
HAL Id: hal-01228325
https://hal.science/hal-01228325v1

Submitted on 12 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomic framework based on decision models for
self-management of ubiquitous systems

Mahdi Ben Alaya, Thierry Monteil, Khalil Drira

To cite this version:
Mahdi Ben Alaya, Thierry Monteil, Khalil Drira. Autonomic framework based on decision models for
self-management of ubiquitous systems. Smart Gadgets Meet Ubiquitous and Social Robots on the
Web (Ubirobots’12), Sep 2012, Pittsburg, United States. �hal-01228325�

https://hal.science/hal-01228325v1
https://hal.archives-ouvertes.fr

Autonomic framework based on decision models

for self-management of ubiquitous systems

Mahdi BEN ALAYA
1,2

 , Thierry MONTEIL
1,2

, Khalil DRIRA
1,2

1CNRS; LAAS; 7 avenue du Colonel Roche, F-31077 Toulouse, France

2Université de Toulouse; INSA, LAAS; F-31077 Toulouse, France

{ben.alaya, monteil, drira }@laas.fr

Abstract— Internet of things consists of a high amount of

heterogeneous objects that are widely distributed and evolve

frequently according to their context changes. Management of

such complex environment is costly in terms of time and

money. Designing context aware autonomic framework with

capability of self-management is a challenge. This paper

proposes FRAMESELF, a generic and extensible autonomic

framework based on ontology and graph models, and

reasoning rules to self-manage ubiquitous environment. A

smart metering use case is experimented to illustrate the

proposed solution.

Keywords- Internet of things, autonomic computing, self-

management, context-awareness, expert system, model, ontology,

graph, smart metering.

I. INTRODUCTION

The emergence of communicating objects, the decrease

of the communication cost and the improvement of networks
performance emphasizes the interest to build widely
distributed ubiquitous environment. Such systems consist of
a high amount of heterogeneous entities having mutual
interactions and delivering high level services that could be
discovered, composed, executed and monitored. Managing
ubiquitous systems requires autonomic frameworks[1] with
self-management functionalities, and multi-view knowledge
representation and reasoning capabilities. These framework
should be generic and capable of providing a logic and
semantic description of the interacting objects with respect to
their context characteristics and their behaviors or
situations[2]. Management system should be able to
dynamically detect these entities and capture their contexts in
order to identify what are the changes that are happening in
the environment, infer the current situation and react
accordingly. To solve the challenges above, we propose
FRAMESELF, a generic autonomic framework based on
decision knowledge models.

II. FRAMESELF AUTONOMIC ARCHITECTURE PRINCIPLE

The FRAMESELF architecture is based on the IBM
autonomic architecture reference [3]. It is organized into four
autonomic modules which are Monitor, Analyzer, Planer and
Executer. These modules share a same knowledge and
constitute together the control loop to dynamically manage
entities using sensors and effectors. In our approach, each
autonomic module operates as an expert system[4] to
emulates the decision-making ability of a human expert. It is

designed to solve complex problems by reasoning about
knowledge, like an expert, and not by following the
procedure of a developer as is the case in conventional
programming. Each module is divided into two parts, one
fixed, independent of the system: the inference engine, and
one variable: the knowledge base model.

In our vision, it is not enough to have a framework
performing the autonomic control loop. It is necessary to
provide extensible and generic framework. Genericity can be
considered in two aspects: Firstly, the framework must be
generic with available external managed resources, in that
way the autonomic manager could be used in different
complex environment and may respond to different self-*
problems with low cost. Secondly, the framework must be
internally generic formed with reusable modules exchanging
standardized data structure using generic interfaces. In that
way each module could be substituted by another one more
efficient according to necessity and environment changes.
FRAMESELF global architecture is described in Figure 1.

Figure 1. FRAMESELF architecture overview

The monitor answer to the "what is happening ?"
question. It collects events from sensors of managed
resources, applies on them function of filtering, masking,
aggregation, and normalizes them according to the Web
Event Format (WEF)[5]. It updates an ontology model
instance describing the sensors environment and topology
located on the knowledge base with relevant information of
collected events, and applies on it semantic rules to infer new
symptom occurrences. It extracts relevant information,
normalizes them according to the "Symptom 2.0"[6] format,
and send them to the analyzer.

The analyzer focus on the "what to do ?" question. It
receives symptoms as input, uses them to update an instance
model describing the complex situation. With logic, the
inference engine is able to generate new information from
the knowledge about required requests for change. It extracts
relevant information, normalizes them, and send them to the
Planner.

The planner focus on the "how to do ?" question. It saves
received requests for change as goal states, situations which
it is trying to reach, verifies the policies model to guide its
work, reads model of possible actions and facts, and checks
the initial state which is given as the set of conditions that are
initially true. It constructs a planning problem representation
based on STRIPS or PDDL language [7], then applies a
planning algorithm to determine a sequence of actions that
can be executed from the initial state and that leads to a goal
state. The planner normalize action plan, and send them to
the executer.

Since the executor receives as input only logical
description of actions to be executed which are independent
of the managed resources, it should answer to the "who to
invoke ?" question. There is a need to consults a knowledge
model describing effectors environment and topologies to
match logical actions with their correspondents physical
ones. The executer performs the plans using effectors of
managed entities, and controls the sequence action execution
with consideration for dynamic updates.

III. SMART METERING USE CASE

A smart metering use case is experimented on the
ADREAM smart building[8] as a proof of concept of our
solution. In this example we aimed to self-manage a room
environment based on various sensors and effectors to
optimize energy consumption . e.g. controlling lamps and
window blinds levels according to luminosity, and presence
sensors.

The monitor subscribes to event channels, and receives
all published events from available sensors in a specific
format. It filter useless events and normalize relevant one for
example: luminosity, presence, lamp state, and blind state
events in the WEF format. It updates the knowledge model
and applies rules to infers symptoms for example: high/low
luminosity, true/false presence, opened/closed lamp state,
and opened/closed blind in the Symptoms 2.0 format. The
analyzer updates its model and applies rules to infer new
request for change such as: decrease or increase luminosity.
The planner then checks knowledge base to get the room
initial state and availables facts and actions, and constructs a
planning problem according to STRIPS language. Then, it
determines the best sequence of actions to achieve the goal
for example open/close lamp, or open/close window blind.
Finally, the executor checks knowledge model to determine
the web service details corresponding to each actions for
example: setLamp(String boolean) and setBlind(String
boolean) methods, performs the plan. If the execution
process fails, the executor is able to display an alert message
with the occurred errors to the administrator, or to return
back to the previous system state, or to plan once more new
actions taking in consideration occurred errors. If the

execution process succeeds, the autonomic manager starts
the next control loop operation.

Our framework is independent of managed resources. In
facts, it is possible for the monitor to read events details from
log file instead of subscribing to event channel. It is also
possible for the executer to deploy and run script file on
specific devices instead of invoking web service to perform
actions. The considered exchanging structures between
autonomic module are normalized. This make the
framework more extensible and able to substitute or to
integrate new modules to adapt to eventual environment
changes.

IV. CONCLUSION

In this paper we explained the basis of generic autonomic
framework called FRAMESELF aiming to self-manage
complex distributed system. We presented an overview of
the architecture principle of the proposed solution, and
explained the role of its main modules and how should they
interact with each other and with knowledge base to achieve
their tasks. We also showed our interest to provide a generic
and extensible solution based on decision model and rules.
Then we experimented our approach with a basic smart
metering use case to illustrate the control loop steps.

As future work, we propose to experiment our solution in
more complex scenario to self-manage a high number of
heterogeneous objects to face scalability problems and
calculate the overload that the framework generate. Actual
solution proposes a centralized autonomic framework, we
think that is essential to experiment a distributed architecture.
e.g. distributed monitors, analyzers, planners and executers
sharing one or more knowledge bases and interacting using
pear to pear or hierarchical communication mode.

ACKNOWLEDGEMENT

This work is part of the European project ITEA2
A2NETS. It will be integrated on the smart metering
business case demonstrator.

REFERENCES

[1] Kephart, J.O.; Chess, D.M.; , "The vision of autonomic computing,"
Computer , vol.36, no.1, pp. 41- 50, Jan 2003

[2] Stojanovic, L.; Schneider, J.; Maedche, A.; Libischer, S.; Studer, R.;
Lumpp, Th.; Abecker, A.; Breiter, G.; Dinger, J.; , "The role of
ontologies in autonomic computing systems," IBM Systems Journal ,
vol.43, no.3, pp.598-616, 2004

[3] IBM: An Architectural Blueprint for Autonomic Computing,. IBM
White Paper 4th Ed., June 2006

[4] Russell, Stuart J.; Norvig, Peter (2003), Artificial Intelligence: A
Modern Approach (2nd ed.), Upper Saddle River, New Jersey:
Prentice Hall, ISBN 0-13-790395-2

[5] Organization for the Advancement of Structured Information
Standards, Web Services Distributed Management Technical
Committee, Management Using Web Services (MUWS).

[6] IBM Research Center, 2006. Symptoms Reference Specification,
Version 2.0. IBM Autonomic Computing Symptom Specification.

[7] Ghallab, Malik; Nau, Dana S.; Traverso, Paolo (2004), Automated
Planning: Theory and Practice, Morgan Kaufmann, ISBN 1-55860-
856-7.

[8] http://www.laas.fr/ADREA

http://www.laas.fr/planning/
http://www.laas.fr/planning/
http://en.wikipedia.org/wiki/Morgan_Kaufmann
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/1-55860-856-7
http://en.wikipedia.org/wiki/Special:BookSources/1-55860-856-7

