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Abstract – A new damped Newton algorithm for viscoelastic fluid flows is presented
in this paper. This algorithm bases on a projection formulation of the viscoplastic
problem and an efficient preconditioned iterative solved for the singular Jacobian. A
demonstration is provided by the computing a viscoplastic flow in a pipe with a square
cross section and performance are compared with the augmented Lagrangian algorithm.
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Introduction

The numerical resolution of viscoplastic fluid flows is still a challenging task. The augmented
Lagrangian method has been introduced in 1969 by Hestenes [18] and Powell [27]. During
the 1970s, this approach became popular for solving optimization problems (see e.g. Rockafel-
lar [30]). In 1980, Glowinski [15] and then Fortin and Glowinski [13] proposed to apply it to the
solution of the linear Stokes problem and also to others non-linear problems such as Bingham fluid
flows. In 1980, Bercovier and Engelman [3] proposed a viscosity function for the regularization of
Bingham flow problem. In 1987, another viscosity function was proposed by Papanastasiou [26].
During the 1980s and the 1990s, numerical computations for Bingham flow problems was domi-
nated by the regularization method, perhaps due to its simplicity, while the augmented Lagrangian
algorithm leaded not yet convincing results for viscoplastic flow applications. In 1989, Glowinski
and le Tallec [16] revisited the augmented Lagrangian method, using new optimization and con-
vex analysis tools, such as subdifferential, but no evidence of the efficiency of this approach to
viscoplasticity was showed, while regularization approach becomes more popular in the 1990s with
the work of Mitsoulis et al. [19] and Wilson and Taylor [39]. In 2001, Saramito and Roquet [36, 31]
showed for the first time the efficiency of the augmented Lagrangian algorithm when combined
with auto-adaptive mesh methods for capturing accurately the yield surface. In the 2000s, this ap-
proach became mature and a healthy competition developed between the regularization approach
and the augmented Lagrangian one. Vola, Boscardin and Latché [38] obtained results for a driven
cavity flow with the augmented Lagrangian algorithm while Mitsoulis et al. [20] presented compu-
tation for an expansion flow with regularization and Frigaard et al. [21, 14, 29] pointed out some
drawbacks of the regularization approach. Finally, at the end of the 2000s decade, the augmented
Lagrangian algorithm becomes the most popular way to solve viscoplastic flow problems [22, 11]
because of its accuracy, despite the regularization approach runs much more faster. The free soft-
ware Rheolef library, developped by the author and supporting both the augmented Lagrangian
algorithm and an auto-adaptive mesh technique is now widely used for various flow applications
(see e.g. [28, 32, 33, 4]).
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The main drawback of the augmented Lagrangian algorithm is its computing time for large ap-
plications, especially when the Bingham number becomes large. This paper is a contribution to
an ongoing effort for the development of faster algorithms for the resolution of the unregularized
viscoplastic model. One of the most efficient algorithm to solve nonlinear problems is the Newton
method, due to its super-linear convergence properties (see e.g. [24]). This approach has already
been investigated for the regularized approach of the viscoplastic problem (see e.g. [5] and most
recently [8, 9, 10] for the biviscous regularization). Applying the Newton method to the unregu-
larized viscoplastic problem leads to a singular Jacobian matrix. This difficulty has been recently
addressed by using the trusted region algorithm [37], that regularizes the Jacobian matrix but
loses the superlinear convergence of the method. In this paper, our contribution is to address
directly the singularity of the Jacobian matrix in the Newton method in order to preserve the
superlinear convergence. The proposed reformulation of the viscoplastic flow problem is inspired
by the work of Alart and Curnier [1] on another non-smooth problem, the frictional contact one,
that was successfully addressed by a Newton method.

Section 1 presents the viscoplastic flow problem and its mathematical statement. This problem is
reformulated in section 2 in terms of a projection operator and section 3 presents its variational
formulation and discretization. Section 4 develops the Newton algorithm and the resolution of the
Jacobian matrix while section 5 shows preliminary results for this approach.

1 Problem statement

The Bingham [6, 23] and Herschel-Bulkley [17] models are characterized by the following property:
the material starts to flow only if the applied forces exceed a certain limit σ0, called the yield limit.
The total Cauchy stress tensor is expressed by:

σtot = −p.I + σ

where σ denotes its deviatoric part, and p is the pressure. The conservation of momentum is:

ρ

(
∂u

∂t
+ u.∇u

)
− div σ +∇p = 0

where u is the velocity field, and ρ the constant density. The mass conservation leads to:

divu = 0

The constitutive equation writes:

σ = K|2D(u)|−1+n2D(u) + σ0
2D(u)

|2D(u)|
if |D(u)| 6= 0

|σ| 6 σ0 if |D(u)| = 0

or equivalently:

2D(u) =


1

K1/n
(|σ| − σ0)

1/n σ

|σ|
if |σ| > σ0

0 otherwise

where σ0 > 0 is the yield stress, K > 0 is the consistency, n > 0 is the power index,
D(u) = (∇u+∇uT )/2 is the rate-of-deformation tensor, and, for any tensor τ = (τi,j)16i,j63,
the notation |τ | represents the following matrix norm:

|τ | =
√
τ : τ

2
=

1√
2

 3∑
i,j=1

τ2
i,j

 1
2
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Notice that when σ0 = 0 and n = 1, one is led to the classical viscous incompressible fluid. When
σ0 > 0, rigid zones in the interior of the fluid can be observed. As σ0 becomes larger, these rigid
zones develop and may completely block the flow when σ0 is sufficiently large. When n = 1 and
σ0 > 0 the model is called the Bingham one while for a general power law index n > 0 this is the
Herschel-Bulkley model.
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Figure 1: Square tube cross-section: (a) tridimensional view; (b) schematic view of the cross-
section.

We consider the fully developed flow in a prismatic tube, as shown on Fig. 1.a (see also [36]). Let
(Oz) be the axis of the tube and (Oxy) the plane of the bounded section Ω ⊂ IR2. The pressure
gradient is written as ∇p = (0, 0, −f) in Ω, where f > 0 is the constant applied force density. The
velocity is written as u = (0, 0, u), where the third component u along the (Oz) axis depends only
upon x and y, and is independent of t and z. The problem can be considered as a two-dimensional
one, and the stress tensor σ is equivalent to a two shear stress component vector: σ = (σxz, σyz).
We also use the following notations:

∇u =

(
∂u

∂x
,
∂u

∂y

)
divσ =

∂σxz
∂x

+
∂σyz
∂y

|σ| =
√
σ2
xz + σ2

yz

Finally, the problem can be summarized as:

(HB): find σ and u defined in Ω such that :

∇u = P0(σ) (1a)

divσ = −f in Ω (1b)

u = 0 on ∂Ω (1c)

where P0 denotes the following projection operator, defined for all τ ∈ R2 by

P0(τ ) =


1

K1/n
(|τ | − σ0)

1/n τ

|τ |
when |τ | > σ0

0 otherwise

(2)
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Here, (1a) expresses the constitutive equation, (1b) the conservation of momentum and (1c) the no-
slip boundary condition. In the case of a square cross-section, we reduce the domain of computation
by using symmetries (see Fig. 1.a).

Let L be a characteristic length of the cross-section Ω, i.e. the half-length of an edge of a square
section, or the radius of a circular section (also denoted by R for convenience in that case). A
characteristic stress is given by Σ = Lf/2 and a characteristic velocity U is such that Σ = K(U/L)n

i.e. U = (Lf/(2K))1/nL. The Bingham dimensionless number is defined by the ratio of the yield
stress σ0 by the representative viscous stress Σ:

Bi =
2σ0

Lf

The Bingham number Bi and the power law index n are the only two dimensionless numbers of
the problem.

2 Reformulation of the problem

Observe that, for all σ and γ ∈ R2 and for all σ0 > 0 and n > 0, the projection operator P0

introduced in (2) satisfies, for all r > 0, the following property:

γ = P0(σ)⇐⇒ γ = Pr(σ + rγ) (3)

where Pr denotes the following extended projection operator, defined for all τ ∈ R2 by

Pr(τ ) =


ϕ−1
r (|τ |) τ

|τ |
when |τ | > σ0

0 otherwise

(4)

and where ϕr is defined for all γ̇ > 0 by

ϕr(γ̇) = σ0 +Kγ̇n + rγ̇

Remark that the r parameter, involved in the extended projection operator Pr, interprets as an
augmentation parameter, similar to those involved by the augmented Lagrangian formulation.

0

0 σ0

ϕ−1
r (ξ)

ξ

n = 1
n = 0.5
n = 0.3

Figure 2: The ϕ−1
r function for various values of n.
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As the function ϕr is strictly increasing in [0,+∞[, it is invertible from [0,+∞[ to [σ0,+∞[ and
its inverse denoted by ϕ−1

r is well defined in [σ0,+∞[ (see Fig. 2).

Let us perform a change of unknown by introducing

β = σ + r∇u⇐⇒ σ = β − r∇u

Then, problem (1a)-(1c) writes equivalently as

(HB)r: find u and β such that

r∆u− divβ = f in Ω (5a)

∇u− Pr(β) = 0 in Ω (5b)

u = 0 on ∂Ω (5c)

Observe that, from (3), the solution is independent upon r ∈ [0, 1[. An inspection of the regularity
of ϕr in zero shows that this function is C1 only when n < 1 (see also Fig. 2). When n = 1 (Bing-
ham model) we have ϕ′r(0) = r +K 6= 0 and thus (ϕ−1

r )′(σ−0 ) = 0 while (ϕ−1
r )′(σ+

0 ) = 1/(r +K).
This loss of regularity in the case n = 1 will impact the convergence properties of the forthcoming
Newton method.

3 Variational formulation and discretization

Consider the following forms:

a(u, v) = −r
∫

Ω

∇u .∇v dx, ∀u, v ∈ H1(Ω)

b(v, τ ) =

∫
Ω

∇v .τ dx, ∀τ ∈
(
L2(Ω)

)2
, ∀v ∈ H1(Ω)

c(β, τ ) =

∫
Ω

κr(|β|)β.τ dx, ∀β, τ ∈
(
L2(Ω)

)2
`(v) =

∫
Ω

f v dx, ∀v ∈ L2(Ω)

where κr denotes the following function, defined for all ξ ∈ R+ by

κr(ξ) =


ϕ−1
r (ξ)

ξ
when ξ > σ0

0 otherwise

The variational formulation writes:
(FV )r: find u ∈ H1

0 (Ω) and β ∈
(
L2(Ω)

)2
such that

a(u, v) + b(v,β) = `(v), ∀v ∈ H1
0 (Ω)

b(u, τ )− c(β, τ ) = 0, ∀τ ∈
(
L2(Ω)

)2
This problem is then discretized by using a mixed finite element method (see e.g. [36]). The velocity
u is approximated by continuous piecewise polynomials of order k > 1 while the shear stress vector
β is approximated by discontinuous k− 1 polynomials. In the present paper, all computations are
performed with k = 1, i.e. piecewise affine and continuous velocities and piecewise constant
stresses. As the corresponding approximated problem is similar to the continuous one, it is not
developed here. For the purpose of simplicity, we also continue to work with the continuous
problem in the next section, dedicated to the Newton method.

5



4 Newton method

The problem can be expressed in a compact form:

find u ∈ H1
0 (Ω) and β ∈

(
L2(Ω)

)2
such that

F (u,β) = 0

where F is defined in variational form for all v ∈ H1(Ω) and τ ∈
(
L2(Ω)

)2
by

〈F (u,β), (v, τ )〉 = a(u, v) + b(β, v) + b(τ , u)− c(β, τ )

and where 〈., .〉 denotes the duality product induced by the L2 pivot space i.e. 〈ϕ, φ〉 =
∫

Ω
ϕφdx

for all ϕ, φ defined in Ω.

The Newton method defines the sequence (uk,βk)k>0 by recurrence as:

• k = 0: let (u0,β0) ∈ H1
0 (Ω)×

(
L2(Ω)

)2
being given.

• k > 0: let
(
uk−1,βk−1

)
∈ H1

0 (Ω)×
(
L2(Ω)

)2
being known.

Find (δu, δβ) ∈ H1
0 (Ω)×

(
L2(Ω)

)2
such that

F ′
(
uk−1,βk−1

)
. (δu, δβ) = −F

(
uk−1,βk−1

)
and then defines

uk = uk−1 + δu and βk = βk−1 + δβ

At each step k > 0, this algorithm solves a linear subproblem involving the Jacobian F ′. The
Newton method has only local convergence properties, i.e. the initial value should be close enough
to the solution. In order to circumvent this limitation, a globalized Newton variant is used here.
It is based on a damping strategy, as described and implemented in the Rheolef free software
FEM library [35].

As F is Gâteau differentiable, the Jacobian F ′ is defined, for all δu ∈ H1(Ω) and δβ ∈
(
L2(Ω)

)2
and v ∈ H1

0 (Ω) and τ ∈
(
L2(Ω)

)2
by

〈F ′(u,β).(δu, δβ), (v, τ )〉 = a(δu, v) + b(δβ, v) + b(τ , δu)− c1(β; δβ, τ )

where c1 denotes the following form:

c1(β; δβ, τ ) =

∫
Ω

(P ′r(β)δβ) .τ dx

and, for all β ∈ R2, we denote by P ′r(β) the following 2× 2 matrix:

P ′r(β) =


ϕ−1
r (|β| − σ0)

|β|
I +
|β|
(
ϕ−1
r

)′
(|β| − σ0)− ϕ−1

r (|β| − σ0)

|β|3
β ⊗ β when |β| > σ0

0 otherwise

Here,
(
ϕ−1
r

)′
denotes the derivative of the inverse of the function ϕr, defined for all ξ > σ0 by

(
ϕ−1
r

)′
(ξ) =

1

ϕ′r
(
ϕ−1
r (ξ)

) =
1

r + nK
(
ϕ−1
r (ξ)

)−1+n
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Let A, B and C1 the operators associated to the bilinear forms a(., .), b(., .) and c1(βk−1; ., .)
respectively. The linear problem satisfied by (δu, δβ) writes also:(

A B∗

B −C1

)(
δu
δβ

)
=

(
−Fu

(
uk−1,βk−1

)
−Fβ

(
uk−1,βk−1

) )
Notice that A is linear symmetric definite negative while C1 is nonlinear symmetric semi-definite
positive. Recall that we expect the existence of subdomains of Ω with nonzero measure where
∇u = 0 and |β| < σ0. In these subdomains, the matrix P ′r(β) is zero. Thus, the Jacobian
F ′ is not expected to be invertible in general. Moreover, as A is negative, F ′ is indefinite (i.e.
it has both positive and negative eigenvalues). As F ′ is singular, there exists an infinity of
solutions: it is sufficient to choose one of them for the damped Newton method to converge. To
this purpose, we use Saad and Schultz’ gmres algorithm [34] for solving this indefinite and possibly
singular linear system. It can be considered as a generalization of Paige and Saunders’ minres
algorithm [25] which applies more specifically to symmetric and definite systems, possibly singular.
This algorithm is implemented in the Rheolef free software FEM library [35] together with the
damped Newton method. The convergence rate of the gmres algorithm can be dramatically
increased by supplying a preconditioner, i.e. another matrix, easier to invert, and close to the
Jacobian matrix. In this paper, we consider a preconditioner which is based on the Jacobian of
the regularized problem. A similar idea was suggested by Aposporidis [2] in the context of a fixed
point algorithm and a different reformulation of the viscoplastic flow problem.

The Jacobian of the regularized problem is invertible, thus easier to invert than the unregularized
one. Also, when the regularization parameter tends to zero, the Jacobian of the regularized
problem becomes close to those of the unregularized one, thus increasing the convergence rate of
the gmres algorithm for solving the unregularized problem. For all ε > 0, let us introduce the
regularized function ϕr,ε is defined for all γ̇ ∈ R+ by

ϕr,ε(γ̇) = rγ̇ +Kγ̇n +
σ0 γ̇

(γ̇2 + ε2)
1
2

and the regularized projection operator, defined for all τ ∈ R2 by

Pr,ε(τ ) =

{
ϕ−1
r,ε(|τ |) τ

|τ |
when |τ | > σ0

0 otherwise

As ϕr,ε is strictly increasing from ]0,+∞[ to ]0,+∞[, its inverse ϕ−1
r,ε is well defined. The regular-

ized problem writes:

(HB)r,ε: find u and β, defined in Ω, such that

r∆u− divβ = f in Ω (6a)

∇u− Pr,ε (β) = 0 in Ω (6b)

u = 0 on ∂Ω (6c)

The Jacobian Fε has an expression which is similar to those of the unregularized one, just replacing
ϕr by ϕr,ε. The Jacobian F ′ε is expected to be close to the unregularized one F ′ and it is also
non-singular, so easier to invert than F ′. Thus, it is a good candidate to be a preconditioner, as
shown in the next section. For practical computations, the evaluations of ϕ−1

r and ϕ−1
r,ε are also

performed by a Newton method with a stopping criterion at the machine precision (about 10−15

in double precision). This criterion is reached in very few iterations, as ϕr is regular.

5 Numerical results and performances

Fig. 3 shows the convergence of the Newton method for various values of the power law index n
and an uniform mesh with h = 1/160. The residue at iteration k is computed as the L2 norm of
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10−10

10−5

1

1 10 100 1000

residue

newton iteration

n = 0.3
n = 0.5
n = 1

Figure 3: Damped Newton method for the Herschel-Bulkley problem: residue vs Newton iterations
for various n, with Bi = 0.1, r = 0.5, ε = 10−5 and h = 1/160.

F (uk,βk). The stopping criteria on the residue is 10−12 and the preconditioner uses ε = 10−5.
Observe that, for both n = 0.3 and n = 0.5, the convergence is very fast, less than 20 iterations:
this is the expected behavior of the Newton method when F is sufficiently regular. Changing the
value of the parameter r has few influence on performances and all computations presented in this
paper are performed with r = 0.5. When n = 1 (Bingham model), the convergence is much more
slower: it is asymptotically linear in log-log scale, which means that the residue decreases as 1/kα.
This slow down of the convergence rate is probably due to the lower regularity of F when n = 1
(see also Fig. 2).

(a) n = 0.3 (b) n = 1

10−10

10−5

1

0 10 20 30 40 50 60

residue

newton iteration

h = 1/10
h = 1/20
h = 1/40
h = 1/80

10−10

10−5

1

0 10 20 30 40 50 60

residue

newton iteration

h = 1/10
h = 1/20
h = 1/40
h = 1/80

Figure 4: Damped Newton method for the Herschel-Bulkley problem: residue vs Newton iterations
for various mesh refinement h with Bi = 0.5, r = 0.5 and ε = 10−5. (a) n = 0.3 ; (b) n = 1.

Observe on Fig. 4.a that when n = 0.3, the convergence is asymptotically mesh-invariant (for
the mesh-invariance property of nonlinear algorithms, see [35, chap. 8]). Conversely, when n = 1
(Fig. 4.b), the convergence rate depends mesh refinement and there are long plateau where the
residue decreases slowly.

Fig. 5.a shows the convergence properties of the Jacobian solver with the gmres algorithm for
various meshes and the preconditioner based on the regularized problem with ε = 10−5. For the
smallest meshes, the Jacobian system is solved with few iterations while the convergence rate
becomes slower with mesh refinement and the largest meshes are still the most difficult to solve.
Fig. 5.b shows that the preconditioner efficiency increases when ε decreases, as the regularized
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10−10

10−5

1

0 100 200 300

Jaconian’s residue

gmres iteration

h = 1/160
h = 1/80
h = 1/40
h = 1/20

10−10

10−5

1

0 100 200 300

Jacobian’s residue

gmres iteration

ε = 10−3

ε = 10−5

ε = 10−7

Figure 5: Preconditioning the Jacobian by using the regularized problem: Bi = 0.1, n = 0.5 and
r = 0.5. (a) ε = 10−5 and varying h; (b) h = 1/80 and varying ε.

Jacobian approaches better the exact one. Using too small ε, lower than 10−7, could interfere with
the finite machine precision, about 10−15 for double precision. Increasing the machine precision,
e.g. quadruple precision could be usefull here, in order to continue to decrease ε and increase the
solver efficiency.

An inexact variant of the Newton [12] method is possible and very efficient here. The idea is
to stop the inner gmres iteration when the residue of the Jacobian system reaches a ratio, e.g.
10%, of the residue of the current Newton iteration. For simplicity, let us denote χ = (u,β) and
consider the Jacobian system:

F ′(χ).δχ = −F (χ)

In that case, the iterative gmres solver stops when the residue is less than 0.1 × ‖F (χ)‖. This
modification maintains the superlinear convergence property of the Newton method and each
linear solver call requires only very few iterations, thanks to the efficient preconditioner.

10−10

10−5

1

0 10 20 30 40 50

residue

tcpu(sec.)

augmented Lagrangian
inexact Newton

10−10

10−5

1

10−1 1 10 102 103

residue

0.75

tcpu(sec.)

augmented Lagrangian
inexact Newton

Figure 6: Comparison between the inexact damped Newton method and the augmented La-
grangian algorithm (AL) for the Herschel-Bulkley problem: residu vs CPU time, in seconds when
Bi = 0.1, n = 0.5, h = 1/80 (r = 0.5, ε = 10−7 for Newton and r = 7 for AL) (a) in semi-log scale
; (b) in log-log scale.

Fig. 6 plots a comparison of the present inexact preconditioned damped Newton algorithm with the
classical Uzawa/augmented Lagrangian method, as proposed in [36]. The augmentation parameter
r for the augmented Lagrangian algorithm (AL) has been specially optimized (r = 7) for the
present mesh (a pipe sector with h = 1/80 and 5781 elements) in order to present the best
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possible convergence rate. Both algorithms are implemented in the Rheolef free software FEM
library [35]. The Poisson matrix with no-slip boundary condition used by the AL is factored in
sparse format one time for all, thanks to the suitesparse library [7]. At each iteration of the AL,
a linear system is solved, based on this factorization. For the present inexact Newton algorithm,
the Jacobian matrix of the regularized problem, used as preconditioner, is also factored by the
same way. This factorization has too be performed at each iteration of the Newton method, so each
iteration of the Newton method is expected to be slower than its AL counterpart. For this reason,
Fig. 6 compares these two methods in term of the CPU time. Observe the dramatic efficiency of
the Newton algorithm, which converge in less than 5 seconds to a residue less than 10−10 while
the AL becomes slower and slower in semi-log scale and adopts an asymptotic behavior, as shown
in semi-log scale, where the residue behaves as 1/tα, with α ≈ 0.75. After about 15 minutes,
the residue is of about 10−7 and, by extrapolation, reaching 10−10 would requires one day of
computation.

Conclusion

For the first time, a Newton method is proposed for the unregularized viscoplastic fluid flow
problem. It leads to a superlinear convergence for Herschel-Bulkley fluids when 0 < n < 1. At
each iteration, the singular Jacobian system is solved by an iterative method and an efficient
preconditioner based on the regularized problem and an inexact approach permits to increase
the performances of the algorithm. A demonstration is provided by the computing a viscoplastic
flow in a pipe with a square cross section and performances are compared with the augmented
Lagrangian algorithm. Future work will extends this approach to larger flow problems such as
flows around obstacles and tridimensional geometries.
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