
HAL Id: hal-01228327
https://hal.science/hal-01228327

Submitted on 12 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Semantic Data Interoperability in oneM2M
Standard

Mahdi Ben Alaya, Samir Medjiah, Thierry Monteil, Khalil Drira

To cite this version:
Mahdi Ben Alaya, Samir Medjiah, Thierry Monteil, Khalil Drira. Towards Semantic Data Interop-
erability in oneM2M Standard. IEEE Communications Magazine, 2015, 53 (12), pp. 35-41. �hal-
01228327�

https://hal.science/hal-01228327
https://hal.archives-ouvertes.fr

Towards Semantic Data Interoperability in oneM2M Standard

Mahdi Ben Alaya
a,b

, Samir Medjiah
a,c

, Thierry Monteil
a,d

, Khalil Drira
a

a
 CNRS, LAAS, 7 avenue du colonel Roche, F-31400, Toulouse, France

b
 Univ de Toulouse, LAAS, F-31400, Toulouse, France

c
 Univ de Toulouse, UPS, LAAS, F-31400, Toulouse, France

d
 Univ de Toulouse, INSA, LAAS, F-31400, Toulouse, France

{ben.alaya | medjiah | monteil | drira} @ laas.fr

Abstract– OneM2M standard is a global initiative led jointly

by major standardization organizations around the world in

order to come up with a unique standard for M2M

communications. Prior standards, but also oneM2M, while

focusing on achieving interoperability at the communication

level, fail or lack to achieve full interoperability at the semantic

data level. An expressive ontology for IoT called IoT-O has been

defined making best use of already defined ontologies in specific

domains such as sensor, observation, service, quantity kind,

units, or time. IoT-O defines also some missing concepts relevant

for IoT such as thing, actuator, actuation, or manager. The

extension of the oneM2M standard to support semantic data

interoperability based on IoT-O is discussed. Finally, through

comprehensive real use cases, benefits of the augmented

standard are demonstrated ranging from heterogeneous devices

interoperability to autonomic behavior achieved by automated

reasoning.

Keywords: IoT, M2M, oneM2M, interoperability,

semantic, ontology, autonomic, reconfiguration, reasoning,

IoT-O.

I. INTRODUCTION

In the recent few years, M2M systems have witnessed

the emergence of various and different standardization

initiatives. Indeed, different applications sectors are pushing

standards that are often targeting mainly a specific

application domain such as smart meters standards

developed by IEC or IEEE (EN 13757, IEEE 1888-2011,

etc.). Different SDOs have tackled this problem by focusing

on the definition of a horizontal service platform that fits

different verticals. This work has been consolidated later on

into a global initiative aka oneM2M.

It is worth to notice that all these initiatives have

focused on the communication interoperability between

system entities (servers, devices, applications, etc.). Indeed,

these standards have defined a horizontal service layer that

enables seamless communication between heterogeneous

entities independently of the underlined network and

vendor-specific device technologies. It thus possible to

reach any entity in the system and deliver a message to it.

However, no standard has tackled the “meaning” of the

message content being exchanged. Although SmartM2M

standard has introduced some recommendations for

supporting semantics [1], a generic data model has not been

specified. This has been let to the appreciation to the service

provider, system developer, or the system user. Such

standards have achieved interoperability at the

communication level only and lack to provide

interoperability at the data level too. This has led to

inefficient systems, since actual autonomic systems could

not be achieved.

Semantic data is brought through the definition of a

common set of ontologies that describe the entire system’s

entities but also the data items produced, exchanged and

consumed by these entities. Various information models

have been defined for IoT ranging from specialized models

such as the Zigbee or KNX data models to more general

ones such as W3C SSN Erreur ! Source du renvoi

introuvable.. These solutions suffer from two main issues.

They are even too specialized and focused in a specific

application domain, or lack from some concepts mainly

related to actuation. Indeed, in multiple information models,

“control” concepts are missing. Using such models may be

very challenging since in M2M systems, devices may be

sensors or actuators, or both.

In this paper, we discuss and propose an ontology model

(IoT-O) that handles both sensing and actuating concepts of

M2M devices but also some concepts related to services.

We, then, discuss the extension of oneM2M standard to

support semantic data based on the proposed ontology.

Finally, through comprehensive uses cases, we show the

use of IoT-O along the oneM2M standard.

A. oneM2M Standard

The oneM2M global initiative [3] is an international

partnership project established in June 2009 by the seven

most important standard defining organizations in the world

and various alliances and industry. The main goal is to

define a globally agreed M2M service platform by

consolidating currently isolated M2M service layer

standards activities. OneM2M is planning to boost M2M

market by removing the need to develop common

components, simplify development of applications by

providing a common set of APIs, leverage existing

worldwide networks, and provide evolution and

interoperability of standard functions support. The oneM2M

technical working groups are focusing on requirements,

system architecture, protocols, security, management,

abstraction and semantics. Figure 1 oneM2M system

architecture [3] describes the OneM2M system architecture.

The system architecture is composed of four functional

entities called nodes known as application dedicated node

(ADN), application service node (ASN), middle node

(MN), and infrastructure node (IN). Each node contains a

common services entity (CSE), an application entity (AE),

or both. An AE provides application logic, such as remote

blood sugar monitoring, for end-to-end M2M solutions. A

CSE comprises a set of service functions called common

services functions (CSFs) that can be used by applications

and other CSEs. CSFs incudes registration, Security,

application and service layer management (ASM), Device

Management, communication management and delivery

handling, network service exposure, data management and

repository, Discovery, subscription and notification, service

session management, service charging and accounting,

group management, and location service.

Figure 1 oneM2M system architecture [3]

The system architecture has specified three reference

points called Mca, Mcc, and Mcn. The Mca interface

enables AEs to use the services provided by the CSE. The

Mcc interface enables inter-CSE communications. The

Mcc’ interface is similar to Mcc, but provides an interface

to another oneM2M system. The Mcn interface is between a

CSE and the service entities in the underlying networks.

OneM2M adopted a RESTful architecture, thus all services

are represented as resources. Resources are associated with

CSFs to provide the defined functions.

B. Full interoperability challenge

Full interoperability is a desirable property to achieve in

M2M systems. This will pave the way to the ultimate goal

aka autonomic systems. Indeed, interoperability between

heterogeneous devices, services is only a requirement to

achieve autonomic behavior including self-configuration,

self-healing, self-optimization, and self-repairing.

As introduced earlier, almost all standardization

initiatives have not efficiently tackled the issue of full

interoperability, i.e. considering both communication and

data interoperability. Having treated the interoperability at

the communication level through the definition of common

service, resources, payload formats, and mapping to

existing internet protocols or network access technologies,

the different M2M standards have achieved the

communications interoperability. Thanks to this

interoperability, M2M systems’ entities already benefit

from services such as discovery, monitoring, management,

etc. Although such service platform can be sufficient for the

design and implementation of specific M2M systems,

autonomic system behavior using automated reasoning

based on top of a knowledge oriented service platform

cannot be achieved.

For example, using a service platform built upon

oneM2M standard, an application can discover seamlessly

new devices plugged into the system. This application can

subscribe to the new device events and will receive them as

soon as they are triggered even if the routing path implies

the crossing of multiple entities and using heterogeneous

communication protocols or network technologies at any

segment of the communication path. This has been made

possible thanks to the interoperability at the communication

level. Now that device events have been successfully

reported, the application does not have any mean in order to

“understand” the reports’ content without prior conventions

(data formats, encapsulation, and semantics) set up between

the application and the device application developers.

C. Semantic data, concepts and principles

Ontologies have proven beneficial for intelligent

information integration, information retrieval, and

knowledge management. They enable to index resources

content using semantic annotations that can result in the

representation of explicit knowledge that cannot be assessed

and managed because of their mess. Ontologies are very

popular and useful to overcome challenges fixed in the

proposed study because they provide a new way of cleverly

structuring a domain making use of semantic hierarchical

and property/value relationships based on a vocabulary of

concepts/instances [4].

The most popular language in the domain of semantic

knowledge modeling making use of ontologies is the Web

Ontology Language (OWL). OWL is a semantic an

expressive schema language for publishing and sharing

ontologies using RDF (the Resource Description

Framework) extensions. OWL facilitates interoperability

between entities by providing a shared understanding of the

domain in question. It is an effective means for explicating

implicit design decisions and underlying assumptions at

system build time based on powerful deductive reasoning

capabilities such as the Semantic Web Rule Language

(SWRL) or the SPARQL query language.

II. AN EXPRESSIVE ONTOLOGY FOR IOT (IOT-O)

A. IoT ontology principles

Users and software agents should be able to discover,

monitor and control sensors and actuators offering

particular services and having particular properties with a

high degree of automation. However, oneM2M did not

standardized the device data model and the data they

handle. In this study, we propose a semantic data model

based on ontology to represent IoT device meta-data,

operations, and exchanged data independently from the

underlying formalism originally used for describing them.

Since ontologies are designed to be reusable and extensible,

we decided to define a complete ontology for IoT by

reusing existing ontologies. New concepts are designed

only when needed. This approach enables to reduce the

ambiguity of IoT terminology and allows to converge

quickly to a common vocabulary.

 In general, an ontology for IoT should represent a

variety of concepts such as platform, deployment system,

thing, device, manager, service, sensor, actuator, sensing

and actuating capabilities, observation, operation, time,

unit, kind, value, and their relationships. Since there is no

single model that covers all these concepts, a set of well-

defined ontologies were carefully selected in order to form

an expressive ontology called IoT-O. Figure 2 shows how

the selected ontologies are merged together to form this

new ontology. IoT-O consists of five main parts which are

sensor, observation, actuator, actuation and service models.

B. IoT-O concepts and relationships

The DUL upper ontology is selected to describe very

general concepts that are the same across all knowledge

domains, and so facilitate reuse and interoperability. It is a

lightweight foundational model for representing either

physical or social contexts. The SSN ontology, which is

aligned with DUL, is selected to represent sensors in terms

of measurement capabilities and properties, observations

and other related concepts, however it does not describe

actuator devices. Since currently there is no ontology that

accurately describes actuators, we designed a new ontology

called ACT, which is inspired from SSN and aligned with

DUL, to describe actuators in terms of actuating capabilities

and properties, actuation, and related concepts. The QUDV

ontology was selected to represent quantities, units,

dimensions and values. The OWL-TIME ontology was

selected to provide a vocabulary for expressing facts about

topological relations among instants and intervals, together

with information about duration, and about date time

information.

Given that OneM2M aims to enable seamless

interactions between business applications and services, it is

important to represent how these services can be requested,

without any ambiguity in order to reduce the amount of

manual effort required for discovering and using them. The

MSM ontology was selected to describe services since it

provides a common vocabulary based on existing web

standards able to capture the core semantics of both Web

services and Web APIs in a common model. Each service is

described using a number of operations that have address,

method, input and output Message Content descriptions.

Figure 2: IoT-O ontology model

D. Actuator model instance according to IoT-O

To understand how the IoT-O ontology works, let's

consider a concrete example representing a real actuator

using the M2M ontology. The "HUELUX" actuator is a

digitally dimmable wireless lighting bulb from Philips. It

has a power range of 0 Watt to 50 Watt with a lighting time

of 2 seconds. The luminance level can be dimmed by

requesting the required power value. The light bulb offers a

web service to enable remote luminance control. The

luminance can be dimmed instantaneously by sending a

create request to the address "/HUELUX_APP/dimming"

with a message body containing the required power. Figure

3 Actuator model instance according to IoT-O details the

corresponding ontology instance. It shows how the actuator,

actuation and service information are inserted in the IoT-O

ontology. The actuator model represents the light bulb

information and actuating capabilities including power

range and lighting time. The actuation model represents the

dimming command. The Service model represents the light

bulb web service including the luminance dimming

operation, address and method.

Figure 3 Actuator model instance according to IoT-O

E. Semantics extension to the oneM2M Standard

Through oneM2M working group WG5, semantics is

already envisioned for the oneM2M standard. However, as

of its Candidate release, semantics aspects are not tackled

yet. In this subsection, we will discuss a possible extension

to oneM2M standard in order to support semantic data. The

main idea is to use specific resource’s attributes in order to

augment the resource with its semantics. Such attributes can

be used to give some indication about the ontology

associated with the content being transported. Two options

are then available.

The first option, as we dubbed inline integration, relies

on using a resource attribute in order to carry the full

definition of the ontology in an appropriate format. Using

this option, any application (or process) can understand the

received content after the interpretation of the ontology

definition. Such attribute is not yet defined in oneM2M

standard, but can be pushed in future oneM2M releases.

The second option, as we dubbed reference-based

integration, uses the semantic attribute ontologyRef of type

xs:anyURI, already defined in the Candidate release of

oneM2M standard, to point the application to a remote

location where it can find the full definition of the ontology.

It can also be used to serve as just a reference to an

ontology supposedly known by the application (i.e. through

the use of predetermined ontology catalog).

It is clear that these two options have their pros and

cons. Indeed, while the inline integration option gives great

flexibility since every data element will carry its own

ontology, this option will introduce an important overhead

in all communications by increasing significantly the

payload size. Moreover, this can be very inefficient

especially for communications to/from very constrained

M2M devices. The reference-based integration introduces

less overhead when compared to the first option. However,

the need for an external repository (or a hard-coded/known

catalog) may introduce new issues such as the optimal

repository location, definition coherence across multiple

repositories, access rights, repository availability, etc.

Moreover, such option may introduce new delays related to

the acquisition of the necessary ontology definition prior to

data processing. This may be problematic in case of delay

sensitive applications.

Although both options present advantages and

disadvantages, we believe that at this stage of the oneM2M

standard definition, the use of the dedicated semantic

attributes remains the best solution in order to introduce

interoperability at the data level in the oneM2M standard

without questioning the foundations of this new standard

and in order to comply with its first published release.

III. SEMANTIC DATA INTEROPERABILITY

In this section, and through comprehensive use cases,

we present the usability of our new generic data model.

Also, we will introduce OM2M [5], our developed

horizontal platform which is compliant with both

SmartM2M and oneM2M standards. The use case will also

feature our living lab aka ADREAM smart building and put

the addressed challenge in a real scenario.

A. LAAS smart building: ADREAM

ADREAM is the LAAS-CNRS smart experimental

building. The main originality of this instrumented building

compared to already existing ones is that it is a « living lab

» of 1700m² since it is both a research tool and a building

with offices for the researchers.

Figure 4: M2M testbed within ADREAM building

The building includes 500m² of technical platforms

(IoT, robotics, ambient intelligence, energy) and 700m² of

offices. It hosts our smart apartment equipped with various

sensors and actuators connected using different networking

technologies. The device set includes different sensors

(temperature, humidity, luminescence, presence, etc.) but

also actuators such as electric plugs attached to different

elements: lamps, fans, humidifier, etc. all these devices are

gathered around different gateways. Each gateway is

specialized in one or two networking technologies (Zigbee,

6lowpan, KNX, Phidgets). Finally, these gateways are

connected to one central server. Figure 4 illustrates the

testbed composition.

B. Seamless device discovery and interaction

In order to demonstrate the interoperability aspect

achieved by the OM2M platform through its compliance

with the oneM2M standards and its support of a generic

data model IoT-O, we propose a simple scenario where the

software platform is able to discover newly plugged devices

such as sensors and actuators, browse the exposed attributes

and methods, and finally interact with these devices by

retrieving sensed data or triggering actions.

The scenario setup, as showed in Figure 4, includes

different devices attached to an M2M gateway through

local network technologies such as wireless ones: ZigBee,

6lowpan, or wired technologies such as Phidgets or KNX.

The M2M gateway is connected to a M2M server. The

M2M gateway entity is equipped with mapping modules

that translate every communication with a specific

networking technology into a generic communication

protocol that is completely independent from the transport

protocol or the network access. Thus, the support of new

technologies or protocols is simply achieved through the

implementation of the translation module (i.e. Interworking

Proxy Unit). When the IPU discovers a new device through

the specific technology discovery mechanism, it will expose

this device along its attributes and methods to other entities

in the M2M system. From the M2M system perspective,

any data or action request is routed to this IPU in order to

be translated to the specific technology operations. In this

way, any application present in the M2M system can access

the new discovered resources (device, device’s attributes,

device’s actions, etc.) using standardized restful operations,

and this can be achieved without any knowledge of the

underlying network technology or its low level

mechanisms.

Furthermore, since all exchanged messages are

augmented with semantics as discussed in section II.B. One

application cannot only have access to the data being

generated by the device or the actions it exposes, but also

the it can understand the meaning of these data. Indeed,

since the application has access to the ontology that

“defines” the data, it can browse the ontology and map the

received data elements into this ontology and perform the

appropriate processing.

IV. TOWARDS AUTONOMIC M2M SYSTEMS

In this section, we demonstrate how the IoT-O ontology

can be used to develop autonomic M2M systems [6,7]

capable of self-management to hide intrinsic complexity to

administrators and users. The main goal here is to

dynamically reconfigure the CSE resource architecture

based on semantic matching between registered

applications.

A. Autonomic service for resource architecture

dynamic reconfiguration

In the normal case, an application must perform

manually several complex search request to discover

relevant resources and perform several subscriptions to

monitor the evolution of interesting resources. In addition,

an application has a partial view of its M2M environment,

then it becomes very complex to find the right resources

especially in huge and highly distributed M2M system.

Introducing a new autonomic service with a global view

of the M2M system capable of configuring CSE resource

architecture when needed is a challenge. The objective here

is to enable any application to dynamically discover

interesting devices and to exchange data with the right

communication mode according to its description, role, and

relationships. To meet this goal a representative model of

M2M system knowledge is required to assist the execution

of the management process. Since the IoT ontology covers

all required M2M concepts needed for this use case, it will

be used as a knowledge model by an autonomic service.

B. Data model for automated reasoning

Figure 5 shows a partial view of the IoT-O ontology

highlighting the main concepts needed for the self-

configuration process. In one hand, the IoT-O enables to

represent physical things like sensor and actuator devices

that respectively observes and acts on a quantity kind. In the

other hand, it enables to represent nonphysical things like

monitor and controller managers that respectively monitors

and controls a quantity kind. Each thing is registered to a

node and is accessible via a set of web services. Additional

concepts of IoT-O can be considered to further refine the

semantic matching process for a more advanced

configuration.

Figure 5: IoT-O main concepts and relationships used for reasoning

C. Smart building use case

Let's consider a building equipped with a gateway

connecting locally some devices like an electricity meter, a

luminosity sensor, and a lamp that created on the gateway

an "ASN-AE_ElectricityMeter", "ASN-

AE_LuminositySensor", and "ASN-AE_Lamp". An "ASN-

AE_LampController" and an "ASN-

AE_LuminosityMonitor" applications are registered on the

gateway to dynamically update the lamp state according to

the luminosity level. Let's suppose that a lamp controlling

application "ADN-AE_LampController" and a power

consumption monitoring application "ADN-

AE_ElectricityMonitor" are deployed on the user

Smartphone to enable the user to manually monitor and

control his devices. In addition, A smart metering

application "IN-AE_ElectricityMonitor" is registered on the

smart metering server to track the building consumption.

 The autonomic service should discover and monitor the

description of all registered applications, reasons on the

IoT-O ontology model using inference rules to find relevant

matching, and finally reconfigure the resource architecture

accordingly to set up the required connections.

Initially, the autonomic service discovers the IN-CSE

and so adds the "IN_SmartMeteringServer" individual as

instance of the "IN" class in the IoT-O instance. Then, it

retrieves the registered applications and looks mainly for

the "DESCRIPTOR" container to find the application

descriptions. The "IN-AE_ElectricityMonitor" individual is

added as instance of the Monitor class and is linked to the

"Electricity" QuantityKind. Then, the autonomic service

searches for the authenticated nodes and so adds the

"ASN_HomeGateway" individual as instance of the ASN

class, and the "ADN_Smarthone" individual as instance of

the ADN class. It creates also a subscription on the IN to be

notified of new authenticated nodes. Figure 6: IoT-O smart

building use case instance example corresponding M2M

ontology instance as generated by the Autonomic service.

For each discovered node, the autonomic service

retrieves the registered applications and adds them to the

IoT-O instance. For the gateway, The "ASN-

AE_ElectricityMeter" is added as an individual of the

Sensor class and linked to the "Electriciy" QuantityKind.

The "ASN-AE_LightSensor", "ASN-AE_Lamp", "ASN-

AE_LampController", and "ASN-AE_LuminosityMonitor"

individuals are added respectively as instances of the

Sensor, Actuator, Monitor, Controller classes, and are

linked to the "Luminosity" QuantityKind.

For the Smartphone, the "ADN-AE_ElectricityMeter"

individual is added as instance of the Sensor class and

linked to the "Electriciy" QuantityKind. The "ADN-

AE_LampController" individual is added as instance of the

Monitor class and linked to the "Luminosity" QuantityKind.

Figure 6: IoT-O smart building use case instance example

D. Semantic matching inference rules

Inference rules can be applied to infer new knowledge

and so enrich the current IoT-O instance with new

individuals and relationships. This new knowledge is

necessary to understand the role of each application in the

M2M architecture. It allows each application to take

maximum advantage of the services offered by other

applications.

In this example, two SPARQL [8] rules are applied by

the autonomic service to find semantic matching between

the registered applications. The first rule "Infer relationship

between monitors and sensors" says that if there is a

monitor that observes a particular quantity kind, and if it

exists also a sensor that observes the same quantity kind,

and if this monitor is not already managing this particular

sensor, then as a result a new "manages" relationship is

inferred to link this monitor to this sensor.

CONSTRUCT {

 ?monitor iot:manages ?sensor

}

WHERE {

 ?monitor rdf:type iot:Monitor .

 ?sensor rdf:type iot:Sensor .

 ?qKind rdf:type iot:QuantityKind .

 ?monitor iot:monitors ?qKind .

 ?sensor iot:observes ?qKind .

 FILTER EXISTS { ?monitor iot:manages ?sensor }

}

The second rule "Infer relationship between controllers

and actuators" says that if there is a controller that controls

a particular quantity kind, and if it exists also an actuator

that acts on the same quantity kind, and if this controller is

not already managing this particular actuator, then a new

"manages" relationship is inferred to link this controller to

this actuator.

CONSTRUCT {

 ?controller iot:manages ?actuator

}

WHERE {

 ?controller rdf:type iot:Controller .

 ?actuator rdf:type iot:Actuator .

 ?qKind rdf:type iot:QuantityKind .

 ?controller iot:controls ?qKind .

 ?actuator iot:actsOn ?qKind .

 FILTER EXISTS{?controller iot:manages ?actuator}

}

Using the same approach, more advanced rules can be

applied including more constraints such as the device

location, temporal requirements, or quality of services

parameters.

E. Resource configuration execution

The Autonomic service is capable now to plan the list of

required actions and to execute them by simply sending

RESTful requests to the service platform. Indeed, to

establish a relationship between a monitor and a sensor, a

new subscription resource is created on the monitor sensor

application containing the monitor contact. Respectively, to

establish a relationship between a controller and an

actuator, a new subscription resource is created on the

controller application containing the actuator contact.

 Concretely, the autonomic service automatically

subscribes the "IN-AE_ElectricityMonitor" and the

ADN_ElectricityMonitor" to the "ASN-

AE_ElectricityMeter". It subscribes also the ASN-

AE_LuminosityMonitor" to the "ASN-

AE_LuminositySensor". Finally, the "ASN-

AE_LampController" and the "ADN-AE_LampController"

are subscribed to the "DA_LampContoller".

V. CONCLUSION

Current M2M standards aims to provide a horizontal

service platform to enable communication interoperability

between machines. However, the semantic data

interoperability is not achieved which brings into question

the horizontality of such platform. To overcome this

challenge, a dedicated ontology for IoT called IoT-O has

been defined. IoT-O merges together a set of popular

ontologies and is enriched with new relevant concepts and

relationships. Two possible integration with the oneM2M

standard are discussed. The mean concepts and

relationships of IoT-O are described using different use

cases. An autonomic service making use of IoT-O and

inference rules for resource architecture dynamic

reconfiguration was explained as well.

As future work, we propose to calculate the overhead

cost of the our solution and the resulting overload. We

propose also to validate IoT-O in various vertical M2M

domains such as e-health, transport, and smart grid. A set of

contributions will be sent to OneM2M for integrating IoT-O

concepts into the standard to move forward towards

semantic data interoperability.

REFERENCES

[1] ETSI TR 101 584 - M2M – Study on Semantic support for

M2M Data (v2.1.1), February 2013.

[2] Compton M, and al. The SSN Ontology of the W3C Semantic

Sensor Network Incubator Group. Journal of Web Semantics,

17. 25 - 32. 2012. ISSN 1873-7749.

[3] Swetina, J. and al. "Toward a standardized common M2M

service layer platform: Introduction to oneM2M," Wireless

Communications, IEEE , vol.21, no.3, pp.20,26, June 2014

[4] Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The

semantic web. Scientific american, 284(5), 28-37.

[5] Ben Alaya, M. and al. (2014). OM2M: Extensible ETSI-

compliant M2M Service Platform with Self-configuration

Capability. Procedia Computer Science.

[6] Kephart, J.O.; and al. “The vision of autonomic computing,”

Computer , vol.36, no.1, pp. 41- 50, Jan 2003doi:

10.1109/MC.2003.1160055

[7] M. Ben Alaya, T. Monteil. FRAMESELF: An ontology-based

framework for the self-management of M2M systems.

Concurrency and Computation: Practice and Experience,

Wiley, 2013.

[8] Pérez J. and al. Semantics and Complexity of SPARQL.

In The Semantic Web-ISWC 2006. Springer Berlin

Heidelberg.

