
HAL Id: hal-01228353
https://hal.science/hal-01228353

Submitted on 17 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Roboconf: a Hybrid Cloud Orchestrator to Deploy
Complex Applications

Linh Manh Pham, Alain Tchana, Didier Donsez, Noel de Palma, Vincent
Zurczak, Pierre-Yves Gibello

To cite this version:
Linh Manh Pham, Alain Tchana, Didier Donsez, Noel de Palma, Vincent Zurczak, et al.. Roboconf: a
Hybrid Cloud Orchestrator to Deploy Complex Applications. 2015 IEEE 8th International Conference
on Cloud Computing, Jun 2015, New York, United States. �10.1109/CLOUD.2015.56�. �hal-01228353�

https://hal.science/hal-01228353
https://hal.archives-ouvertes.fr

Roboconf: a Hybrid Cloud Orchestrator to Deploy
Complex Applications

Linh Manh Pham1, Alain Tchana2, Didier Donsez1, Noel de Palma1, Vincent Zurczak3, Pierre-Yves Gibello3
1University of Grenoble Alpes, Grenoble, France. E-mail: first.last@imag.fr
2University of Toulouse, Toulouse, France. E-mail: alain.tchana@enseeiht.fr

3Linagora, Grenoble, France. E-mail: (vincent.zurczak, pygibello)@linagora.com

Abstract—This paper presents Roboconf, an open-source dis-
tributed application orchestration framework for multi-cloud
platforms, designed to solve challenges of current Autonomic
Computing Systems in the era of Cloud computing. It provides a
Domain Specific Language (DSL) which allows to describe appli-
cations and their execution environments (cloud platforms) in a
hierarchical way in order to provide a fine-grained management.
Roboconf implements an asynchronous and parallel deployment
protocol which accelerates and makes resilient the deployment
process. Intensive experiments with different type of applications
over different cloud models (e.g. private, hybrid, and multi-
cloud) validate the genericity of Roboconf. These experiments
also demonstrate its efficiency comparing to existing frameworks
such as RightScale, Scalr, and Cloudify.

Index Terms—Cloud; Autonomic computing; Installation

I. INTRODUCTION

In the early 2000s, IBM [1] proposed to automate the
administration of complex applications throughout the use
of what we called Autonomic Computing Systems (ACS for
short). The complex applications may contain a lot of compo-
nents distributed on various tiers and consume large amounts
of resources located at multiple sites. This practice consists in
transferring human administration knowledge and behaviours
to an ACS. As summarized by [1], administration tasks can
be divided into the following categories: installation or initial
provisioning, reconfiguration and uninstallation. ACSs have
proved their usefulness and now the major part of research
in this topic focuses on reconfigurations tasks [2].

However, recent years have seen the development and
now the democratization of a new technology called Cloud
computing which is a challenging domain for existing ACSs,
as it introduces an intermediate level of administration for
virtual machines (VM). Moreover, it sometimes requires the
use of several clouds at once (hybrid and multi-cloud). To
make matter worse, clouds API are not standardized, which
results to non interoperable clouds. For example, running a
financial/bank application within the cloud generally requires
two clouds: a private cloud (located in the company to which
the application belongs 1) to run business-critical part, and
a public cloud (e.g. Amazon EC2) to run non-critical part
of the application. Note that in some situations, the non-
critical part can move from one cloud to another for price and

1Called deployer in this paper.

competitiveness reasons. In this context, existing ACSs [3], [4]
are inappropriate for several reasons. (1) They only consider
one level of deployment/execution: an application runs within
a physical machine (PM), whereas in the context of cloud,
the application runs within a VM, which in turn runs on a
PM. (2) The target execution environment is not static in the
context of cloud, an application does not stay within the same
cloud during its overall lifetime. (3) Existing ACSs are built to
administrate the whole environment (application and execution
environment) while in the context of cloud, administration is
ensured by two actors (the deployer administrates its applica-
tion while the cloud provider administrates VMs and PMs).

This paper addresses these problems by proposing Robo-
conf, a generic (administrate any kind of applications) open
source2, extensible, multi-cloud (target several clouds at once),
scalable, and fine-grained reconfigurable orchestration frame-
work. A hybrid cloud orchestrator is a software managing in-
teractions and interconnections among on-premises and cloud-
based business units. Cloud orchestrator products connect
various automated processes and associated resources using
mechanisms like ACS. The key ideas behind Roboconf are the
following: (1) Roboconf is a ACS kernel which implements
basic administration mechanisms (sensor and effector); (2) the
latter are easily improvable by any deployer; (3) Roboconf
is provided with a set of reusable components, each of them
implements an administrative need; and (4) a hierarchical DSL
(Domain Specific Language) for a fine-grained expression of
applications and execution environments. In order to keep
Roboconf simple, we focus on a subset of administration
stacks: initial installation (including initialization, deployment,
configuration, start-up, stopping and uninstallation), dynamic
installation (at runtime), and incrementally partial (only a part
of the application) or full application installation. We have
performed several experiments validating all the properties
of Roboconf. The rest of the paper is organized as follows.
Section II motivates this work. Section III presents Robo-
conf. Its evaluation and results are presented and discussed
in Section IV. Section V reviews the related work. Finally,
Section VI concludes the paper.

2http://roboconf.net/

II. A MOTIVATING USE CASE

Let consider a company which wants to enjoy the bene-
fits of cloud computing. This company has an e-commerce
application represented here by the RUBiS [22] benchmark.
RUBiS is a JEE application based on servlets, which im-
plements an auction web site modelled on eBay. RUBiS
defines interactions such as registering new users, browsing,
buying or selling items. To run this application, the company’s
administrator decides to use a web server provided by Apache
HTTPD, an application server provided by Tomcat, and a
set of database servers provided by MySQL. Apache relies
on Mod JK connector to forward requests to Tomcat, via
its AJP 13 connector. Let us consider a scenario where the
company has the following requirements. Most of its clients
(users who connect to its application) are located on the one
hand in France (near Marseille) and on the other hand in Brazil
(Sao Paulo). The company organizes data into two categories:
business-critical (e.g. those which concern money) and non-
critical (e.g. those which concern sold items). The former
must be located on company premises, which is composed
of a virtualized machine (provided by VMware vSphere) and
a native machine. The virtualized machine runs the database
which is in production while the native machine runs a backup.
Regarding non-critical data, they are hosted (with the other
application components) within any public clouds (the most
cheapest one which is near company’s clients). The company
capitalizes on competition among cloud providers and fully
benefits from them. According to VM prices charged on clouds
market, the company runs its application within two distinct
clouds: Amazon EC2 and Microsoft Azure. Concerning the
administration of the application, the company’s administrator
practices a fine-grained administration such as manipulating
a .war package in a Tomcat server or a servlet in the .war
package which is in the Tomcat container. Furthermore, some-
times he needs to deploy an entire stack or just a part of the
stack. For example, in the case of an intrusion in the VM
hosting a Tomcat application server, does he need to redeploy
the overall stack? If the intrusion is at the .war package level,
only the deployment of the corresponding package and its
servlets are needed. If the problem comes from a single servlet,
only this servlet is taken into account. Another need is the
reconfiguration of the application, partly or entirely during its
lifetime, especially in moving a portion from a cloud to another
one. Figure 1 depicts this scenario. This example depicts a
trend as to be shown in the 2014 State of the Cloud Survey,
”the hybrid and multi-cloud implementations continue to be
the end goal for the enterprise: 74% of enterprise respondents
have a multi-cloud strategy, and 48% are planning for hybrid
clouds.” [11].

In summary, this practical use case intuitively points out
the following features from the ACS which attempts to conve-
niently administrate it. (1) The ACS should be able to provide
both hybrid and multi-cloud deployment features, with the
target clouds unknown in advance. (2) It should provide a
hierarchical language for expressing the use case in order to

Fig. 1: A multi-cloud deployment of the RUBiS benchmark

allow a fine-grained administration. Roboconf, such a system,
is described in next section.

III. ROBOCONF

A. Overview

Roboconf is a distributed solution to deploy distributed
applications. It is an open-source software licensed under the
terms of the Apache license version 2.0. It is a deployment
framework for multi-cloud, but not only. It allows to describe
distributed applications and handle deployment automatically
of the entire application or a part of it. The objective of this
framework is to be improvable with a micro kernel which is
the core of Roboconf. This kernel implements all necessary
mechanism to plug new behaviours for addressing new appli-
cations and new execution environment. Moreover, Roboconf
supports scale-up and scale-down natively. Its main force is the
support of dynamic (re)configuration. This provides a lot of
flexibility and allows elastic deployments. Roboconf is made
up of several modules. A simplified drawing of Roboconf
architecture is depicted in Figure 2 and explained more detail
as follows.

The Deployment Manager (or DM) is an application in
charge of managing VM and the agents (see below). It acts
as an interface to the set of VMs or devices. It is also in
charge of instantiating VMs in the IaaS and PMs such as
embedded boards. The Agent is a Software component that
must be deployed on every VM and device on which Robo-
conf wants to deploy or control something for bootstrapping.
Agents use plug-ins to delegate the manipulation of software
instances. The plug-ins can be life cycle management ones
that support different implementation languages or frameworks
such as Bash, Puppet, OSGi [17], Java, etc. It also can
be a federated PaaS plug-ins such as Heroku [15] driver.

Fig. 2: Simplified architecture of Roboconf

Roboconf’s kernel is kept lightweight and the plug-ins can be
flexibly plugged into the core. Roboconf agents communicate
with each other through an asynchronous messaging server.
The SoftwareInstanceManager is developed as a Roboconf’s
plug-in to generate software life-cycle management on differ-
ent software platform and monitor software instances them-
selves. The Messaging Server is the key component acting
as distributed registry of import/export variables that enable
communications between the DM and the agents. Roboconf
includes the message definitions, the interface to interact with
a given messaging server and their implementations. The DM
and the agents always communicate asynchronously through
this server. The Artifact and VM Image repositories are
responsible for distribution software packages (i.e. artifact)
and VM’s image, respectively. Artifact repositories can be
managed locally or retrieved from public repositories such
as Maven center or NPM. Image repository is a database to
map each required VM image of each IaaS to corresponding
infrastructure components. The required VM image can be
an image available in the VM image marketplace provided
by IaaS or a pre-built one created manually or automatically
(e.g. using Dockerfile [24] or Vagrantfile [25]). Eventually, an
admin console is required to control the DM. Roboconf comes
with a shell-based console and an AngularJS web application
providing different user interfaces to interact with the DM
through REST. It contains utilities to transform Java beans
into JSON.

Roboconf takes as input the description of a whole applica-
tion in terms of ”components” and ”instances”. Components
can be seen as object definitions, while instances are obviously
instances of these objects. From this model, it then takes the
burden of launching VMs, deploying software on them, resolv-
ing dependencies dynamically among software components,

updating their configuration and starting the whole stuff when
ready.

Roboconf handles application life cycle: hot reconfiguration
(e.g. for elasticity issues) and consistency (e.g. maintaining
a consistent state when a component starts or stops, even
accidentally). This relies on a messaging queue (currently
RabbitMQ [16]). Application parts know what they expose
to and what they depend on from other parts. The global idea
is to apply to applications the concepts used in component
technologies like OSGi. Roboconf achieves this in a non-
intrusive way, so that it can work with legacy software.
Application parts use the message queue to communicate and
take the appropriate actions depending on what is deployed
or started. These appropriate actions are executed by common
plug-ins such as bash, puppet or customized ones such as java-
servlet, osgi-bundle.

Roboconf is a distributed technology, based on AMQP [18]
and REST/JSON. It is both IaaS and PaaS-agnostic. Many
well-known IaaS are supported including OpenStack, Amazon
Web Services, Microsoft Windows Azure, VMware vSphere,
a plug-in to deploy Docker container as well as a ”local”
deployment plug-in for on-premise hosts. In the PaaS aspect,
not only potential type of applications are tensely brought up
to the Cloud such as OSGi or Internet of Things (i.e. IoT)
but also state-of-the-art PaaS are purposefully included such
as Heroku, Google App Engine and CloudBees.

Roboconf satisfies most of state-of-the-art requirements of a
modern multi-cloud PaaS such as component fine-grained hier-
archical description, dynamic dependency resolution, concur-
rent component deployment, multi-cloud distributed deploy-
ment, middleware-orientation, genericity, extensibility, scala-
bility and reusable/configurable deployment plans.

B. An Architecture with Hierarchical Graph

1) Models: Roboconf is designed to see a distributed
application as a set of ”components”, and as a group of
”instances” of these components. Let us take as an example the
three-tier distributed application ”Apache-Tomcat-MySQL”.
”Apache” is a component, while an installation of Apache
on a particular machine is an instance. Another installation
of Apache on another machine is another instance. Besides,
Roboconf is built to see distributed application as a group
of components that each one exchanges a group of simple
data between each other. Data can be string or structured
data. Components of a distributed application are composed
of variables as for example the ip address or the port used.
Parts of those variables may be needed by other components
of the application, they are named ”exported vars”, while vars
coming from other components of the application are named
”imported vars”. Moreover, definition of a component can be
inherited by definition of another according to object-oriented
design. It inherits all import/export vars and default values.
For instance, Tomcat component can inherit properties of a
generic ”Application Server” component.

Now that we have a far view of an application, let us
explain more precisely what are its components. In the above

example, Apache in this case simply imports variables coming
from Tomcat: the ip and port of application server. As we
said earlier, we define elements (component and instance) as
having a set of variables, and having exported and imported
variables. In this case of Apache there are only imported
variables. A sample of Apache component under Roboconf’s
language could be as the following:

Apache { # Apache Load Balancer (a comment)
installer: puppet;
imports: Tomcat.portAJP, Tomcat.ip;

}

This small portion is made up of several regions. The
installer: A component property mandatory and designates
the Roboconf plug-in that will handle the life cycle
of component instances. In this example, we are using
”puppet” implementation. The imports lists the variables
this components need to be resolved before starting. Variable
names are separated by commas. They are also prefixed by
the component that exports them. As an example, if Tomcat
exports the ip variable, then a depending component will
import Tomcat.ip. On the other hand, MySQL does not
import data from other components, it is the one exporting
data which are its ip and port. A definition of MySQL could
be as following:

MySQL { # MySQL database
installer: bash;
exports: ip, port = 3306;

}

Here has a minor different from the exports which lists the
variables this component makes visible to other components.
The ”ip” is a special variable name whose value will be
set dynamically by Roboconf. All the other variables should
specify a default value.

In terms of model and configuration files, Roboconf has
the following concepts. The application descriptor contains
meta-information of the application such as name, version
qualifier and description. The graph is in fact a set of graphs.
It defines software components which range broadly from the
(virtual) machine, cloud platform to the application package.
The graph defines containment relations and runtime relations.
Two kind of relations are defined as follows: (1) Containment
means a component can be deployed over another one. As
an example, a Tomcat server can be deployed over a VM.
Or a web application (WAR) can be deployed over a Tomcat
server. (2) Runtime relations refer to components that work
together. For instance, a web application needs a database.
More specifically, it needs the IP address and the port of the
database. Generally, this information is hard-coded. Roboconf
can instead resolve them at runtime and update components
through the configuration or management APIs (e.g. JMX,
REST). As an example, Apache, Tomcat and MySQL can be
deployed in parallel. Tomcat will be deployed but will not
be able to start until it knows where is the database. Once the
database is deployed and started, Roboconf will update Tomcat
configuration so that it knows where is MySQL. This is what
runtime dependencies make possible. If the graph defines

relations between components, instances represent concrete
components. Like a Java class, a Roboconf component is
only a definition. It needs to be instantiated to be used.
Predefined instances aim at gaining some time when one wants
to deploy application parts. As an example, the deployer could
have defined a Tomcat component in the graph, and have
four instances, one deployed on machine A, and another on
machine B and other two on machine C. These would be
four instances of the same component. The rules that apply
to them are deduced from the graph, but they have their own
configuration.

Roboconf is also designed to see an application as
hierarchy of components. The main motivation of hierarchy
is to allow Roboconf to exactly keep track of where instances
are implemented in the system. It helps Roboconf to make
right decisions in dynamic deployment as mentioned in the
motivating example. A natural example of parent/children
relationship of components of an OSGi application is depicted
following:

An Azure VM
VM_AZURE {
installer: iaas;
children: Karaf;

}
Karaf: OSGi container
Karaf {
installer: bash;
exports: ip, agentID = 1;
children: Joram, JNDI;

}

Joram: OSGi JMS service
Joram {
installer: osgi-bundle;
exports: portJR = 16001;
imports: Karaf.agentID,

Karaf.ip;
}
JNDI: naming service
JNDI {
installer: osgi-bundle;
exports: portJNDI = 16401;
imports: Karaf.agentID,

Karaf.ip;
}

There is a new important field: children which lists the
components that can be instantiated and deployed over this
component. In the example above, it means we can deploy
Karaf over a VM instance. In turn, Joram and JNDI can be
deployed over instances of Karaf. While hierarchical model
resolves the containment relations (i.e. vertical relationship)
and the export/import variables model responsible for dis-
entangling the runtime relations (i.e. horizontal relationship)
amongst components, a bi-color Graph put everything together
in a DSL introduced more details in next section. At runtime,
the Graph is used to determine what can be instantiated, and
how it can be deployed. Software components include the
deployment roots (e.g. VMs, devices, remote hosts), databases,
application servers and application modules (e.g. WAR, ZIP,
etc). They list what the deployers want to deploy or possibly
deploy. What is modelled in the graph is really a user choice.
Various granularity can be described. It can goes very deeply
in the description (Figure 3) or bundle things together such as
associating a given WAR with an application server.

2) Configuration Files and fine-grained hierarchical DSL:
An application deployed by Roboconf should provide at least
three files. The first is a descriptor application file containing
the main Roboconf configuration. This file describes the ap-
plication itself such as name, description, location of the main
model files, etc. Second one is an acyclic graph describing both
vertical and horizontal relationships between components of

Fig. 3: Illustration of a fine-grained description of components

the application. The components can be software components
to install, or VMs to deploy on, etc. Along to the graph file,
users also need to provide all resources necessary to deploy
the component (e.g. scripts, software packages, configuration
files). The IaaS on which the VM will be created are also
defined in the component’s resources directory. We can choose
VMs with pre-defined configuration such as ”m1.large” of
Amazon EC2 or ”Standard A2” of Microsoft Azure. Or we
can customize to create dedicated configurations in the case
of private clouds or on-premise hosts. On runtime, Roboconf
will provision the VMs based on these defined configurations.
Figure 4(a) depicts components of the motivating use case
described in hierarchical and fine-grained manner using Robo-
conf’s DSL. Final one is an instances file that lists all the initial
instances. It means graph components will be pre-instantiated,
ready to be deployed. The fact the instances are defined does
not mean they will be deployed or started automatically but
they will be already defined and configured. In this file, the
instances must be defined hierarchically. If the graph defines
a root component R with a child C, then an instance of C
must be defined in an instance of R. The instance may also
declare properties to override component properties. As an
example, if a Tomcat component exports a port property with
the default value 8080, the instance may override it (e.g. with
8081). An example of this file for the three-tier application
is found in Figure 4(b) where an instance of Apache, one
instance of MySQL, two instances of Tomcat and one instance
of Rubis deployed on different clouds. As far as we know,
Roboconf provides a DSL which is inspired from the CSS
grammar. It was preferred over XML (easy but heavy), JSON
(not user-friendly) and YAML (error prone when many levels
of indentation). Its main force is to keep the thing simple,
with the minimal set of characters to write. We developed
an Eclipse plug-in operating as an editor providing semantic
checking and syntax highlighting for the Roboconf’s DSL.

So far, the system can understand the distributed application
that users want it to deploy. The details about deployment
process is discussed in next two subsections.

3) Initial Deployment Process: We use three-tier exam-
ple to understand the way Roboconf works. As mentioned,
dependencies between components is presented in Figure 3.
In an IaaS elasticity scenario, multiple Tomcat nodes can be

(a)

An Azure VM
VM_AZURE {
installer: iaas;
children: Tomcat,

Apache, MySQL;
}
An EC2 VM
VM_EC2 {
installer: iaas;
children: Tomcat,

Apache, MySQL;
}
A VMware VM
VM_VMWARE {
installer: iaas;
children: Tomcat,

Apache, MySQL;
}
MySQL
MySQL {
installer: puppet;

exports: ip, port = 3306;
}
Tomcat with Rubis
Tomcat {
installer: puppet;
exports: ip,

portAJP = 8009;
children: Rubis

}
Apache Load Balancer
Apache {
installer: puppet;
imports: Tomcat.portAJP,

Tomcat.ip;
}
RUBiS WAR Application
Rubis {
installer: java-servlet;
imports: MySQL.port,

MySQL.ip;
}

(b)

A VM Azure with Apache
instanceof VM_AZURE {
name: vm-azure-apache;

instanceof Apache {
name: apache;

}
}
A VM EC2 with Tomcat
instanceof VM_EC2 {
name: vm-ec2-tomcat-1;

instanceof Tomcat {
name: tomcat-1;
instanceof Rubis {
name: rubis-1;

}
}

}

A VM VMware with Tomcat
instanceof VM_VMWARE {
name: vm-vmware-tomcat-2;

instanceof Tomcat {
name: tomcat-2;

}
}
A VM VMware with MySQL
instanceof VM_VMWARE {
name: vm-vmware-mysql;

instanceof MySQL {
name: mysql;

}
}

Fig. 4: Example of a Roboconf DSL: (a) Graph and (b)
instances file for 3-tier deployment

added/removed to adapt to traffic, but it requires a dynamic
reconfiguration of the Apache node in order that mod proxy
knows about all the available Tomcat nodes. Roboconf is told
to deploy Apache, MySQL and Tomcat on 3 separate VMs that
similar to Figure 4(b). This includes updating the configuration
files as soon as dependencies can be resolved (e.g. when it is
aware of the MySQL IP/port, Roboconf will send them to
the Tomcat node, so it can update its configuration and start).
The application components (MySQL, Tomcat, Apache) are
defined as Figure 4(a). The VM is supposed to support the
deployment of either Apache, Tomcat or MySQL components
and each component is described in terms of imports/exports.

With this description, Roboconf knows when a deployed
component can be started. It is when all its imports are
resolved! Roboconf is in fact responsible for import/export
exchanges between components, and life cycle management
(e.g. start the component when imports are resolved).

4) Reconfiguration Process: It often happens when ev-
erything is running, we need to create a new instance to
adapt to changes from environment. It means the running
system needs to indicate the component to instantiate, give
it a name and define where it should go. In this particular

[EVENT nagios peak-load]
GET services
WaitObject: $HOSTNAME CPU load
WaitCondition: CPU load > 80
WaitTrigger: check

[REACTION peak-load Replicate-Service]
/vmec2/tomcat1

Fig. 5: Example of an autonomic rule of Roboconf’s DSL:
(above) at the agent side, (bottom) at the DM side

example, due to an increasing workload a new Tomcat instance
hosted by a VM instance has to be added automatically. We
can either reuse an existing or create another VM instance.
In this scenario, we take the latter. The Roboconf’s DSL
provides set of autonomic rules to respond to the detected
changes. The agents measure anomalies frequently and send
notifications to the DM. The DM responds to the notifications
using corresponding imperative rules. Figure 5 depicts a rule
that we apply for the example. At the agent side, we use
LiveStatus which is the protocol used by Nagios and Shinken.
The LiveStatus’s query retrieves measures of CPU load from a
local Nagios or Shinken agent, if this parameter is over 80%,
a notification will be sent to the DM. In turn, the DM applies
the handler ”Replicate-Service” to respond to the notification
resulting in adding an entire new path ”/vmec2/tomcat1”.
Both instances of this path, the ”vmec2” and ”tomcat1” will
be added to the application model. It is one more example
emphasizing hierarchy of the Roboconf’s DSL.

At the very beginning of the adding process, both the two
new are not started, and not even deployed. The DM is asked
to deploy and start them. First, the DM provisions the VM.
Once it is up, the DM sends the deployment command to
the VM and a new Tomcat instance is deployed over it. The
Roboconf agents then publishes the exports (i.e. a new Tomcat
instance with a port and IP address). Since the Apache load
balancer imports such components, it is notified a new Tomcat
arrived. The agent associated with the Apache VM invokes
a Roboconf plug-in to update the configuration files of the
Apache server. Therefore, the load balancer is now aware
of two Tomcat servers. If configured in round-robin, it will
invoke alternatively every Tomcat server when it receives a
request. It is worth noting that real magic with Roboconf is
the asynchronous exchange of dependencies between software
instances whereas the deployment and life cycle actions are
delegated to plug-ins.

IV. EXPERIMENTAL EVALUATION

As mentioned in the Subsection III-A, Roboconf provides
the following features: component fine-grained hierarchical de-
scription, dynamic dependency resolution, concurrent compo-
nent deployment, multi-cloud distributed deployment, gener-
icity, extensibility, scalability, and dynamic reconfiguration of
the deployment plans. To validate those non-functional prop-
erties, we conducted a number of experiments with scenarios
selected from practical use cases. Concerning the scalability,
Roboconf uses the same deployment protocol as [20] which

TABLE I: Deployment Order of LAMP

Order Operation Order Operation
0 Provision + Boot VM 2 Start - Apache
1 Deploy - Apache 2 Start - MySQL
1 Deploy - MySQL 3 Start - phpMyAdmin
2 Deploy - phpMyAdmin 3 Start - phpMyAdmin

scalability has been demonstrated. We chose different types
of application for the experiments to prove the genericity of
Roboconf.

A. Experiment 1

The first type of experiments validates Roboconf in terms
of dynamic dependency resolution and concurrent component
deployment. To this end, we dissected Roboconf deployment
process and compared it with state-of-the-art deployment
frameworks: Cloudify, RightScale, and Scalr (that all support
concurrent deployment of VMs). Deployment is repeated 8
times for each platform and the means are reported.

a) Scenario and Requirements: For this experiment, we
chose EC2 as the target cloud and Puppet as the Roboconf’s
installer plug-in. We started with a simple LAMP application
which is implemented with all-in-one style (Ubuntu 12.04
m3.medium EC2 VM instance). The deployment is considered
successful if user can connect and log into phpMyAdmin
using any web browsers and start to create a database. The
deployment order follows Table I. As mentioned earlier, this
experiment was performed on three deployment frameworks.
Since each of them has its own states of life cycle, without loss
of generality, we distribute those states into two main phases
based on classification of [12]:

Booting phase: In this phase deployment systems spend
time to process following actions: send ”Deploy” requests
from client (deployment system client interface) to DM, DM
processes the requests, transfer scripts and other necessary files
to DM, DM sends requests to IaaS, IaaS provisions and powers
up VM, run booting scripts (setup agent, send information of
booting machine back to DM).

Operational phase: In this phase the systems consume time
to execute operational scripts run once a server is running,
on services or components. It may include states: preInstall
(download tarball or/and transfer scripts and necessary files
to VM, prepare runtime environment, etc), install, postInstall
(copy resources and configuration files to right place, set per-
missions, etc), preStart (resolves dependencies), start, postStart
(update variables, configure monitoring), etc.

b) Results: Figure 6 presents results of these experi-
ments. In the operational phase, time is measured until last
component is installed. We can see that Roboconf outperforms
the others in terms of total deployment time, with Scalr being
the nearest one (we only discuss about it). The runner-up,
Scalr, took less time in the operational phase than Roboconf
because it was not consuming time for dynamic dependency
resolution. In Scalr, dependencies amongst components are
resolved manually by configuring exchanged variables in its
Web UI. In fact, it is a tedious, error-prone and time consuming

Fig. 6: Deployment time with different deployment systems

job. We also found that in the booting phase, factors that
make difference are processing requests and setting up agents,
while dependency resolution is mainly diverse element in the
operational phase.

B. Experiment 2

The second type of experiments demonstrates the advantage
of the fine-grained hierarchical description provided by Robo-
conf’s DSL. For this experiment, EC2 was the target cloud.

a) Scenario and Requirements: We performed this ex-
periment with an OSGi application (the JMS part of the
SPECjms2007 benchmark). Regularly, an OSGi application
consists of one or several OSGi platforms (e.g. Karaf, Felix,
Equinox) providing runtime environment and management
framework for OSGi bundles such as Joram, JNDI, etc. We
used two instances of EC2 m3.medium, each hosts 2 instances
of Karaf. Each Karaf of a VM is customized to choose either
Felix or Equinox as underlying OSGi framework and hosts
an instance of Joram (an OSGi JMS-supported server), or an
instance OSGi JNDI or a JMS OSGi client (publisher/sub-
scriber). Deployment of Joram, JNDI and OSGi JMS clients
is handled by the ”osgi-bundle” installer, specific to this type
of application. We chose Cloudify as comparative objective
because it also offers scripting language that can be used to
express the structure of a distributed application. Roboconf
sees hierarchy of this application whereas a flat structure is
seen by Cloudify.

b) Results: With its hierarchical DSL and extensibility,
although both solutions need to write 6 sets of configuration
scripts for 6 components, Roboconf users only have to write
one deployment plan for EC2, one for Karaf and reuse one
plan for multiple OSGI bundles (Joram, JNDI, subscriber,
publisher). In the case of Cloudify, 6 deployment plans are
needed, each one for each component (EC2, Karaf, Joram,
JNDI, Subscriber, Publisher). Table II shows statistics about
number of the deployment plans for Roboconf and Cloudify,
respectively. In this case, Cloudify users have to write twice
more deployment plans than Roboconf ones. More details
about reusability of Roboconf’s DSL can be consulted at [23].

C. Experiment 3

The third type of experiments gives some evidence for the
correctness of Roboconf’s multi-cloud distributed deployment
feature and its extensibility using plug-ins.

TABLE II: Deployment Plans of the OSGi Application

Number of Plan Roboconf Cloudify
EC2 1 1
Karaf 1 1
Joram/JNDI/Pub/Sub 1 4
Total 3 6

a) Scenario and Requirements: We compare deployment
time of a Storm [21] cluster (an Event Stream Processing
(ESP) application) on multi-cloud platforms using on the
one hand of Roboconf and on the other hand a manual
configuration following installation guide from original owner.
Storm is a part of a global solution for big data analysis. Storm
consists of Zookeeper cluster, Nimbus server, Storm supervi-
sors and requires installation of JZMQ, ZeroMQ and Python.
The experiment was conducted in a multi-cloud environment
combining two public clouds (EC2 and Azure) and a private
Cloud (VMware vSphere). Three IaaS plug-ins for these
clouds have been developed to provide coordination among
the three IaaS providers. Each plug-in needs to implement
one Java interface of the Roboconf Plugin API. The LOCs
(lines-of-code) for the EC2 plug-in is 202, 393 for Azure,
and 157 for VMware vSphere. Zookeeper cluster was installed
on EC2s, Nimbus server on Azure and Storm supervisors on
our VMware vSphere data-center to take advantage of our
computing strength. In this experiment, the time for installing
Storm manually is compared with the time to automate its
installation using Roboconf.

b) Results: The online installation guide of Storm is 8-
page length specific to Storm itself and many external links
to resource document of relevant dependencies. One of the
authors who had no knowledge about Storm and have never
attempted to install this software previously tried to do manual
installations. It took him about 6 hours the first time, 3 hours
and 30 minutes the second time, and up to 1 hour from the
third one. Actions eating effort time were reading imprecise
instructions, resolving environment issues, seeking/download-
ing the required dependencies and debugging problems. On
the Roboconf side, the same work has been carried out by
another author who also has never known about Storm. With
this approach, time mainly devotes for writing deployment
plan of Zookeeper, Nimbus, Supervisors, JZMQ, ZeroMQ and
Python. About 120 LOC have been written for deploy/start
scripts of all Storm’s components. After installation, Storm
can be managed (deploy, start, stop, undeploy, update) via
Roboconf and automatically connect to other applications. At
the first time, total development time for Storm in Roboconf
was about 2 hours 15 minutes. This time was divided into 30
minutes for component’s design, 70 minutes for writing scripts
and 35 minutes for debugging and testing. If the required
packages are downloaded from the Internet, install of Storm
needs 20 minutes and around 7 minutes if the packages are
retrieved from a local repository. The automation of the Storm
installation via Roboconf empowers Storm developers deploy
their existing applications on multi-cloud with slight changes
and no need to understand details of Roboconf. It warrants

a repeatable procedure and can be used as a part of larger
deployments (e.g. Ubiquitous analytics).

V. RELATED WORK

A number of research in the context of Cloud computing
are dedicated either to a single cloud platform or a single
type of applications. [6] presents an automatic deployment
framework for Xen-based cloud platforms. [7], [9] are de-
scription languages for cloud applications. They are limited to
three levels of description: PMs, VMs, and applications. Other
levels, within the application, are not considered. [8] proposes
a language to define the orchestration of the deployment of an
application on the cloud. It avoids the description of the target
cloud in order to allow the portability of the orchestration. [5]
presents some key requirements that a deployment language
should respect in order to be used in a multi-cloud deployment
system. These requirements take into account the hierarchy
of the cloud but does not extend it within the applications
as we do in Roboconf. [10] motivates the use of Model
Driven Engineering (as we do in Roboconf) to build a useful
multi-cloud platform. Therefore, it introduces CloudML which
can be seen as a sub-part of Roboconf DSL. Like others,
CloudML has no hierarchical structure. In addition, Roboconf
does not separate node and artefact types, thus more flexible
than CloudML.

Several solutions are close to Roboconf. Ubuntu Juju is able
to target a hybrid cloud deployment. However, its description
language is not flexible in the sense that it enforces the de-
ployment of a unique component per machine. A hierarchical
description is not possible. Docker is a lightweight VM which
is aware of applications it runs. Thus it is able to easily deploy
and configure. As we do with OSGI containers, Roboconf has
been used to automate the setting up of a Docker-containerized
application. This plug-in facilitates the continuous integration
of both Roboconf test-cases and pre-staging of user deploy-
ments and configurations (localhost instead of Cloud tests).
Most of them are proprietaries and do not provide detailed
documentation about their internal functioning. Cloudify [12]
statically provides the possibility to use a number of cloud
platforms. Unlike Roboconf, it does not allow to deploy an
application within different cloud platforms at the same time.
Indeed, it is not able to exchange dependency information or
components activation state across different clouds. Therefore,
a deployment which requires a private cloud (e.g. financial
applications) is not possible with Cloudify. RightScale [13]
is another proprietary and commercial solution for deploying
applications on the cloud. It proposes a set of applications
templates (e.g. JEE) which can be improved by the deployer.
Therefore, it does not allow the integration of new templates.
No DSL is provided to the deployer. Scalr and EnStratus [14],
[19] provide solutions in the same vein as RightScale. In
summary, all these solutions are not able to address the use
cases we presented in this paper for many reasons.

VI. CONCLUSION

Roboconf (an open source framework) is a generic, extensi-
ble, multi-cloud, scalable, and fine-grained reconfigurable de-
ployment framework. It is based on a lightweight kernel which
implements basic administration mechanisms. Its simplicity
(regarding its implementation) combined with its component-
based approach ease its improvement by any deployer. More
important, it provides a hierarchical DSL for a fine-grained
expression of applications and execution environments. This
allows it to achieve fine-grained level of administration (PM,
VM, software within VM, other stacks inside software). The
broad variety of experiments we performed validate all its
features: multi-cloud, hybrid cloud, LAMP, Storm cluster, etc.
In addition, it outperforms (in terms of deployment time and
usability) most popular deployment frameworks. A further
enhancement to Roboconf would be the implementation of
a way to facilitate the integration of more sophisticated recon-
figuration policies (e.g. for scalability, fault tolerance).

ACKNOWLEDGMENTS

This work is partially supported by the Datalyse FSN
project, the FSN OCCIWARE project, the FUI smart support
center and thank to Microsoft Research for Windows Azure
Grant.

REFERENCES

[1] Jeffrey O. Kephart and David M. Chess, ‘The vision of autonomic
computing,” Computer 36(1) 2003.

[2] J. O. Kephart, ‘Autonomic Computing: The First Decade,” ICAC 2011.
[3] Kyle Oppenheim and Patrick McCormick, ‘Deployme: Tellme’s Package

Management and Deployment System,” LISA 2000.
[4] E. Yuan, N. Esfahani, and S. Malek, ‘A Systematic Survey of Self-

Protecting Software Systems,” TAAS 2014.
[5] A. Lenk, C. Danschel, M. Klems, D. Bermbach, et al. ‘Requirements for

an IaaS deployment language in federated Clouds,” SOCA 2011.
[6] Y. Zhang, Y. Li, and W. Zheng, ‘Automatic software deployment using

user-level virtualization for cloud-computing,” FGCS 2013.
[7] C. de Alfonso, M. Caballer, F. Alvarruiz, G. Molto, and V. Hernandez,

‘Infrastructure deployment over the Cloud,” CLOUD 2012.
[8] Tobias Binz, Gerd Breiter, Frank Leymann, and Thomas Spatzier,

‘Portable Cloud Services Using TOSCA,” IEEE Internet Computing 2012.
[9] L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni, and J. Stefani,

‘A Component-Based Middleware Platform for Reconfigurable Service-
Oriented Architectures,” SPE 2012.

[10] Nicolas Ferry, Alessandro Rossini, Franck Chauvel, Brice Morin, and
Arnor Solberg, ‘Towards model-driven provisioning, deployment, moni-
toring, and adaptation of multi-cloud systems,” CLOUD 2013.

[11] Cloud Computing Trends: 2014 State of the Cloud Survey,
‘http://www.rightscale.com/blog/cloud-industry-insights/cloud-
computing-trends-2014-state-cloud-survey,” visited on February 2015.

[12] Cloudify, ‘http://www.cloudifysource.org,” visited on February 2015.
[13] RightScale, ‘www.rightscale.com,” visited on February 2015.
[14] Scalr, ‘http://www.scalr.com,” visited on February 2015.
[15] Heroku, ‘https://www.heroku.com,” visited on February 2015.
[16] RabbitMQ, ‘https://www.rabbitmq.com,” visited on February 2015.
[17] OSGI, ‘http://www.osgi.org,” visited on February 2015.
[18] AMQP, ‘http://www.amqp.org,” visited on February 2015.
[19] EnStratus, ‘http://www.enstratius.com,” visited on February 2015.
[20] R. Abid, G. Salaun, F. Bongiovanni, and N. De Palma, ‘Verification of

a Dynamic Management Protocol for Cloud Applications,” ATVA 2013.
[21] Storm, ‘http://storm-project.net,” visited on February 2015.
[22] RUBiS, ‘http://rubis.ow2.org,” visited on February 2015.
[23] Roboconf, ‘http://roboconf.net/en/user-guide/autonomic-management-

with-roboconf.html,” visited on February 2015.
[24] Docker, ‘https://www.docker.com,” visited on February 2015.
[25] Vagrant, ‘https://www.vagrantup.com,” visited on February 2015.

