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flows
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mail: Pierre.Saramito@imag.fr

Abstract – For the first time, a Newton method is proposed for the unregularized vis-
coplastic fluid flow problem. It leads to a superlinear convergence for Herschel-Bulkley
fluids when 0 < n < 1, where n is the power law index. Performances are enhanced by
using the inexact variant of the Newton method and, for solving the Jacobian system,
by using an efficient preconditioner based on the regularized problem. A demonstra-
tion is provided by computing a viscoplastic flow in a pipe with a square cross section.
Comparisons with the augmented Lagrangian algorithm show a dramatic reduction of
the required computing time while this new algorithm provides an equivalent accuracy
for the prediction of the yield surfaces.
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Introduction

The numerical resolution of viscoplastic fluid flows is still a challenging task. The augmented
Lagrangian method has been introduced in 1969 by Hestenes [20] and Powell [29]. During
the 1970s, this approach became popular for solving optimization problems (see e.g. Rockafel-
lar [33]). In 1980, Glowinski [17] and then Fortin and Glowinski [15] proposed to apply it to the
solution of the linear Stokes problem and also to others non-linear problems such as Bingham fluid
flows. In 1980, Bercovier and Engelman [3] proposed a viscosity function for the regularization of
Bingham flow problem. In 1987, another viscosity function was proposed by Papanastasiou [28].
During the 1980s and the 1990s, numerical computations for Bingham flow problems was domi-
nated by the regularization method, perhaps due to its simplicity, while the augmented Lagrangian
algorithm leaded not yet convincing results for viscoplastic flow applications. In 1989, Glowinski
and le Tallec [18] revisited the augmented Lagrangian method, using new optimization and con-
vex analysis tools, such as subdifferential, but no evidence of the efficiency of this approach to
viscoplasticity was showed, while regularization approach becomes more popular in the 1990s with
the work of Mitsoulis et al. [21] and Wilson and Taylor [44]. In 2001, Saramito and Roquet [41, 35]
showed for the first time the efficiency of the augmented Lagrangian algorithm when combined
with auto-adaptive mesh methods for capturing accurately the yield surface. In the 2000s, this ap-
proach became mature and a healthy competition developed between the regularization approach
and the augmented Lagrangian one. Vola, Boscardin and Latché [43] obtained results for a driven
cavity flow with the augmented Lagrangian algorithm while Mitsoulis et al. [22] presented compu-
tation for an expansion flow with regularization and Frigaard et al. [23, 16, 31] pointed out some
drawbacks of the regularization approach. Finally, at the end of the 2000s decade, the augmented
Lagrangian algorithm becomes the most popular way to solve viscoplastic flow problems [24, 12]
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because of its accuracy, despite the regularization approach runs much more faster. The free soft-
ware Rheolef library, developed by the author and supporting both the augmented Lagrangian
algorithm and an auto-adaptive mesh technique is now widely used for various flow applications
(see e.g. [30, 36, 37, 4]).

The main drawback of the augmented Lagrangian algorithm is its computing time for large ap-
plications, especially when the Bingham number becomes large. This paper is a contribution to
an ongoing effort for the development of faster algorithms for the resolution of the unregularized
viscoplastic model. One of the most efficient algorithm to solve nonlinear problems is the Newton
method, due to its super-linear convergence properties (see e.g. [26]). This approach has already
been investigated for the regularized approach of the viscoplastic problem (see e.g. [5] and most
recently [9, 10, 11] for the biviscous regularization). Applying the Newton method to the unregu-
larized viscoplastic problem leads to a singular Jacobian matrix. This difficulty has been recently
addressed by using the trusted region algorithm [42], that regularizes the Jacobian matrix but
loses the superlinear convergence of the method. In this paper, our contribution is to address
directly the singularity of the Jacobian matrix in the Newton method in order to preserve the
superlinear convergence. The proposed reformulation of the viscoplastic flow problem is inspired
by the work of Alart and Curnier [1] on another non-smooth problem, the frictional contact one,
that was successfully addressed by a Newton method.

Section 1 presents the viscoplastic flow problem and its mathematical statement. This problem is
reformulated in section 2 in terms of a projection operator and section 3 presents its variational
formulation and discretization. Section 4 develops the Newton algorithm and the resolution of the
Jacobian matrix while section 5 shows preliminary results for this approach. The paper included
two appendices, dealing respectively with the proof of equivalence for the present reformulation
with a projection and with the spectral study of a preconditioner.

1 Problem statement

�����
�����
�����
�����

L

f

yield surfaces

plug region

shear zone

dead region

(a) (b)

Figure 1: Square tube cross-section: (a) tridimensional view; (b) schematic view of the cross-
section.

The fully developed flow of a Herschel-Bulkley fluid [19] in a prismatic tube, as shown on Fig. 1.a
(see also [41]). Let (Oz) be the axis of the tube and (Oxy) the plane of the bounded section
Ω ⊂ IR2. The pressure gradient is written as ∇p = (0, 0, −f) in Ω, where f > 0 is the constant
applied force density. The velocity is written as u = (0, 0, u), where the third component u along
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the (Oz) axis depends only upon x and y, and is independent of t and z. The problem can be
considered as a two-dimensional one, and the stress tensor σ is equivalent to a two shear stress
component vector: σ = (σxz, σyz). We also use the following notations:

∇u =

(
∂u

∂x
,
∂u

∂y

)
divσ =

∂σxz
∂x

+
∂σyz
∂y

|σ| =
√
σ2
xz + σ2

yz

In the case of a square cross-section using three symmetries with respect to the (Ox), (Oy) and
the first bisector, the domain of computation Ω can be reduced to a triangular shaped domain
(see Fig. 1.a). The problem can be summarized as:

(P ): find σ and u defined in Ω such that :

σ = K|∇u|n−1∇u+ σ0
∇u
|∇u| when ∇u 6= 0 (1a)

|σ| 6 σ0 when ∇u = 0 (1b)

divσ = −f in Ω (1c)

u = 0 on ∂Ω (1d)

where σ0 > 0 is the yield stress, K > 0 is the consistency and n > 0 is the power index. Notice
that when σ0 = 0 and n = 1, one is led to the classical viscous incompressible fluid. When σ0 = 0
and n > 0, we obtain a power-law fluid and the present problem is called the (n + 1)-Laplacian
(see e.g. [39, chap. 8]). When σ0 > 0, rigid zones in the interior of the fluid can be observed. As σ0

becomes larger, these rigid zones develop and may completely block the flow when σ0 is sufficiently
large. When n = 1 and σ0 > 0 the model is called the Bingham one [6, 25] while for a general
power law index n > 0 this is the Herschel-Bulkley model. Here, (1a)-(1b) express the constitutive
equation, (1c) the conservation of momentum and (1d) the no-slip boundary condition. In the
case of a square cross-section, we reduce the domain of computation by using symmetries (see
Fig. 1.a).

Let L be a characteristic length of the cross-section Ω, i.e. the half-length of an edge of a square
section, or the radius of a circular section (also denoted by R for convenience in that case). A
characteristic stress is given by Σ = Lf/2 and a characteristic velocity U is such that Σ = K(U/L)n

i.e. U = (Lf/(2K))1/nL. The Bingham dimensionless number is defined by the ratio of the yield
stress σ0 by the representative viscous stress Σ:

Bi =
2σ0

Lf

The Bingham number Bi and the power law index n are the only two dimensionless numbers of
the problem.

2 Reformulation of the problem

Problem (1a)-(1d) is equivalent to

(HB)0: find σ and u defined in Ω such that :
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∇u = P0(σ) (2a)

divσ = −f in Ω (2b)

u = 0 on ∂Ω (2c)

where P0 denotes the following projection operator, defined for all τ ∈ R2 by

P0(τ ) =


1

K1/n
(|τ | − σ0)

1/n τ

|τ | when |τ | > σ0

0 otherwise

(3)

The proof of this equivalence is postponed in appendix A, property 1. When σ0 = 0 and for a
general n > 0, the problem reduces to a mixed velocity-stress formulation for the power-law fluid.
Observe that, for all σ and γ ∈ R2 and for all σ0 > 0 and n > 0, the projection operator P0

introduced in (3) satisfies, for all r > 0, the following property:

γ = P0(σ)⇐⇒ γ = Pr(σ + rγ) (4)

where Pr denotes the following extended projection operator, defined for all τ ∈ R2 by

Pr(τ ) =


ϕ−1
r (|τ |) τ|τ | when |τ | > σ0

0 otherwise

(5)

and where ϕr is defined for all γ̇ > 0 by

ϕr(γ̇) = σ0 +Kγ̇n + rγ̇ (6)

The proof of equivalence (4) is postponed in appendix A, property 2. Remark that the r parameter,
involved in the extended projection operator Pr, interprets as an augmentation parameter, similar
to those involved by the augmented Lagrangian formulation.

0

0 σ0

ϕ−1
r (ξ)

ξ

n = 1
n = 0.5
n = 0.3

Figure 2: The ϕ−1
r function for various values of n.

As the function ϕr is strictly increasing in [0,+∞[, it is invertible from [0,+∞[ to [σ0,+∞[ and
its inverse denoted by ϕ−1

r is well defined in [σ0,+∞[ (see Fig. 2). Notice that when r = 0 we
have ϕ−1

0 (ξ) = K−1/n(ξ − σ0)1/n for all ξ > σ0 while there is no such closed form for ϕ−1
r when

r > 0.
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Let us perform a change of unknown by introducing

β = σ + r∇u⇐⇒ σ = β − r∇u

Then, problem (2a)-(2c) writes equivalently as

(HB)r: find u and β such that

r∆u− divβ = f in Ω (7a)

∇u− Pr(β) = 0 in Ω (7b)

u = 0 on ∂Ω (7c)

Observe that, from (4), the solution is independent upon r > 0 while, when r = 0, this problem
reduces to (2a)-(2c). The proof of the equivalence between this problem and (2a)-(2c) is postponed
in appendix A, property 3.

3 Variational formulation and discretization

Consider the following forms:

a(u, v) = −r
∫

Ω

∇u .∇v dx, ∀u, v ∈ H1(Ω)

b(v, τ ) =

∫
Ω

∇v .τ dx, ∀τ ∈
(
L2(Ω)

)2
, ∀v ∈ H1(Ω)

c(β, τ ) =

∫
Ω

Pr(β).τ dx, ∀β ∈ (L∞(Ω))
2
, ∀τ ∈

(
L1(Ω)

)2
`(v) =

∫
Ω

f v dx, ∀v ∈ L2(Ω)

The variational formulation writes:
(FV )r: find u ∈ H1

0 (Ω) and β ∈ (L∞(Ω))
2

such that

a(u, v) + b(v,β) = `(v), ∀v ∈ H1
0 (Ω)

b(u, τ )− c(β, τ ) = 0, ∀τ ∈
(
L2(Ω)

)2
This problem is then discretized by using the mixed finite element method introduced in [41]: the
velocity u is approximated by continuous piecewise polynomials of order k > 1 while the shear
stress vector β is approximated by piecewise discontinuous k−1polynomials. As the corresponding
approximated problem is similar to the continuous one, it is not developed here. For the purpose
of simplicity, we also continue to work with the continuous problem in the next section, dedicated
to the Newton method.

4 Newton method

The problem can be expressed in a compact form:

find u ∈ H1
0 (Ω) and β ∈ (L∞(Ω))

2
such that

F (u,β) = 0

where F is defined in variational form for all v ∈ H1(Ω) and τ ∈
(
L2(Ω)

)2
by

〈F (u,β), (v, τ )〉 = a(u, v) + b(β, v) + b(τ , u)− c(β, τ )
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and where 〈., .〉 denotes the duality product induced by the L2 pivot space i.e. 〈ϕ, φ〉 =
∫

Ω
ϕφdx

for all ϕ, φ defined in Ω.

We will see at the end of this section that F is differentiable if and only if n < 1. In the general
case n > 0, we are able to write a non-smooth version of the Newton method [32, p. 358] that
involves the subdifferential ∂F as a generalized gradient [7] of F . This method defines the sequence
(um,βm)m>0 by recurrence as:

• m = 0: let (u0,β0) ∈ H1
0 (Ω)× (L∞(Ω))

2
being given.

• m > 0: let
(
um−1,βm−1

)
∈ H1

0 (Ω)× (L∞(Ω))
2

being known.

Find (δu, δβ) ∈ H1
0 (Ω)×

(
L2(Ω)

)2
such that

A0 . (δu, δβ) = −F
(
um−1,βm−1

)
where A0 ∈ ∂F

(
um−1,βm−1

)
is an arbitrarily element of the subdifferential. Then defines

um = um−1 + δu and βm = βm−1 + δβ

Notice that when F is differentiable, then its subdifferential ∂F contains only one element F ′

and the method coincides with the usual Newton method for smooth functions. Otherwise, the
choice of any element A0 of the subdifferential as a Jacobian is arbitrarily. At each step m > 0,
this algorithm solves a linear subproblem involving a Jacobian A0. The Newton method has only
local convergence properties, i.e. the initial value should be close enough to the solution. In
order to circumvent this limitation, a globalized Newton variant is used here. It is based on a
damping strategy, as described and implemented in the Rheolef free software FEM library [39].
This damping strategy is presented in details in the Rheolef user’s manual, volume 1 [39], section
8.4, and the corresponding source code is fully available under the GNU Public License.

The subdifferential ∂F is defined, for all δu ∈ H1(Ω) and δβ ∈
(
L2(Ω)

)2
and v ∈ H1

0 (Ω) and

τ ∈ (L∞(Ω))
2

by

〈∂F (u,β).(δu, δβ), (v, τ )〉 = a(δu, v) + b(δβ, v) + b(τ , δu)− c1(β; δβ, τ )

where c1 denotes the following form:

c1(β; δβ, τ ) =

∫
Ω

(∂Pr(β)δβ) .τ dx

and, for all β ∈ R2, we denote by ∂Pr(β) the following subdifferential of Pr, which is 2× 2 matrix
valued:

∂Pr(β) =


{
ϕ−1
r (|β|)
|β| I +

µ |β| − ϕ−1
r (|β|)

|β|3 β ⊗ β, ∀µ ∈ ∂
(
ϕ−1
r

)
(|β|)

}
when |β| > σ0

{0} otherwise

(8)

Here, ∂
(
ϕ−1
r

)
denotes the subdifferential Here,

(
ϕ−1
r

)′
denotes the derivative of the inverse of the

function ϕr, defined for all ξ > 0 by

∂
(
ϕ−1
r

)
(ξ) =



{
1

ϕ′r
(
ϕ−1
r (ξ)

) =
1

r + nK
(
ϕ−1
r (ξ)

)−1+n

}
when ξ > σ0

[
0,

1

ϕ′r (0)

]
when ξ = σ0

{0} otherwise

(9)
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Remark that when ϕ′r (0) = +∞, i.e. from (6) when n < 1, then ϕ−1
r is differentiable in zero

(see also Fig. 2). Also, when σ0 = 0 and for a general n > 0, the function ϕ−1
r is differentiable

in ]0,+∞[: this is the expected result for a power-law fluid. In theses cases, the subdifferential

defined by (9) reduces to a set containing only one element: the derivative
(
ϕ−1
r

)′
(ξ). In these

cases, both Pr and F are also differentiable and the non-smooth Newton method reduces to the
usual one. Otherwise, ϕ′r (0) = nK + r when n = 1 and ϕ′r (0) = r when n > 1: in these

cases ϕ−1
r is not differentiable in ξ = σ0, as the left derivative

(
ϕ−1
r

)′
(σ−0 ) = 0 and the right

one
(
ϕ−1
r

)′
(σ+

0 ) = 1/ϕ′r(0) 6= 0 are different. Then ∂
(
ϕ−1
r

)
is a multi-valued set in ξ = σ0 and

the non-smooth Newton method extends the usual one. Notice that the expressions (8)-(9) are
obtained by usual rules of derivation except when there is left and right derivatives for ϕ−1

r . For a
practical implementation of the non-smooth Newton method, as the element of the subdifferential
is arbitrarily chosen for the non-smooth Newton method, it is sufficient to choose 0 ∈ ∂

(
ϕ−1
r

)
(ξ)

when ξ = σ0. This choice is convenient for any n > 0.

The Jacobian matrix A0 ∈ ∂F associated to the linear problem satisfied by (δu, δβ) expresses as:

A0 =

(
A BT

B −C0

)
were A, B and C0 denotes the operators associated to the bilinear forms a(., .), b(., .) and
c1(βm−1; ., .) respectively. Notice that A is linear symmetric definite negative while C0 is sym-
metric semi-definite positive. Recall that we expect the existence of unyielded regions of Ω with
nonzero measure where ∇u = 0 and |β| < σ0 (see Fig. 1). In these regions, the only 2× 2 matrix
that belongs to ∂Pr(β) is zero. Thus, the Jacobian A0 ∈ ∂F is not expected to be invertible in
general. Moreover, as A is negative, the Jacobian A0 is indefinite (i.e. it has both positive and
negative eigenvalues). As A0 is singular, there exists an infinity of solutions: it is sufficient to
choose one of them for the damped Newton method to converge. To this purpose, we use Saad and
Schultz’ gmres algorithm [38] for solving this indefinite and possibly singular linear system. It can
be considered as a generalization of Paige and Saunders’ minres algorithm [27] which applies more
specifically to symmetric and definite systems, possibly singular. This algorithm is implemented
in the Rheolef free software FEM library [39] together with the damped Newton method.

The convergence rate of the gmres algorithm can be dramatically increased by supplying a pre-
conditioner Ã , i.e. another invertible matrix, easier to invert, and close to the Jacobian matrix
A0 ∈ ∂F (χ) where χ = (u,β). Let the linear system writes A0 δχ = −F (χ) where δχ = (δu, δβ)
and r denotes the residual terms at the right-hand-side. It writes equivalently

Ã −1A0 δχ = −Ã −1F (χ) (10)

As soon as Ã is invertible, applying Ã −1 to both the left and right hand sides of the linear system
do not change its solution. Here are some extreme choices for the preconditioner:

• When Ã = A0 then we have the perfect preconditioner: the linear system is solved in one
iteration. The drawback is that it is not easiest to apply Ã −1 to a vector than to solve the
initial linear system.

• Conversely, when Ã is the identity, there is no preconditioning at all.

The idea is to find some Ã between A0 and the identity, between the perfect and the do-nothing
preconditioner. A good preconditioner is closest as possible to A0, and in such a way that applying
Ã −1 to a vector is easier than solving the initial linear system.

In this paper, we consider a preconditioner which is based on the Jacobian of the regularized
problem. A similar idea was suggested by Aposporidis et al. [2] in the context of a fixed point
algorithm and with a different reformulation of the viscoplastic flow problem. The Jacobian of
the regularized problem is invertible, thus easier to invert than the unregularized one. Also, as
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shown below, when the regularization parameter tends to zero, the Jacobian of the regularized
problem becomes close to those of the unregularized one, thus increasing the convergence rate of
the gmres algorithm for solving the unregularized problem. For all ε > 0, let us introduce the
regularized function ϕr,ε is defined for all γ̇ ∈ R+ by

ϕr,ε(γ̇) = rγ̇ +Kγ̇n +
σ0 γ̇

(γ̇2 + ε2)
1
2

This is a Bercovier and Engelman [3] style of regularization for the last term of the right-hand-side.
The regularized projection operator is then defined for all τ ∈ R2 by

Pr,ε(τ ) =

{
ϕ−1
r,ε(|τ |) τ|τ | when τ 6= 0

0 otherwise

As ϕr,ε is strictly increasing from ]0,+∞[ to ]0,+∞[, its inverse ϕ−1
r,ε is well defined. The regular-

ized problem writes:

(HB)r,ε: find u and β, defined in Ω, such that

r∆u− divβ = f in Ω (11a)

∇u− Pr,ε (β) = 0 in Ω (11b)

u = 0 on ∂Ω (11c)

This problem is differentiable and its Jacobian Aε = F ′ε has an expression which is similar to those
of the unregularized one, just replacing ϕr by ϕr,ε. For practical computations, the evaluations of
ϕ−1
r and ϕ−1

r,ε are also performed by a Newton method with a stopping criterion at the machine
precision (about 10−15 in double precision). This criterion is reached in very few iterations, as
both ϕr and ϕr,ε are regular. The Jacobian matrix Aε = F ′ε expresses

Aε =

(
A BT

B −Cε

)
Notice that Cε is symmetric definite positive. It is also block diagonal, since the stress components
are approximated by piecewise discontinuous k− 1 degree polynomials. For instance, when k = 1,
Cε is diagonal and when k = 2, it presents a 3 × 3 block diagonal structure. Thus, it is easy to
compute the inverse C−1

ε and β can be eliminated from the Jacobian of the regularized system.
After this elimination, it remains only one scalar unknown u and the corresponding reduced matrix
is the Schur complement Sε = A+BTC−1

ε B. This reduced matrix Sε can be factored one time
for all before to start the gmres iterations.

Finally, the Jacobian matrix Aε is expected to be close to the unregularized one A0 ∈ ∂F . Also,
as Aε is non-singular and much more easier to invert than A0. Thus, it is a good candidate to
be a preconditioner: the next section will confirm its efficiency on numerical experiments while
appendix B presents a study of the spectral convergence of Aε to A0 when ε→ 0.

5 Numerical results and performances

Fig. 3 shows the convergence of the Newton method for various values of the power law index n
and an uniform mesh with h = 1/160. The residue at iteration m is computed as the L2 norm
of F (um,βm). Recall that the unregularized problem is characterized by F (u,β) = 0. Thus, the
residue F (um,βm) is associated to the unregularized problem: it is independent upon ε > 0 that
denotes the parameter of the preconditioner, associated to the Jacobian of a regularized problem.
When the residue tends to zero while iteration m → +∞, then (um,βm) tends to a solution of
the unregularized problem. The stopping criteria on the residue is 10−12 and the preconditioner
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1

1 10 100 1000

residue

Newton iteration m

n = 0.3
n = 0.5
n = 1

Figure 3: Damped Newton method for the Herschel-Bulkley problem: residue vs Newton iterations
for various n, with Bi = 0.1, r = 0.5, ε = 10−5, k = 1 and h = 1/160.

uses ε = 10−5 on Fig. 3. Observe that, for both n = 0.3 and n = 0.5, the convergence is very
fast, less than 20 iterations: this is the expected behavior of the Newton method when F is
sufficiently regular. Changing the value of the parameter r has few influence on performances and
all computations presented in this paper are performed with r = 0.5. When n = 1 (Bingham
model), the convergence is much more slower: it is asymptotically linear in log-log scale, which
means that the residue decreases as 1/mα. This slow down of the convergence rate is probably
due to the lower regularity of F when n = 1 (see also Fig. 2).

(a) n = 0.3 (b) n = 1

10−10

10−5

1

0 10 20 30 40 50 60

residue

Newton iteration m

h = 1/10
h = 1/20
h = 1/40
h = 1/80

10−10

10−5

1

0 10 20 30 40 50 60

residue

Newton iteration m

h = 1/10
h = 1/20
h = 1/40
h = 1/80

Figure 4: Damped Newton method for the Herschel-Bulkley problem: residue vs Newton iterations
for various mesh refinement h with Bi = 0.5, r = 0.5, k = 1 and ε = 10−5. (a) n = 0.3 ; (b) n = 1.

Observe on Fig. 4.a that when n = 0.3, the convergence is asymptotically mesh-invariant (for
the mesh-invariance property of nonlinear algorithms, see [39, chap. 8]). Conversely, when n = 1
(Fig. 4.b), the convergence rate depends mesh refinement and there are long plateau where the
residue decreases slowly.

There are two loops: one outer loop, with index m, for the Newton iterations, and one inner
loop for the iterative resolution of the Jacobian. As we have now studied the outer loop, let us
look at the inner one. Fig. 5.a shows the convergence properties of the Jacobian solver with the
gmres algorithm for various meshes and the preconditioner based on the regularized problem with
ε = 10−5. For the smallest meshes, the Jacobian system is solved with few iterations while the
convergence rate becomes slower with mesh refinement and the largest meshes are still the most
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Jacobian’s residue

GMRES iteration

h = 1/160
h = 1/80
h = 1/40
h = 1/20

10−10

10−5

1

0 100 200 300

Jacobian’s residue

GMRES iteration

ε = 10−3

ε = 10−5

ε = 10−7

Figure 5: Preconditioning the Jacobian by using the Jacobian of the regularized problem: Bi = 0.1,
n = 0.5, k = 1 and r = 0.5. (a) ε = 10−5 and varying h; (b) h = 1/80 and varying ε.

difficult to solve. Fig. 5.b shows that the preconditioner efficiency increases when ε decreases, as
the regularized Jacobian approaches better the exact one. Using too small ε, lower than 10−7,
could interfere with the finite machine precision, about 10−15 for double precision. Increasing the
machine precision, e.g. quadruple precision could be useful here, in order to continue to decrease
ε and increase the solver efficiency.

An inexact variant of the Newton [13] method is possible and very efficient here. The idea is
to stop the inner gmres iteration when the residue of the Jacobian system reaches a ratio, e.g.
10%, of the residue of the current Newton iteration. For simplicity, let us denote χ = (u,β) and
consider the Jacobian system with A0 ∈ ∂F (χ):

A0 δχ = −F (χ)

In that case, the iterative gmres solver stops when the residue is less than 0.1 × ‖F (χ)‖. This
modification maintains the superlinear convergence property of the Newton method and each
linear solver call requires only very few iterations, thanks to the efficient preconditioner.

10−10

10−5

1

0 10 20 30 40 50

residue

tcpu(sec.)

augmented Lagrangian
inexact Newton

10−10

10−5

1

10−1 1 10 102 103

residue

0.9

tcpu(sec.)

augmented Lagrangian
inexact Newton

Figure 6: Comparison between the inexact damped Newton method and the augmented La-
grangian algorithm (AL) for the Herschel-Bulkley problem: residual term vs CPU time, in seconds
when Bi = 0.1, n = 0.5, h = 1/80, k = 1 (r = 0.5, ε = 10−7 for Newton and r = 7 for AL) (a) in
semi-log scale ; (b) in log-log scale.

Fig. 6 plots a comparison of the present inexact preconditioned damped Newton algorithm with
the classical Uzawa/augmented Lagrangian method, as proposed in [41] for the Bingham model
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and extended in [40, ch. 3] to the Herschel-Bulkley model. The augmentation parameter r for the
augmented Lagrangian algorithm (AL) has been specially optimized (r = 7) for the present mesh
(a pipe sector with h = 1/80 and 5781 elements) in order to present the best possible convergence
rate. Both algorithms are implemented in the Rheolef free software FEM library [39]. The Poisson
matrix with no-slip boundary condition used by the AL is factored in sparse format one time for
all, thanks to the suitesparse library [8]. At each iteration of the AL, a linear system is solved,
based on this factorization. For the present inexact Newton algorithm, the Schur complement Sε
of the Jacobian matrix of the regularized problem, used as preconditioner, is also factored by the
same way. This factorization has too be performed at each iteration of the Newton method, so each
iteration of the Newton method is expected to be slower than its AL counterpart. For this reason,
Fig. 6 compares these two methods in term of the CPU time. Observe the dramatic efficiency of
the Newton algorithm, which converges in less than 5 seconds to a residue less than 10−10 while
the AL becomes slower and slower in semi-log scale and adopts an asymptotic behavior, as shown
in log-log scale: after a rapid decrease until 10−5, it slow down and asymptotically behaves as
1/tα, with α between 0.9 and 1. It reaches 10−10 after about three hours. By extrapolation, 10−11

will be reached after one day, 10−12 after 12 days and 10−15 after 31 years.

41 111 elements
20 783 vertices

(z3)

(z1)

(z2)

0.052

(z1) (z2) (z3)

Figure 7: Representation of the auto-adaptive mesh and the solution obtained by the Newton
method (Bi = 0.5, n = 0.5 and k = 2). From top to bottom and left to right: the adaptive mesh,
global view, zooms along the x axis (z1), along the first bisector (z2) and near the dead zone (z3).
In gray, the shear region |σ| > Bi. Black lines are isocontours of the velocity. Comparison with
the augmented Lagrangian solution: in red, isocontour |σ| = Bi.

Fig. 7 shows the solution obtained with k = 2 (quadratic approximation for the velocity and
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discontinuous piecewise linear approximation of the stresses). The automatic adaptive mesh pro-
cedure, as presented in [41, 35], is used here, combined here with the Newton solver instead of the
augmented Lagrangian one. Observe that the mesh is refined along the yield surface: as shown
in [34], this procedure is required in order to recover an optimal convergence rate with respect
to the polynomial degree k. The shear region is represented in gray while black lines are isocon-
tours of the velocity. The yield surfaces is compared with those as predicted by the augmented
Lagrangian algorithm (red lines) on the same adapted mesh. Both the augmented Lagrangian
and the Newton algorithms were stopped when the residual term becomes lower than 10−10. The
maximum velocity, reached in the central plug, is 6.602 × 10−2 with less than 0.03 % of rela-
tive error between booth algorithms. The minimum edge length is 3 × 10−4. Observe the good
correspondence between both algorithms for the prediction of the yield surface: the difference is
not perceptible on the global view. Zooms close to the intersection of the yield surface with the
boundaries show some tiny differences that are of the order of magnitude of the smallest edge
length of the mesh. The augmented Lagrangian algorithm stops after 252 193 iterations and uses
41 CPU hours while the Newton one stops after 27 iterations and uses 404 CPU seconds. The
speedup is of about 350 in this case.

41 924 elements
21 059 vertices

(z1)

(z2)
(z3)

0.7

0.75

(z1) (z2) (z3)

Figure 8: Representation of the auto-adaptive mesh and the solution obtained by the Newton
method (Bi = 1, n = 0.5 and k = 2). Legend is the same as for Fig. 7.

Fig. 8 presents a similar comparison when Bi = 1: this situation is close to the arrested state
u = 0, which occurs at a critical Bingham number Bic = 4/(2 +

√
π) ≈ 1.0603178 . . . as shown

in [41]. Notice that this critical Bingham number Bic do not depend upon the power law index n.
It is defined as the solution of the following limit load analysis problem: find the smallest Bi such

12



that there exists σ satisfying |σ| 6 Bi and divσ = −f in Ω. This is a challenging computation:
it is difficult to get accurate solutions at the vicinity of the arrested state, and especially accurate
predictions of the yield surface near the arrested state. When Bi = 1, the velocity is small:
both the Newton and the augmented Lagrangian algorithms obtain that the maximum velocity is
1.04× 10−4 with about 1 % of relative error. Both the augmented Lagrangian and the Newton
algorithms were stopped when the residual term becomes lower than 10−10. Fig. 8 confirms the
good agreement between the computations obtained by these algorithms. Zooms show that the
small differences observed for the prediction of the yield surface near the dead zone remains of the
order of magnitude of the smallest edge length of the mesh, which is 2 × 10−4. The augmented
Lagrangian algorithm stops after 315 131 iterations and uses 52 CPU hours while the Newton one
stops after 20 iterations and uses 110 CPU seconds. The speedup is of about 1700 in this case.

Conclusion

For the first time, a Newton method is proposed for the unregularized viscoplastic fluid flow
problem. This method bases on a reformulation of the problem in terms of a projection operator.
It leads to a superlinear convergence for Herschel-Bulkley fluids when 0 < n < 1. At each iteration,
the singular Jacobian system is solved by an iterative method and an efficient preconditioner
based on the regularized problem. An inexact approach permits to increase the performances of
the algorithm. A demonstration is provided by computing a viscoplastic flow in a pipe with a
square cross section. Comparisons with the augmented Lagrangian algorithm show a dramatic
reduction of the required computing time while this algorithm provides an equivalent accuracy for
the prediction of the yield surfaces. Future work will extend this approach to larger flow problems
such as flows around obstacles and tridimensional geometries.
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A Equivalence proof for the reformulations with projec-
tions

Property 1 (equivalence of the formulation with projection)
Problems (1a)-(1d) and (2a)-(2c) are equivalent.

Proof: As (1c)-(1d) and (2b)-(2c) are identical, it is sufficient to prove that (1a)-(1b) is equivalent
to (2a). Assuming ∇u 6= 0, we take the norm of (1a) and obtain |σ| = K|∇u|n + σ0 Then, as

|σ| > σ0, we get |∇u| = K−1/n (|σ| − σ0)
1/n

. Remark that (1a) expresses that the vectors σ and

∇u are co-linear, i.e.
∇u
|∇u| =

σ

|σ| . Substituting the previous expression of |∇u| in terms of |σ|, we

get ∇u = |∇u| σ|σ| = K−1/n (|σ| − σ0)
1/n σ

|σ| . From the definition (3) of the projection P0, this

is equivalent (2a) when |σ| > σ0. Otherwise, when |σ| 6 σ0, we have ∇u = 0 and the proof is
complete.

Property 2 (equivalence for the augmented projection)
Relation (4) is satisfied for all r > 0.

Proof: Suppose first that |σ + rγ| > σ0. Then, tacking the norm of γ = Pr(σ +
rγ) leads to |γ| = ϕ−1

r (|σ + rγ|) or equivalently |σ + rγ| = ϕr(|γ|) = σ0 +K|γ|n + r|γ|. Re-
mark that γ = Pr(σ + rγ) implies that vectors γ and σ + rγ are co-linear, and then that
γ and σ are also co-linear. Then |σ + rγ| = |σ|+ r|γ| and the previous relation gives

|σ| = σ0 +K|γ|n > σ0. As γ and σ are co-linear, we have σ = |σ| γ|γ| = σ0
γ

|γ| +K|γ|n−1γ or

equivalently γ = K−1/n (|σ| − σ0)
1/n σ

|σ| . This is exactly γ = P0(σ + rγ) when σ > σ0. Other-

wise, when |σ + rγ| > σ0 then γ = 0 and thus |σ| > σ0 which completes the proof.

Property 3 (equivalence of the augmented formulation with projection)
Problems (1a)-(1d) and (7a)-(2c) are equivalent.

Proof: From property 1, it is sufficient to prove that problems (1a)-(1d) and (7a)-(2c) are equiva-
lent. Replacing β by σ + r∇u in (7a) leads to (1c). The equivalence between (7a) and (1c) is a
direct consequence of property 2.

B Spectral study of the preconditioner

A spectral investigation of the matrix A −1
ε A0 of the preconditioned system (10) is performed

in this appendix. Here, Aε denotes the Jacobian of the regularized system and A0 those of the
unregularized one. Fig. 9 (left) plots the eigenvalues of Cε − C0 for ε = 10−5 for a small-sized
problem (h = 1/10). Observe that all eigenvalues are lower than 10−5. Fig. 9 (right) represents
the spectral radius sp(Cε − C0) = λmax(Cε − C0)− λmin(Cε − C0) versus ε. where λmax and λmin

denotes the two extremal eigenvalues. Observe that sp(Cε − C0) = O(ε).

Property 4 (convergence of the preconditioner)
The matrix of preconditioned linear system A −1

ε A0 converge to the identity when ε→ 0. Moreover,
the distance of its eigenvalues from 1 scales as O(ε).

Proof: The proof is inspired by Aposporidis et al. [2, p. 46]: these authors studied a preconditioner
with a similar structure, in a different context, for a fixed point algorithm and a different refor-
mulation of the problem. The matrix Aε admits the following block factorization as a product of
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Figure 9: Spectral study of the preconditioner: (left) absolute values of the eigenvalues of Cε−C0 ;
(right) spectral radius sp(Cε − C0) vs ε. With Bi = 0.1, n = 0.5, h = 1/10 and k = 1.

block triangular matrix [14, ch. 6]:

Aε =

(
A BT

B −Cε

)
=

(
A 0
B −Sε

)(
I A−1BT

0 I

)
where Sε = Cε +BA−1BT denotes the Schur complement of Aε. Then

A −1
ε =

(
I −A−1BT

0 I

)(
A−1 0

S−1
ε BA−1 −S−1

ε

)
and

A −1
ε A0 =

(
I A−1BT (I − S−1

ε S0)
0 S−1

ε S0

)
where S0 = C0 +BA−1BT . Remark that A −1

ε A0 tends to the identity when S−1
ε S0 tends also

to I. Then, the convergence study of A −1
ε A0 reduces to those of S−1

ε S0.

S−1
ε S0 =

(
Cε +BA−1BT

)−1 (
C0 +BA−1BT

)
=

(
Cε +BA−1BT

)−1 (
Cε +BA−1BT − (Cε − C0)

)
= I −

(
Cε +BA−1BT

)−1
(Cε − C0)

Let λε be an eigenvalue of
(
Cε +BA−1BT

)−1
(Cε − C0). There exists an associated eigenvector

τ 6= 0 such that (
Cε +BA−1BT

)−1
(Cε − C0) τ = λετ

⇐⇒ (1− λε)Cετ =
(
C0 + λεBA

−1BT
)
τ

after some rearrangements. Next, let µε be an eigenvalue of
(
C0 +BA−1BT

)−1
(Cε − C0). There

exists an associated eigenvector ζ 6= 0 such that(
C0 +BA−1BT

)−1
(Cε − C0) ζ = µεζ

⇐⇒ (1− λ̃ε)Cεζ =
(
C0 + λ̃εBA

−1BT
)
ζ

with λ̃ε = µε/(1 +µε). Then λ̃ε is an eigenvalue of
(
Cε +BA−1BT

)−1
(Cε − C0). As sp(Cε−C0)

tends to zero as O(ε) (see Fig. 9), we have µε = O(ε) and so is λ̃ε. Then S−1
ε S0 and A −1

ε A0 tend
to identity when ε→ 0 and the distance of their eigenvalues from 1 scales as O(ε).
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