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The paper presents a fast method to compute wound rotor induction machines in steady state. Coupled time-harmonic FE-circuit 

equation are used under a first space harmonic approximation for the air-gap magnetic field. It is shown that only 4 magnetostatic FE 

computations are necessary to determine the machine performances for any slip value. The performances comparison to a conventional 

complex magnetodynamic and time stepping FE analyses show the effectiveness of the proposed approach. 

 
Index Terms—Circuit equation, Finite element analysis, Fourier series, Induction machine, Wound rotor 

 

I. INTRODUCTION 

OUND rotor induction machines (WRIM) are widely used 

when a high starting torque and low current is needed. 

They also constitute a good alternative drive where limited 

range adjustable speed is required.  

The design of WRIM can be done using a variety of methods. 

The concepts of electric and magnetic loadings together with 

manufacturers past experience allows an initial sizing of the 

machine [1]. However, finite element (FE) analyses give the 

most accurate results. They allow a full transient description ac-

counting for saturation and circuit equation coupling [2]. Un-

fortunately, such an analysis is very costly in terms of compu-

tation time especially when only steady state performances, un-

der sinusoidal excitation, are needed. An interesting alternative 

is to use a fixed-mesh method of movement simulation [3]. This 

technique doesn’t consider the teeth permeance variation due to 

the movement. Nevertheless, it gives very good results in steady 

state while reducing the cpu time compared to a moving-mesh 

technique to account for movement. 

To drastically reduce the cpu time, time-harmonic (TH) tech-

niques are more attractive to compute steady state performances 

of induction machines (IM) under sinusoidal excitation. They 

are strictly valid in the linear case although the saturation can 

be considered in an average sense. In [4] this method is used 

but the induced currents due to the air-gap spatial harmonics are 

not properly considered. In [5]-[6], coupling schemes of the 

magnetic field in the air-gap are proposed to convert the space 

harmonics at the right frequencies.  

All these TH techniques have been widely applied to squirrel 

cage IM. Surprisingly, very few works are dedicated to WRIM 

computation using TH methods.   

We propose in this paper an approach based on FE-circuit 

analysis that allows a fast and precise computation of WRIM 

performances in steady state. The magnetic field is truncated so 

only the principal air-gap space harmonic is considered. A sim-

ilar approach has been successfully used for the computation of 

squirrel-cage induction motors [6]-[7]. A FE computation is 

needed for each value of the slip frequency in the rotor bars. In 

this paper, it will be shown that only four FE magnetostatic 

computations are necessary to determine the WRIM perfor-

mances for any slip value. 

II. THE ELECTROMAGNETIC MODEL 

A magnetic vector potential (MVP) formulation is used un-

der the usual plane 2D approximation. The background of the 

electromagnetic model is the same as the one described in a 

deep mathematical way [6]-[7] for squirrel cage induction mo-

tors. The machine is split into two domains of resolution noted 

Ds and Dr, Fig.1. Both domains include the air-gap domain Dg, 

so this method has been called the “double air-gap method”. 

The ferromagnetic materials are considered linear in this study.  

A. The double air-gap method applied to WRIM 

The principle of the double air-gap method applied to WRIM 

is presented here in a technical way. A WRIM usually consists 

of two p pole-pair 3-phase windings in the stator and the rotor 

armatures. The rotor winding is short-circuited at normal oper-

ation. In steady state operation, the stator winding is supplied 

with a voltage source at a time pulsation 𝜔𝑠. For a rotor speed 

Ω, the time pulsations induced in the rotor winding is 𝜔𝑟. The 

slip is then defined as 

 

𝑠 = (𝜔𝑠 − pΩ)/𝜔𝑠 =𝜔𝑟/𝜔𝑠 (1) 

 

We consider that only the first space harmonic of p pole-pair 

exists in the air gap. In Ds and Dr, the MVP has two determina-

tions expressed as follows 
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                              (a)                                                            (b)  

Fig. 1. Stator (a) and rotor (b) domains 

 

𝑎𝑠(𝑃, 𝑡)

= √2𝑅𝑒 [(𝐼𝑠. 𝑋𝑠(𝑃) + 𝐶𝑠. 𝐴𝑠(𝑃)) 𝑒𝑥𝑝(𝑗𝜔𝑠𝑡)]   𝑖𝑛 𝐷𝑠 
(2) 

𝑎𝑟(𝑃′, 𝑡)

= √2𝑅𝑒 [(𝐼𝑟 . 𝑋𝑟(𝑃′) + 𝐶𝑟 . 𝐴𝑟(𝑃′)) 𝑒𝑥𝑝(𝑗𝑠𝜔𝑠𝑡)] 𝑖𝑛 𝐷𝑟  
(3) 

 

Re stands for “real part of”. The points P and P’ have the 

coordinates (r,θ) in Ds and (r,θ’) in Dr respectively. 

𝑋𝑠 and 𝑋𝑟 are complex valued MVPs due to unity stator (𝐼𝑠) 

and rotor (𝐼𝑟) currents respectively. 𝐴𝑠 and 𝐴𝑟 are unity MVPs 

due to rotor and stator reaction fields respectively. 𝐶𝑠 and 𝐶𝑟 are 

phasors. 

Furthermore, in addition to (2) and (3), 𝑎𝑠 and 𝑎𝑟 must coin-

cide everywhere in the air-gap. To do so, it is sufficient to en-

sure the following continuity relations in Dg 

 

{
𝑎𝑠(𝑅𝑠, 𝜃, 𝑡) = 𝑎𝑟(𝑅𝑠, 𝜃′, 𝑡)     𝑜𝑛 Γ𝑠

 𝑎𝑠(𝑅𝑟 , 𝜃, 𝑡) = 𝑎𝑟(𝑅𝑟 , 𝜃′, 𝑡)    𝑜𝑛 Γ𝑟
 (4) 

 

Indeed, 𝑎𝑠 and 𝑎𝑟  are harmonic functions in the air-gap (they 

are solution of the Laplace equation) so their equality on the air-

gap boundaries Γ𝑠 and Γ𝑟 implies their coincidence everywhere 

in the air-gap.  

 

In order to determine the MVP everywhere in the machine 

using (2)-(3), we need to compute 𝐶𝑠, 𝐶𝑟 as well as 𝐼𝑠, 𝐼𝑟  (if the 

machine is supplied from a voltage source). We also need to 

determine the elementary MVPs  𝐴𝑠, 𝑋𝑠, 𝐴𝑟 and 𝑋𝑟. 

B. Computation of  𝑋𝑠 and  𝐴𝑠 in Ds 

𝑋s corresponds to the source problem. The stator windings 

are supplied by a unity 3-phase current such as 

 

𝐼𝑠,𝑘 = exp ((𝑘 − 1)𝑗2𝜋/3), 𝑘 = 1,2,3 (5) 

 

where k is the phase index. We set 𝑋s = 0 on Γ𝑒𝑥𝑡. 

On Γ𝑟, we can either set 𝑋s = 0 or 
𝜕𝑋s

𝜕𝑟
= 0.  

We solve by FE the Laplace (in the iron parts and the air-gap) 

and Poisson (in the slots) partial differential equations (PDEs). 

Then we compute the pth harmonic Fourier coefficient noted 𝜇𝑠𝑠 

on Γ𝑠 and 𝜇𝑠𝑟 on Γ𝑟. 

We also compute the phase magnetic flux linkage noted 𝜑sX 

(the choice of the phase is arbitrary). 

𝐴s corresponds to the rotor armature reaction. The 3-phase 

stator windings are not supplied and we set 𝐴s = 0 on Γ𝑒𝑥𝑡.  

On Γ𝑟, we can either set 𝐴s = exp (𝑗𝑝𝜃) or 
𝜕𝐴s

𝜕𝑟
= exp (𝑗𝑝𝜃). 

We solve by FE the Laplace PDE (iron parts, slots and air-gap). 

Then we compute the pth harmonic Fourier coefficients noted 

𝜆𝑠𝑠 on Γ𝑠 and 𝜆𝑠𝑟  on Γ𝑟. 

We also compute the phase magnetic flux linkage noted 𝜑sA. 

C. Computation of  𝑋𝑟 and  𝐴𝑟 in Dr 

As for the stator domain, the same computations are per-

formed in the rotor domain. The boundary conditions are set on 

Γ𝑠. 

The solution of the rotor source problem 𝑋𝑟 allows to compute 

the pth harmonic Fourier coefficients noted 𝜇𝑟𝑠 on Γ𝑠 and 𝜇𝑟𝑟 on 

Γ𝑟.  

We also compute the phase magnetic flux linkage noted 𝜑rX. 

 

The MVP 𝐴r corresponds to the stator armature reaction. Its 

computation allows the determination of the pth harmonic 

Fourier coefficients noted  𝜆𝑟𝑠 on Γ𝑠 and 𝜆𝑟𝑟 on Γ𝑟. 

We also compute the phase magnetic flux linkage noted 𝜑rA. 

 

With the boundary conditions on Γ𝑠 and Γ𝑟 (2 possibilities for 

each elementary problem), there will be 8 combinations for the 

4 FE computations. This allow to adapt the first harmonic 

approximation to the physical situation of a given problem. A 

discussion on the subject can be found in [6]. It has to be noted 

that according to the used boundary condition, the higher space 

harmonics effects can either be overestimated or 

underestimated. This may be an important issue if one wants to 

include the saturation in the first harmonic method described 

here. 

D. Determination of 𝐶𝑠, 𝐶𝑟, 𝐼𝑠  and  𝐼𝑟  

In order to determine 𝐶𝑠, 𝐶𝑟, 𝐼𝑠  and 𝐼𝑟 , we need a set of 4 al-

gebraic equations. Two of them come from the equalities given 

in (4) and the two others are related to the per phase circuit 

equation of the stator and the rotor. Using (4), one can write 

 

𝜆𝑠𝑠. 𝐶𝑠 + 𝜇𝑠𝑠. 𝐼𝑠 = 𝜆𝑟𝑠. 𝐶𝑟 + 𝜇𝑟𝑠. 𝐼𝑟    on Γ𝑠 (6) 

𝜆𝑠𝑟 . 𝐶𝑠 + 𝜇𝑠𝑟 . 𝐼𝑠 = 𝜆𝑟𝑟 . 𝐶𝑟 + 𝜇𝑟𝑟 . 𝐼𝑟   on Γ𝑟 (7) 

 

The stator and rotor per phase circuit equations are respectrivly 

 

𝑉𝑠 = 𝑟𝑠𝐼𝑠 + 𝑗𝜔𝑠𝑙𝑠𝑒𝑤𝐼𝑠 + 𝑗𝜔𝑠(𝐼𝑠. 𝜑𝑠𝑋 + 𝐶𝑠. 𝜑𝑠𝐴) (8) 

0 = 𝑟𝑟/𝑠. 𝐼𝑟 + 𝑗𝜔𝑠𝑙𝑟𝑒𝑤𝐼𝑟 + 𝑗𝜔𝑠(𝐼𝑟 . 𝜑𝑟𝑋 + 𝐶𝑟 . 𝜑𝑟𝐴) (9) 

 

𝑉𝑠 is the stator phase voltage, 

𝑟𝑠 and 𝑟𝑟  are the stator and rotor phase resistances respectively, 

𝑙𝑠𝑒𝑤  and 𝑙𝑟𝑒𝑤  are the stator and rotor phase end-winding leakage 

inductances respectively. 

s (Rs )

r (Rr )

Dg 

ext

Ds 

s (Rs )

r (Rr )

Dg 

Dr 



           

 

The relations (6)-(9) allow the determination of the un-

knowns of the problem. It is clear that only 4 FE complex-mag-

netostatic computations are required to have the solution for any 

slip value (the slip only appears in the rotor circuit equation (9)). 

III. APPLICATION EXAMPLE 

The proposed method has been tested on a short-circuited ro-

tor WRIM rated at 100 kW, 980 rpm (s=2%). The main param-

eters of the machine are given in Table I. This is an inverse-type 

WRIM having an external rotor used in a novel topology of a 

magnetically geared induction machine (MaGIM) [8]. 

 

As stated above, the boundary condition for each elementary 

problem use the MVP or its derivative with respect to r. It is 

worth to note that at low slip values (s < 0.1), the same results 

are obtained whether the used boundary condition. However, 

compared to a time-stepping computation, the best results are 

obtained when using, as a boundary condition, the MVP deriv-

ative for the source problems and the MVP for the reaction 

problems. The following results are then obtained for this last 

combination. 

Fig. 2 presents the flux lines in the stator and the rotor at rated 

slip (s=0.02). In order to appreciate the effectiveness of the cou-

pling scheme, the harmonic spectra of the radial flux density 

distribution along a circular path in the middle of the air gap is 

shown in Fig. 3. It can be seen that the rms values of the funda-

mental harmonic computed in Ds and Dr are very close, they are 

also very similar to the one obtained from a time-stepping sim-

ulation (0.5 T for our method and 0.515 T for the time-stepping 

computation). 

The performances of the studied WRIM at rated speed are 

given in Table II. It can be seen that the results computed using 

the proposed method are consistent with those obtained from 

conventional full time-harmonic and time stepping models of 

the machine. Furthermore, one can note that the machine is al-

most unsaturated. Indeed, medium to high power WRIM are 

usually designed to operate at low saturation level [1], so there 

is clearly a place for using a linear model for such type of ma-

chine. 

Fig.4. shows the computed electromagnetic torque and per 

phase rms stator current for slip values ranging from 0 to 0.3. It 

can be seen that the obtained results using our model are in good 

agreement with those obtained using conventional time-har-

monic and time-stepping FE models. The maximal error is 

about 11.5% for the torque and less than 2% for the current. 

The overall computation time is about 6s using the proposed 

method (4 FE computations). For the full time-harmonic model, 

the computation time for 30 slip values is about 70s. Each time-

stepping computation last several minutes to reach steady state.  

Another remark can also be made. The computation time of our 

method is comparable to the one which one obtains from a usual 

equivalent circuit analysis. Indeed, the identification of the pa-

rameters of the equivalent circuit requires two FE computations 

for the whole machine geometry (no-load and locked rotor op-

eration).  

 

The cpu time for these 2 computations is almost the same as for 

the 4 FE computations of half a machine (2 stator and 2 rotor 

FE computations). 

 
TABLE I 

 MAIN PARAMETERS OF THE WRIM 

Parameter description Value 

Rated power 100 kW 

Stator rated voltage, Vs 400 V ( connection) 

Stator frequency 50 Hz 
Pole pair, p 3 

Rated speed,  980 rpm 

Number of stator slots 72 (10/12 shortening) 
Number of rotor slots 54 (7/9 shortening, Y) 

Stator outer radius 201.4 mm 

Air gap 0.6 mm 
Active length 260 mm 

Stator slot height 49 mm 

Stator slot isthmus widh 2.2 mm 

Stator tooth width (rectangular) 8.6 mm 

Stator back-iron height 42 mm 

Rotor slot height 32 mm 
Rotor slot isthmus width 2.6 mm 

Slot isthmus height (stator and rotor) 0.5 mm 

Rotor  tooth width (rectangular) 10.9 mm 
Rotor back-iron height 50 mm 

Turns in series per phase (stator and rotor) 72 

Stator rs (Rotor rr) per phase resistance 89 mΩ (78 mΩ) 
Stator (Rotor) end-winding leakage 

inductance 

0.27 mH (0.25 mH) 

 

     
                                     (a)                                                           (b) 

Fig.2. Magnetic flux lines (a) in Ds, (b) in Dr at rated slip s=0.02 

 

 
Fig.3. Harmonic spectra of the radial flux density in the middle of the air gap 
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TABLE II 

Main performances of the100 kW WRIM at rated operation, s=0.02 

Quantity 

Proposed 

method 
Time 

harmonic 

Time 

stepping 

(linear) 

Time 

stepping 

(saturated) 

Stator current, 
A rms 

95 95.7  94.1 96 

Torque, Nm 930 958 975 985 

Power factor 0.915 0.908 0.92 0.93 

 

WRIM can develop high starting torque with reasonably low 

current by inserting external resistances Rext in the rotor circuit. 

Fig. 5 presents the torque and the absorbed current of the stud-

ied WRIM at standstill (s=1). Again, the agreement between the 

results issued from our model and those of the time-stepping 

and the time-harmonic computations is good (about 10% max-

imal error for the torque evaluation and 2% for the current). For 

Rext=0.8 , the starting torque can reach more than 2 kNm 

(twice the rated value) while the starting current is about 280 A 

(2.8 times the rated current). 

IV. CONCLUSION 

The presented method, based on the first space harmonic ap-

proximation and coupled FE-circuit equation of WRIM, is very 

fast and sufficiently accurate compared to conventional time-

harmonic and time-stepping methods. As an extension of this 

work, the consideration of magnetic saturation together with 

higher space harmonics is important, in particular for small size 

machines. This will result in a very powerful tool for WRIM 

analysis. In future works, the proposed method will be used to 

analytically compute wound rotor induction motors using the 

subdomain method. 
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Fig. 4. Torque (a) and rms stator current (b) vs. slip curves 
 

 

 
(a) 

 
(b) 

Fig. 5. Torque (a) and rms stator current (b) vs. Rext at standstill 
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