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A Dynamic Model for Diameter Constrained
Networked Systems

Luigi Alfredo Grieco, Senior Member, IEEE, Mahdi Ben Alaya, Thierry Monteil, and Khalil Drira

Abstract—Random graphs have been widely investigated in
literature because of their relevance to many scientific domains.
In this brief, the attention is focused on diameter constrained
random graphs, useful to analyze unstructured overlays for delay
bounded network applications and systems. To this end, a general
process of arrivals is considered to describe the sequence of vertex
couples (i.e., node couples) among which a path composed of no
more than D edges (i.e., links) has to be established. Accordingly,
a topology formation mechanism M is formulated, expressing
the rules that drive the addition of new edges, obeying to the
constraint on the maximum diameter D. Third, using graph
theoretic arguments, an original discrete time model is proposed
that describes the evolution of the average network degree (i.e.,
the number of edges per node) subject to M and D. Fourth,
the model is successfully validated using computer simulations
in a wide range of scenarios (with up to 216 nodes). Finally,
concrete examples are provided to illustrate useful applications
of the proposed approach, also in the presence of link failures.

Index Terms—Graph theory, Topology, Networks, Overlay.

I. INTRODUCTION

Graph-based models are fundamental tools to assess, pre-
dict, and control the performance of complex systems, made
of interacting dynamic units. In these systems, vertice are usu-
ally associated to the dynamic units whereas edges represent
interactions. The application domains of graph-based models
include coupled biological/chemical systems, social networks,
software applications, and communication protocols [1]–[3].

In many real systems, unfortunately, the properties of their
interacting units cannot be deterministically known in advance.
In these cases, random graphs [4] can be fruitfully used to infer
the characteristics of the topology, based on the probabilistic
behavior of vertice and edges (see also [5] for a comprehensive
overview on the subject).

With reference to communication issues, random graphs
have been mainly adopted to describe unstructured overlays
[6]–[8], web properties [9], and Internet topology [10].

In this brief, we focus on diameter constrained overlays,
i.e., virtual network topologies having a diameter no larger
than a predefined threshold D. This kind of overlay is very
useful to support delay sensitive applications, such as in Peer-
to-Peer (P2P) TV [11] and emerging Machine-to-Machine
(M2M) systems [12]. In fact, the higher the diameter D the
higher the end-to-end communication delay [13]. The problem
of building diameter constrained graphs has been thoroughly
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afforded in [14] with reference to structured overlays, built
upon distributed hash tables (DHT). Unfortunately, to the best
of the authors’ knowledge, no theoretical contribution has been
formulated yet, able to describe with closed form expressions
the dynamics of an unstructured evolving overlay, subject
to a constraint of the maximum diameter D. This kind of
model could be very useful to enable closed loop autonomic
management strategies as well as to characterize, in a tractable
form, both transient and steady state properties of network
topologies in M2M scenarios [12], [15] and beyond.

Starting from this premise, a theoretical model based on
random graph is formulated herein, which considers a discrete
time process of arrivals to describe the sequence of vertex
couples among which a path composed of no more than D
edges has to be established. Accordingly, a general topology
formation mechanism M is formulated, expressing the rules
that drive the addition of new edges, obeying to the constraint
on the maximum diameter D. Then, exploiting the properties
of the binary adjacency matrix A in graph theory [16], an
original and tractable discrete time model is proposed that
describes the evolution of the average network degree (i.e.,
the number of edges per node) subject to M and D. The
model is successfully validated using computer simulations
in a wide range of scenarios (with up to 216 nodes). Finally,
concrete examples are provided to illustrate useful applications
of the proposed approach. They include: (i) the derivation
of an approximated upper bound D

√
2 ·N · lnN on graph

average degree (i.e., the average number of edges per vertex);
(ii) the comparison with respect to delay optimal de Bruijn
graphs [14]; (iii) the analysis of the graph robustness; (iv) the
derivation of system dynamics in presence of edge failures.

The rest of the brief is organized as follows: the main
theoretical achievement is presented in Sec. II and validated
in Sec. III. Useful examples of its applications are described
in Sec. IV. The last Sec. V closes the brief and draws future
research.

II. MODEL

A. Target Scenario and Notation

The target scenario considered in this brief consists of a
graph of N vertice, nq being the q-th vertix (q ∈ [1, N ]).
Furthermore, an ordered sequence of equi-probable 1 couples

1It is worth to note that equi-probable arrivals (i.e., homogeneous con-
ditions) are usually assumed in the current literature dealing with diameter
constrained graphs [14]. In fact, if the vertice of the graph represent the
gateway through which the service of a large number of nodes are made
available (as in M2M systems [17]), it is not unlikely that the overlay that
inter-connect such gateways actually reflects this assumption.



2

of vertice is considered, among which a path composed of
no more than D edges has to be established. The t-th couple
is described by the vertice (nit , njt). For sake of simplicity,
the variable t will be referred to as time from now on.
Knowing the t-th couple, a new edge is established in the graph
if and only if the two vertice (nit , njt) are not reciprocally
reachable in no more than D edges. Knowing, the number of
edges lt−1 at time t−1, the probability that a couple of vertice
at time t will not be reciprocally reachable in no more than D
edges is defined as Pt−1. Notice that, since we are assuming
homogeneous conditions, Pt−1 is the same for all the possible
couples (nit , njt).

Accordingly, our model is grounded on the following equa-
tion:

lt+1 = lt + Pt (1)

which, considering that the average degree [4] (i.e., the
number of edges per vertex) is kt = 2·lt

N , can be also expressed
as:

kt+1 = kt +
2

N
Pt (2)

The presence of an edge between any couple of vertice at
time t will be expressed (as usual in graph theory) using the
binary symmetric adjacency matrix ANxN

t , so that At(i, j) =
At(j, i) = 1 if and only if an edge between ni and nj exists
at time t (otherwise At(i, j) = At(j, i) = 0).

TABLE I
NOTATION.

Symbol Meaning
N Number of vertice
kt Average degree at time t
nq q-th vertex
D Maximum diameter
(nit , njt) t-th couple of vertice wishing to establish a path
lt Number of edges at time t
wt Number of path with less than D + 1 edges

between a couple of vertice at time t
Pt−1 Probability that no path exists shorter than D+1

edges between the vertice (nit , njt)
ANxN

t Symmetric binary adjacency matrix at time t
Pr{x} Probability of event x
x̂ Upper bound on x

To provide an illustrative example of the networked system
we are modeling as a random graph, Fig. 1 shows the evolution
of a graph made of N = 5 vertice and constrained by D = 2
max path length. In this example, the ordered sequence of
vertice (nit , njt) is: (n2, n4), (n1, n4), (n1, n2), (n4, n5),
(n2, n3), and (n1, n3). Accordingly, for each of them, a new
edge is added if and only if a path shorter than 3 edges is not
already available among corresponding vertice. In the sequel
of the contribution, we will derive a law that rule the evolution
of this kind of graphs in a general case.
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Fig. 1. Evolution of a random graph (N = 5, D = 2): a) initial state; b)
the first edge is added at t = 1 to connect vertice n2 and n4; c) the second
edge is added at t = 2 to connect vertice n1 and n4, but no edge is added
at t = 3 because the vertice n1 and n2 (asking for a connection) are already
connected by a path of 2 hops ≤ D; d) the third edge is added at t = 4 to
connect vertice n4 and n5; e) the fourth edge is added at t = 5 to connect
vertice n2 and n3; e) the fifth edge is added at t = 6 to connect vertice n1

and n3, for which the only existing path was longer than D hops.

B. Main result

Proposition 1. For a sufficiently large N , the following ex-
pression describes the dynamics of the average graph degree:

kt+1 ≈ kt +
2

N
· exp

(
− 1

N
· k

D+1
t − kt
kt − 1

)
(3)

Proof. The model considered here is based on Eq. (1), or
equivalently on finding an accurate approximation for the
probability Pt. The latter expresses the probability to find a
path at time t (no longer than D edges) between a generic
couple of vertice (nit+1 , njt+1), knowing that the number of
already existing edges is lt.

To fulfill this objective, we first leverage a well known
property of the matrix At: Ac

t(i, j) = 0, c ∈ N+, if and only
if no path composed of c edges exist between ni and nj at
time t [16].

In this way, without lack of generality, Pt can be expressed
as follows:

Pt =

D∏
c=1

Pr{Ac
t(it+1, jt+1) = 0} (4)

Now, given that 2 · lt elements are equal to one in At, it
yields Pr{At(i, j) = 1} = 2·lt

N2 . Also, since any element of
Ac

t is no other than the sum of N c−1 elements, each one
being a product of c coefficients belonging to At, we can
approximately write:

Pr{Ac
t(it+1, jt+1) = 0} ≈

[
1−

(
2 · lt
N2

)c]Nc−1

(5)
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Now, recalling that (1 + 1
x )

x → e, when x → ∞, for a
sufficiently large N , Eq. (5) can be written as:

Pr{Ac
t(it+1, jt+1) = 0} ≈ exp

(
−N c−1 ·

(
2 · lt
N2

)c)
(6)

Accordingly, by substituting (6) in (4), it is obtained:

Pt ≈ exp

(
−

D∑
c=1

N c−1 ·
(
2 · lt
N2

)c
)

(7)

which, after a little algebra, becomes

Pt ≈ exp

(
− 1

N
·
( 2·ltN )D+1 − 2·lt

N
2·lt
N − 1

)
(8)

From [4], the average degree can be expressed as kt = 2·lt
N ,

so that we obtain the proof by substituting (8) in (2).

III. NUMERICAL VALIDATION

To validate the model (3), we have considered a complex
scenario composed of N vertice (with N ranging from 25 to
216) and D ranging from 3 to 10. Using an ad hoc simulator
we developed in Matlab, the relative error between the real
evolution of the degree k(t) and the one estimated using (3)
for all t is evaluated. In any case, we found that the average
relative error is below 10% if we consider the entire evolution
of k(t). Also, the relative error at steady state (once the graph
is completely formed), for D ≤ 5, is below 10%, whatever
N . Finally, we notice a slight increase in the relative error as
D increases: (in any case) it remains smaller than 25% and it
falls below 20% for N > 212.

To provide an illustrative example, Fig. 2 plots the dynamic
evolution of the number of edges versus the time t (similar
results have been obtained for different values of N and D so
that the average relative error is below 10% in all cases).
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Fig. 2. Evolution of the number of edges over the time t, (N = 1000,
D = 5).

It is worth to note that the number of edges linearly
increases with t till a saturation point is reached. From that
moment on, l exhibits a very slow rise. This can be explained
by plotting also the values of the probability Pt. Fig. 3 shows
that Pt is almost equal to one for some time during the network
formation, meaning that, since the number of edges is low, it
is highly likely to add a new edge as soon as a new couple of
nodes needs to establish a path. At the same time, the values

Algorithm 1 Validation Code
procedure SIMULATE GRAPH FORMATION(N ,D,stop) ◃
stop: stop condition

l(0)← 0 ◃ Initial number of edges
estl(0)← 0 ◃ Estimated initial number of edges
counter ← 0 ◃ Counter initial value
A← 0NxN ◃ Adjacency matrix initial value
while !stop do ◃ The procedure is run until the stop

condition is verified
i← randi(N) ◃ An integer random number

between 1 and N is assigned to i
j ← randi(N)
if i ̸= j then

counter ← counter + 1
estl(counter)← estl(counter) + Pcounter

d← shortestpath(A, i, j)◃ d is the length of
the shortest path from ni to nj

if d < D + 1 then
A(i, j)← 1;
l(counter)← l(counter − 1) + 1

else
l(counter)← l(counter − 1)

end if
end if

end while
end procedure

of Pt abruptly decreases after a certain t, meaning that the
topology reached the steady state.
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Fig. 3. Evolution of Pt, (N = 1000, D = 5).

To provide a further insight, Fig. 4 pictures the evolution
of a random graph (N = 1000, D = 5): (a) at the beginning
of the simulation, when no edge is present; (b) during the
transient, when a few edges have been created and a new edge
is added; and (c) at steady state, when all required paths (no
longer than D edges) have been already created.

IV. EXAMPLE APPLICATIONS

A. Rank bound and convergence

Theorem 1. Being k̂ the maximum degree k in system (3), it
can be bounded as follows:

k̂ ≤ D
√
2 ·N · lnN. (9)
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(a)
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(c)

Fig. 4. Evolution of a random graph (N = 1000, D = 5): a) initial state; b)
during the transient a new edge is added; c) at steady state no edge is added
because paths no longer than D hops already exist.

Proof. The way we are building the overlay is so that an edge
between a couple of vertice (nit , njt) is formed or not based
only upon the first time that couple issues a request for a path.
If a path shorter than D + 1 hops already exists the edge is
not established otherwise it is established. From that moment
on, the next requests for a path issued by the same couple of
vertice will not sort any effect.

Based on this consideration, we extract from the sequence
of equi-probable couples of vertice considered in the brief, the
sequence of instants in which any couple of vertice appears
for the first time. Of course, the length of such a sequence
of time instants will be composed of at most N(N − 1)/2
elements.

In order to estimate an upper bound on the steady state
average degree k̂, it is necessary to consider that at time t,
1/Pt expresses the average time required to establish the next
edge in the overlay.

Under this assumption, the expression of Pt to consider is
slightly different from that in Eq. (8) because the sequence
of vertix couples we are considering to proof this Theorem
is chosen in such a way that no one edge path exists at time
t for (nit , njt). The avoid ambiguity, we will refer to P ′

t to
refer to this new probability. Accordingly, it follows:

P ′
t =

D∏
c=2

Pr{Ac
t(it+1, jt+1) = 0} (10)

which, following the same passages reported in the proof
of Proposition 1, can be also written as:

P ′
t ≈ exp

(
− 1

N
·
( 2·ltN )D+1 − ( 2·ltN )2

2·lt
N − 1

)
(11)

Therefore to estimate an approximated upper bound on k̂, it
is sufficient to find any value of kt so that 1

P ′
t
≥ N(N −1)/2,

which gives
∑c=2

D kct ≥ 2 ·N · lnN −N · ln2. Notice that the
latter inequality is satisfied if kDt ≥ 2 ·N · lnN , from which
the proof follows.

Remark 1. It is worth remarking that, the bound k̂ can be
fruitfully exploited to compare the properties of the graph
under study with respect to well known graph. To this end,
if we consider as ground for comparison the delay optimal
de Bruijn graphs, representing one of the most compact
topologies discovered so far [14], we will find that, for the
same diameter D, the degree of the unstructured overlay
considered in this brief is only D

√
2 · lnN times larger at most,

even if it is based on a much simpler construction mechanism.

B. Robustness

Knowing that the graph construction model adopted herein
ensures, at steady state, at least one path shorter than D + 1
edges between any couple of nodes, it is worth investigating
how many paths (composed of less than D + 1 edges) are
present between any couple of nodes. This metric is intimately
related to the topology robustness: the higher the number of
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paths the higher the number of alternative solutions to route
messages in case of failures.

Theorem 2. Defined as wt the number of paths composed of
less than D+1 edges between any couple of nodes at time t,
it holds:

wt =
1

N
· k

D+1
t − kt
kt − 1

(12)

Proof. Also in this case the properties of the adjacency matrix
are exploited. In particular, Ac

t(i, j) indicates the number of
paths composed of c edges between the vertice ni and nj .
Thus, considering that the average value of any element if A
is 2·lt

N2 , it holds:

wt =
1

N
·

D∑
s=1

kst =
1

N
· k

D+1
t − kt
kt − 1

(13)

This end the proof.

Based of this Theorem, we can derive an approximate
assessment of the level of redundancy, if we consider for kt,
the bound derived in Theorem 2, i.e., kt = D

√
2 ·N · lnN .

Under this assumption, we can obtain:

ŵ =
1

N
· (2 ·N · lnN)

D+1
D − 2 ·N · lnN

2 ·N · lnN − 1
> 2 · lnN (14)

This result indicates that the overlay investigated in this brief
is able to provide at steady state at least two paths among any
couple of vertice, for N > e.

C. Link failures

To include also possible link failures and dynamics in the
model, it is necessary to modify Eq. (1) as follows:

lt+1 = lt + Pt − λo · lt (15)

where λo is the probability that an edge is removed during
one time step. The resulting equations could be very useful
to design topology management algorithms using control the-
oretic arguments. Its utility in finding the uniquness of the
equilibrium point is shown in the following Theorem.

Theorem 3. The system (15) admits one and only one equi-
librium point l = l∞.

Proof. In order to find the equilibrium point of system (15),
we impose lt+1 = lt = l∞ in (15). Accordingly, the following
equality is obtained:

P∞ = λo · l∞ (16)

Eq. (16) admits only one solution because its leftmost mem-
ber monotonically decreases with l, starting from the value
one at l = 0 whereas the rightmost member monotonically
increases, starting from zero at l = 0.

This ends the proof.

V. CONCLUSION

A novel tractable model for describing the dynamics of
a diameter constrained random graph is proposed, validated,
and analyzed in this brief. Useful examples of its adoption
have been also provided in order to demonstrate its real
utility. Future research will encompass: (i) the evaluation
of gravity based features and heterogeneous conditions; (ii)
the characterization of M2M overlays; (iii) the study of the
properties of the equilibrium point found in Theorem 3; and
(iv) the formulation of a control theoretic framework for
overlay topologies built upon the model proposed herein.
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