| or sequential � operators between intention plans, leading
to the specification of an agent plan. Let P be the set of names qualifying the
possible agent plans with P ∈ P and P̂ be the set of names used to identify the
possible intention plans with P̂ ∈ P̂, such that P is any agent plan defined by:

P ::= P̂ | P ||| P | P � P

Intention plan level. An intention plan can be expressed by alternative elemen-
tary plans (P ), such that each one can be executed to achieve the corresponding
intention. This is captured in AgLOTOS by using the composition operator ♦.
In particular, an intention is satisfied if and only if at least one of the associated
elementary plans is successfully executed. Formally, let P be the set of names
qualifying the possible elementary plans with P ∈ P. We define an intention
plan P̂ as:

P̂ ::= P | P̂ ♦ P̂

Elementary plan level. Elementary plans are described by AgLOTOS expres-
sions, referring to a finite set of observable actions. Any AgLOTOS expression is
associated with contextual information related to the (current) BDI state of an
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agent. For that, let Θ be a finite set of space locations where an agent can move
and Λ be the set of agents with which he can communicate. Let O be the (finite)
set of observable actions which are viewed as instantiated predicates, ranging
over a, b, ...

Let Act = O∪{τ}, be the set of actions, where τ is the internal action. In the
context of this paper, the internal actions mainly correspond to the information
related to the termination of a plan. The AgLOTOS language specifies pairs for
each elementary plan composed of an identifier and an AgLOTOS expression to
specify its behavior. The syntax of an elementary plan P is inductively defined
as follows:

P ::= E
E ::= exit | a;E (a ∈ O)

In this syntax, P ::= E represents an elementary plan identified by P , such
that its behavior expression is E. The expression a;E denotes an action a prefix-
ing E, and the elementary expression exit expresses the successful termination
of some plan. For sake of concision, the other operators defined in AgLOTOS
are not detailed in this paper. Please refer to [1] for more details, however, let
us note that elementary plans do not generate new intentions, as it is the case
for some other BDI approaches.

Building of Agent Plan from Intentions. In order to account for any BDI
state of the agent, we propose that the agent can label the different elements of
the set I of intentions3 by using a weight function weight : I −→ N. The ones
having the same weight are composed by using the concurrent parallel operator
|||. In contrast, the intention plans corresponding to distinct weights are ordered
by using the sequential operator �.

For instance, let I = {i2g, i1e, i2m} be the considered set of intentions, such that

the superscript information denotes a weight value and P̂g, P̂e, P̂m respectively
correspond to their intention plans. The constructed agent plan could be viewed
as: P ::= (P̂g|||P̂m) � P̂e. In terms of elementary plans, by considering that

P̂g ::= Pg, P̂m ::= Pm and P̂e ::= Pe1♦Pe2, then the agent plan is refined in
P ::= (Pg|||Pm)� (Pe1♦Pe2).

3.2 Contextual Planning System (CPS)

With respect to some agent plan P , we introduce a notion of configuration, de-
noted [P ], corresponding to the planning state of the agent. This helps specifying
the evolution of the agent plan. Some examples are given further. Let usl now
define the contextual planning state of the agent, taking into account the loca-
tion of the agent and the outcomes of different intention plans defined for this
agent.

3 We assume that the BDI agent itself can solve conflicting situations that could arise
between intentions for some context, by means of a scheduling process applied to
the set of intentions.
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Definition 1. A contextual planning state is a tuple (ps, `, T ), where ps is any
planning state described by an agent plan configuration [P ], ` corresponds to the
possible location for the agent in this state, and T is the subset of intention plans
that terminate successfully in this state.

The AgLOTOS operational semantics is used to specify the contextual pos-
sible planning state changes for the agent. In this paper, it is applied to produce
a Contextual Planning transition System, called CPS, from an initial contextual
planning state, e.g. (ps, `, ∅), meaning that the agent is initially at location ` and
ps is its planning state.

Definition 2. The Contextual Planning System (CPS) is a labeled Kripke struc-
ture 〈S, s0, T r,L, T 〉 where:

– S is the set of contextual planning (CPS) states,
– s0 = (ps, `, ∅) ∈ S is the initial CPS state of the agent,

– Tr ⊆ S×Act×S is the set of transitions. The transitions are denoted s
a−→ s′

s.t. s, s′ ∈ S and a ∈ Act,
– L : S → Θ is the location labeling function,

– T : S → 2P̂ is the intention termination labeling function which captures the
intention plans that have been completed.

3.3 Illustrative Example

Let us consider two agents, Alice and Bob. The scenarios of Alice and Bob are
specified separately. It is assumed that Bob and Alice may coordinate in order to
achieve their intentions, at their mental process levels. The actions in plans are
simply expressed using instantiated predicates, like getc(`2) for the ’get copies’
action. Intention plans are composed of elementary plans which are viewed as
concurrent processes, terminated by exit, a la LOTOS. For instance, the set
IB = {meeting(Alice, `1), getting copies(`2)} is defined for Bob, containing two
concurrent intentions of the same weight.

The associated agent plan is: PB ::= (P̂g|||P̂m). The intention plan P̂m is
used to satisfy the intention meeting(Alice, `1) and has only one elementary plan

Pm ::= move(`1);meet(Alice); exitm. The second intention plan P̂m corresponds
to the intention getting copies(`2) and also has one elementary plan Pg ::=
getc(`2); confirm; exitg.

The initial agent plan configuration is directly given from the above here plan
description, [PB ] = (move(`1);meet(Alice); exitm)|||getc(`2); confirm; exitg.
One of the possible derivations from this configuration consists in performing
the getc action. So, the agent plan configuration of Bob changes to
move(`1); meet(Alice); exitm ||| confirm; exitg.

The Contextual Planning System of Bob, denoted CPSB , is illustrated in
Figure 3. It is built from the initial CPS state, s0 = ([PB ], `2, ∅), taking into
account the current location `2 of Bob. It is worth noting that the CPS could
grow exponentially depending on the current intentions of the agent, hence on the
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Fig. 3. The CPSB corresponding to the plan PB

related actions in plans. Nevertheless, we consider that the number of intentions
to be dealt with dynamically is reasonably small, moreover the CPS structure
is only partial since actions are only allowed w.r.t. the current spatio-temporal
context of the agent4.

3.4 Guidance for Intention Satisfaction

In a CPS, any transition s
a−→ s represent actions to be performed. Like in the

STRIPS description language [6], actions are modeled by instantiated predicates
defined with preconditions and effects. In this paper, the preconditions concern
only the contextual information attached to the source state. Let pre(a) be
the precondition of any action a, e.g. pre(a(`)) = ` = L(s). For instance in
Figure 3, the dashed edges represent the disabled transitions from the states
s ∈ {s2, s5, s8}, because pre(getc(`2)) = `2 6= L(s).

In order to guide the agent, the planning process can select an execution
trace which maximizes the number of intentions that can be satisfied. This can
be captured over the set Σ ⊆ 2Tr of all possible traces of the CPS. We introduce

the notion of maximum trace based on the mapping end : Σ −→ 2P̂ , used to

4 Intuitively speaking, the achievements of intentions are more or less costly depending
on the plans they involve.
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specify the set end(σ) of the different terminated intention plans that occur in
a trace σ ∈ Σ. Let ΣMAX represent the set of maximum traces of the CPS.

As a specific tree structure, Figure 6 represents the 10 maximum traces of
CPSB . In this unfolded version of Figure 3, the trace carried out by s0 → s2 →
s5 → s9, is not represented because it is not a maximum trace.

4 Learning Actions from Past-Experiences

In order to improve the agent runtime performance, the planning process, in
relation to the execution process, can capture the action execution in a given
context (current location and current time). The use of the learned data in a
pertinent way allows us to build an enriched CPS structure, called CPS with
Learning (CPS-L for short). As a result, the best possible strategic decisions are
taken, driven by the agent and its preferences.

4.1 Data Acquisition

The performance of an action a is evaluated w.r.t. a given context, however we
focus on location. Each concrete performance of a in some location is considered
as an (action) experience.

ℓ0

ℓ1

exp

a

1 2 k

exp = 〈outcome, start, duration〉

exp exp

Fig. 4. Learned Contextual Experiences (LCE) of an action a

Definition 3. An experience exp of an action a in a location ` is a tuple
〈outcome, start, duration〉, where

– outcome ∈ {−1, 1}, is the result of the run performing a, respectively a failure
or a success,

– start ∈ R+, is the start date for the run of a,
– duration ∈ R+, is the action duration which provides that a was successfully

terminated, undefined otherwise.

The structure represented in Figure 4 is generically called the Learned Con-
textual Experiences (LCE ). Regarding to the action a, LCEa shows different
FIFO queues of experiences of a, distinguishing the different locations where the
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action was performed. The queue LCEa(`) is ordered by the start date of the
runs, so that the last recorded experience is at the top of the queue.

More precisely, if an action a is performed in some location ` with a certain
experience exp, the agent may push it s.t. LCEa(`) = LCEa(`) ∪ {exp}. More-
over, k represents the effective size of LCEa(`). Regarding to any experience exp
of a queue LCEa(`), we denote by index(exp) the position of exp in the queue.
Further, the three components of a past-experience exp are respectively denoted
exp.outcome, exp.start, exp.duration.

4.2 Data Relevance Strategies

The strategy information specified by the agent is given by the following defini-
tion and described below.

Definition 4. The queues of LCE are parameterized by the agent strategy S =
〈K, forget,M, C〉 where,

– K is the maximum size of the queue,
– forget : 1..K → R+ is the forgetting function, yielding a relevance weight

for each experience,
– M ≤ K is the maximum number of filtered experiences,
– C is a periodic classification, e.g. daily, weekly, monthly or annual, applied

in a modulo operation over the start dates of the queue,
– filter, defined over any queue, is a time filtering function yielding a sub-

queue according to M and C,

Table 1. LCE of the action getc in the location `2

index 1 5 6 10 11 12 18 k

LCEgetc(`2) ... A B ... C D E ... F ...

filter6,daily(10)

Experiences outcome moddaily(start) duration index forget(index)

A −1 8.29 - 5 0.20

B 1 9.50 3.00 6 0.16

C 1 9.05 2.10 10 0.10

D 1 10.78 3.40 11 0.09

E −1 10.05 - 12 0.08

F 1 11.05 5.12 18 0.05

The Forgetting Strategy. For all the queues in LCEa, the forgetting function
associates a relevance weight for each experience stored in the queue. As an
interesting case illustrated in Table 1, the forgetting function forget(index) =
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1
index is used, yielding much more relevance for any experience in the queue than
another one of greater index.

For instance, the experience C stored at the index 10 in the queue LCEgetc(`2)
has a forget value of forget(10) = 0.10, whereas the experience F stored at the
index 18 has a forget value of forget(18) = 0.05.

Observe that every queue LCEa(`) is bounded by K elements. Beyond the
forgetting of the extra (older) data, this allows one to tackle the data explosion
problem implied by the consideration of many experiences over LCE. Indeed,
in case the queue is full, the adding of a new experience causes the removing of
the oldest one.

The Time Filtering Strategy. Regarding to any queue LCEa(`), in order
to operate the selection, both the start dates of experiences and the current
date value ’date’ are evaluated through some classification period C. For this
purpose, we introduce the function mod : C × R+ −→ R+, s.t. modC(date)
corresponds to the start date modulo the classification period C (we consider
standardly that date can be viewed as its textual form or like real timestamp
value). For instance, if date = ’Monday 10 February 2015, 10:00’, then t =
moddaily(date) = 10 whereas modweekly(date) =’Monday 10’. We filter the
queue experiences in order to only consider the ones which have the smallest
time interval (|t − modC(exp.start)|). The mapping filterM,C(t) of LCEa(`)
specifies that M experiences must be selected. In case M is greater than the size
k of the queue, all the past-experiences of the queue are considered.

In Table 1, the applied filtering is filter6,daily(10) = {A, B, C, D, E, F}
which means that LCEgetc(`2) is filtered on the 6 closest experiences, w.r.t.
t = moddaily(date) = 10. As illustrated in Figure 5 for moddaily(t) over the start
dates of LCEgetc(`2), the modulo operation applied to the queue graphically
yields a spiral ribbon, the rings of which correspond to the successive periods,
e.g. days in our example. Daily speaking, the start dates of the experiences A,
B and C occur before t, and the ones of D, E and F occur after t.

In this example, we have taken the following instantiated strategy: S1 =
(20, 1

index , 6, daily, filter).

4.3 Computing the Expected Performance and Expected Duration
for an action

For each non empty queue LCEa(`), the expected performance EPa(`) ∈ [−1, 1]
represents the performance of a in some location `, based on M experiences
filtered from LCEa(`) s.t.:

EPa(`) =

filterM,C(t)∑
exp

exp.outcome ∗ forget(index(exp))

filterM,C(t)∑
exp

forget(index(exp))

(1)



XI

1
t = 10

k

A B

C D E

F

day

day − 1

day − 2

day − 3

Fig. 5. The example of the queue LCEgetc(`2)

When performing a in `, the closest EPa(`) is to ’1’, the greater the chance
for success, whereas the closest EPa(`) from ’−1’, the greater the risk of failure.
In the case LCEa(`) = ∅ meaning that the running of a in ` has not been
already explored, we choose EPa(`) = 0 in order to privilege the exploration
against every (bad) case s.t. EPa(`) < 0.

Again for each non empty queue LCEa(`), the expected duration value
EDa(`) ∈ R+ corresponds to the effective durations of the M filtered expe-
riences, according to:

EDa(`) =

filterM,C(t)∑
exp

exp.duration ∗ forget(index(exp))

filterM,C(t)∑
exp

forget(index(exp))

(2)

Coming back to the frame example, from t = 10, we obtain EPgetc(`2) = 0.19.
Moreover, EDgetc(`2) = 3.16, which in real time, this stands for 3h10mn. Observe
that the past-experience F has a weak impact on EDgetc(`2) despite its impor-
tant duration (5.12). In fact, the forgetting function applied to its (important)
18 index, makes it negligible compared to the other filtered past-experiences of
lower indexes.

5 Spatio-Temporal Guidance from Past-Experiences

5.1 Contextual Planning System with Learning (CPS-L)

The structure CPS-L inherits from the maximum traces ΣMAX of the CPS,
augmented by the different values EPa(`) and EDa(`) whatever the action a to
perform in `.
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Definition 5. Let ΣMAX be the set of the maximum traces of a CPS built from
the set of intentions of the agent. The Contextual Planning System with Learn-
ing CPS-L is a tuple 〈CPS, EP, ED〉 where:

– CPS = 〈S, s0, T r,L, T 〉 s.t. ΣMAX ⊆ 2Tr is the set of the maximum traces
of the CPS.

– EP is a mapping from Tr to [−1, 1], s.t. from each transition tr = (s, a, s) ∈
ΣMAX , EP(tr) = EPa(L(s)),

– ED is a mapping from Tr to R+, s.t. from each transition tr = (s, a, s) ∈
ΣMAX , ED(tr) = EDa(L(s)).

getc
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σ1 σ2

Fig. 6. Maximum traces and CPS-LB for the plan PB

Figure 6 is a representation of the CPS-L structure derived from the CPS
of Figure 3. It distinguishes the maximum traces (with possibly common pre-
fix), and 2 of them explicitly exhibit the labels attached to the transitions. For
instance, the values EPgetc = 0.19 and EDgetc = 3.16 are attached to the tran-
sition (s0, getc, s1). These values are computed from the experiments selected in
LCEa(`), specified in Table 1.
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From any CPS-L, it is straightforward to extend the expected quality to every
maximum trace σ ∈ ΣMAX , in order to compare them, as follows:

QP (σ) =

σ∑
tr∈Tr

EP(tr)

|σ| (3)

QD(σ) =

σ∑

tr∈Tr
ED(tr) (4)

In order to compare the traces in-between them, we normalize all the ex-
pected quality values to be in [−1, 1], s.t. ’−1’ represents the worst case and
’1’ the best one. This is already done for QP , moreover, to normalize QD,
we consider the extreme values QDmin = min(QD(σ) | σ ∈ ΣMAX) and
QDmax = max(QD(σ) | σ ∈ ΣMAX), hence, the normalized quality of dura-
tion, is featured by the NQD(σ) expression, for any represented σ.

NQD(σ) = 1−
(
QD(σ)−QDmin

QDmax −QDmin
∗ 2

)
(5)

5.2 Optimal Trace of the CPS-L

Algorithm 1 Spatio-Temporal Guidance process

1: Require:
I: set of weighted intentions;
S : relevance strategy;
B : balance proportions;
LCE: Learned Contextual Experiences;

2: Build P from I;
3: Construct the CPS from P ;
4: Extract ΣMAX from the CPS;
5: if ΣMAX 6= ∅ then
6: Enrich the CPS-L from the CPS and LCE;
7: Order ΣMAX from the CPS-L;
8: Offer σopt among the ones of ΣMAX ;
9: end if

The algorithm 1 synthetically highlights the planning process approach for
selecting an (optimal) maximum trace, σopt. As this process acts as a service
provider, it must also notify the case where there is no possible maximum trace.
Actually, this is useful to let the mental process revise its planning process
request in accordance. To select an optimal trace, the set ΣMAX of maximum
traces is ordered regarding the assigned values from QP and NQD, considered
separately.
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This allows the planning process to select an optimal sequence, either with
the lowest duration or the maximum performance (i.e. with the minimum risk
of failure). To make a compromise, we also assume that the mental process can
specify a preference balance denoted B, to the planning process. It is expressed
as a proportion to be applied to the QP and NQD values, in order to obtain
a comparable global quality value QB(σ) belonging to [−1, 1] for all the maxi-
mum traces (σ ∈ ΣMAX). Of course, the optimal trace σopt corresponds to the
maximum trace having the best global quality value.

QB(σ) = BP ∗QP (σ) + BD ∗NQD(σ) (6)

Table 2. Computed quality values of σ1 and σ2 maximum traces

ΣMAX QP QD NQD QB1 QB2

σ1 0.42 9.74 −0.63 −0.31 0.10

σ2 −0.04 8.54 0.27 0.17 0.05

Table 2 highlights the global qualities of two maximum traces σ1 and σ2 of
Figure 6, knowing that over all the maximum traces, we obtain QDmin = 7.58
and QDmax = 10.23. Assuming the preference balance B1 s.t. B1P = 0.30 and
B1D = 0.70, i t appears that QB1(σ2) is greater than QB1(σ1), so the maximum
trace σ2 can be offered to the execution process as the optimal maximum trace.
In contrast for B2 (B2P = 0.70, B2D = 0.30), σ2 is the one that can be offered
(QB2(σ1) > QB2(σ0)).

A last remark is that the exploitation of the CPS-L allows efficient exploita-
tion/exploration guidance by focusing on some transition labels. In particular,
the selection of a trace having a 0 labeled transition corresponds to exploration
of untested action, whereas a trace having a -1 labeled transition should fail, but
that could be selected in a degraded mode, when there is no better choice. Ex-
ploration can be investigated since our approach to select good traces from the
past-experiences is only heuristics. In contrast, a conservative agent (rejecting
exploration) should abstract the above exploration cases.

6 Discussion and Related Works

Learning aims to improve the behavior of intelligent agents thanks to the experi-
mental-based information. It has been involved at various levels of the agents.
Learning was first investigated at the mental level of BDI agents either to im-
prove the BDI deliberation from some learned knowledge e.g. [7] or to produce
a new plan with respect to some objective e.g. [8].

Learning was also used to reinforce the selection of plans among different pos-
sible alternatives. In particular, a decision tree was introduced by [9] to represent
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the different contexts in which the agent behaves. Indeed, the behavior of the
agent is learned from the successes and failures of the executions of the agent’s
plans. The idea to take advantage from the past-experiences was adapted in [4]
bringing out an on-line technique, based on a hierarchical goal-plan structure, in
order to make the selection of some alternative according to the failures of the
previous ones.

The work proposed in [5] addresses plan selections. Closer to our approach,
it proposes to evaluate the contribution of each plan in terms of utility and
preferences seen as parameters for optimization. In our approach the utilities are
given by the agent and are similar to the concept of soft-goal and the preferences
discussed in [5]. They correspond, in our approach, to a multi-objective strategy
based on the proportions of performances and temporal filtering information,
together used for the selection of some maximum traces. Let us notice that our
traces depend of real experiments instead of pre-established probabilities.

For the two last approaches [5, 10], the validation of the proposed techniques
requires a huge number of experiences since they are based on probabilities. In
this paper, unlike the former proposals, our approach is driven by the maxi-
mization of intentions’ satisfaction, in order to guide the agent through the set
of traces implied by the concurrency of actions.

The learned CPS can be viewed as reinforcement learning for the selection of
elementary plans but based on the successes and failures of the executed actions.
Actually, the selection of a trace implies the selection of some alternative for each
intention plan. The queues recording the past-experiences of actions are bounded
in order to tackle the combinatorial complexity introduced by their management.
This approach is compatible with the idea of forgetting useless history.

Regarding the relevance strategies, our technique is aligned with earlier propo-
sitions like the Q-learning algorithm. The last one learns a quality value for each
action taking into account that the known values become deprecated as the time
progresses, under a function like ε = 1/t. In our context, the applied forgetting
function (1/x) allows us to privilege the most recent past-experiences according
to a logical recording time.

Finally, our plans are built dynamically by reasoning on situated actions
and their context (duration, start, location, etc.) which is valuable for dynamic
environment and contexts.

7 Conclusion

The proposed CPS-L planning tree structure reveals various interests in the
agent design since it demonstrates a formal representation of the concurrency
of the plans to achieve the intentions of the agent. In fact, each maximum trace
in this structure represents a possible plan to execute at real time, in respect
to any current context of the agent. As a major contribution of this paper,
guidance is reinforced by exploiting the past-experiences of the execution of
situated actions. Face to the change of contexts, the forgetting strategy is of a
great help since it allows to privilege the recent past experiences. We provide
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two utility functions that is used to label the CPS-L, respectively based on the
outcomes (the success or failure information of the executions) and time concepts
(the starts and durations of the executions). Exploration is also considered in case
there is no past-experiment for some situated action. Anyway, these CPS-L labels
allow us by extension to compare the possible plans. A normalization approach
is demonstrated in order to combine both functions, so that optimizations is
balanced in-between speed and safety plans.

The CPS-L of the frame scenario, is built out from our prototype tool asso-
ciated with an automatic generation of the past-experiences. It yields from the
study that the current time of the agent can effectively be used as a reference to
filter a number of experiences, even in the case the past-experiences were per-
formed under a time periodical strategy. With respect to every situated action,
the used filtering function strongly improves the chances to only take relevant
past-experiences into account, in respect to the current time of the agent, how-
ever, this reduces the number of experiences used to estimate the duration of
the action. In fact, different parameters could be used to adapt the influences of
the past-experiences, therefore, we are now investigating the different strategies
to better guide the agent.
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order Agent Model with Contextual Management for Ambient Systems. In: Trans-
actions on Computational Collective Intelligence XVI. Volume 8780 of LNCS.
Springer Berlin Heidelberg (2014) 146–169

2. Calvaresi, D., Claudi, A., Dragoni, A.F., Yu, E., Accattoli, D., Sernani, P.: A goal-
oriented requirements engineering approach for the ambient assisted living domain.
In: PETRA ’14, New York, NY, USA, ACM (2014) 20:1–20:4

3. Preuveneers, D., Novais, P.: A survey of software engineering best practices for
the development of smart applications in ambient intelligence. JAISE 4(3) (2012)
149–162

4. Airiau, S., Padgham, L., Sardina, S., Sen, S.: Incorporating learning in BDI agents.
In: Proceedings of ALAMAS - ALAg. (2008)

5. Nunes, I., Luck, M.: Softgoal-based plan selection in model-driven bdi agents. In:
AAMAS’14. (2014) 749–756

6. Meneguzzi, F., Zorzo, A.F., da Costa Móra, M., Luck, M.: Incorporating planning
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