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Abstract— M2M systems need to connect thousands of various fix and mobile machines that are 

widely distributed and evolve frequently according to their profile and context changes. The 

increasing complexity of managing current distributed systems needs new solutions. Designing 

autonomic systems, which are self-managing, and context aware is a solution and also a challenge. 

This paper proposes the FRAMESELF framework, a generic autonomic architecture based on 

decision models.  The proposed solution capabilities are used for the self-deployment and self-

configuration of machine-to-machine (M2M) systems. Components diagrams are illustrated to 

describe FRAMESELF modules and to show how they are connected together. FRAMESELF 

implements Devices Profile for Web Services (DPWS) protocol to describe and to discover 

managed resources. It implements multi models representation based on ontologies and graphs to 

describe the M2M concepts and relationships on a multi-level knowledge base. Two 

communication patterns modules based on service-oriented and event-driven communications are 

dynamically selected and configured in deployment plans. Finally, a smart metering scenario is 

experimented to validate this approach and to calculate the overload that FRAMESELF generates 

facing scalability.  

Keywords- autonomic computing, self-deployment, self-configuration, M2M architecture , 

ontology, graph.  

I. INTRODUCTION 

Over the last years, Internet of Things (IoT) has evolved at an exceptional speed. Things can both 
correspond to physical things (sensors, actuators, smartphones, machines, etc.) or immaterial ones 
(applications, multimedia content providers, directories, etc.). Such environments consist of a high 
amount of heterogeneous entities having mutual interactions and delivering high-level services that could 
be discovered, monitored, composed, and executed. One of the main concepts behind IoT is Machine-to-
Machine (M2M) communication. M2M provides seamless integration  of  the heterogeneous participating  
machine  domains  overcoming the  interoperability  issues  raised  between  them. The growing number 
of interconnected machines and the diversity of communication technologies and protocols as well as the 
increasing volume of exchanged data mirrored the increase of complexity in M2M systems. Deployment, 
configuration and maintenance of M2M platforms are costly in term of time and money and require a 
permanent presence of high skilled administrator. For this purpose, it is paramount to provide efficient 
M2M systems with capability of self-management to increase the autonomic potential of M2M systems. 

On the first hand, autonomic computing paradigm was introduced by IBM to deal with system 
complexity which is inspired by the human autonomic nervous system that handles complexity and 
uncertainties, and aims at realizing computing systems and applications capable of managing themselves 
with minimum human intervention. In theory, Autonomic computing encompasses four self-management 
capabilities including self-configuring, self-healing, self-optimizing and self-protecting. Up until the 
present time, available autonomic systems are restricted to specific problems and are not applied in M2M 
systems due to the vertical fragmentation of M2M application domains.  On the other hand, ETSI defined 



 

a horizontal M2M service platform for M2M services interoperability that can be applied in different 
vertical domains. However, this M2M platform did not implements any self-management capabilities. 

With the advent of technology, the possibility has arisen to integrate the autonomic computing 
paradigm into a horizontal M2M service platform. An autonomic M2M system should be able to 
automatically manage communication between interacting machines by taking actions based on the 
available information and the knowledge about what is happening in the environment. Administrators 
interact with the autonomic tools only to monitor business processes or alter the objectives. Overcoming 
complexity within M2M networks needs also a multi-view autonomic framework with semantic 
knowledge representation and reasoning capabilities. These kinds of autonomic manager should be 
capable of providing a semantic description of the interacting objects with respect to both their context 
characteristics and their behaviors or situations. From a concrete point of view, interacting entities need to 
be made semantically and automatically interoperable. Any management system will be, then, capable to 
dynamically detect these entities and capture their contexts in order to identify what are the changes that 
are happening in the environment, infer the current situation and react accordingly.

In the present effort, a generic autonomic framework called FRAMESELF [1] was designed and 
implemented for self-deployment and self-configuration of M2M communication services according to 
machines and applications description and environment changes.  The substantive focus is the dynamic 
deployment of asynchronous event driven communications modules required to monitor distributed 
resources and to receive events as they happens from sensors, as well as the dynamic deployment of 
synchronous service oriented communications modules required to remote control distributed resources 
and invoke timely and accurate operations on actuators. FRAMESELF is designed in a way to be generic 
and extensible in order to be easily applied in various M2M domains. The proposed solution supports 
multi-models knowledge based on ontologies and graphs describing the ETSI M2M highlevel 
architecture, the communication service models, and the deployment graph plan.  

The remainder of the paper is organized as follows: in section 2, a state of the art of the autonomic 
computing paradigm, knowledge model representation, ETSI M2M high level architecture, and existing 
communications patterns will be presented. In section 3, FRAMESELF architecture overview, UML 
components diagrams and knowledge models used for monitoring, analyzing, planning and execution will 
be detailed. In section 4, a smart metering use case will be demonstrated, and experiments results testing 
FRAMESELF scalability will be discussed. In section 5, a conclusion will be provided, and some 
perspectives and limitations will be pointed out. 

II. STATE OF THE ART 

A. Autonomic computing paradigm 

Autonomic Computing is a paradigm proposed by IBM in 2001 [2,3,4]. It aims at developing 
distributed system capable of self-management to hide intrinsic complexity to administrators and users. 
An autonomic manager is organized into four main modules, which are Monitor, Analyzer, Planer and 
Executor. These modules share a same knowledge (managed resources details, policies, symptoms, 
request for change, plans, etc.), exploit policies based on goal and environment awareness and constitute 
together the MAPE-K control loop. Recent works on autonomic computing addressed some of the self-
management capabilities applied in specific domains such as software deployment, data store, resource 
allocation, communication patterns adaptation, and query processing. 

DeployWare [5] is an extensible component-based framework for automatic deployment of distributed 
and heterogeneous software systems. This approach defines three roles in the management of the 
software: the expert software, the system administrator and the end user. This framework proposes 
specific language for deployment (DSL Domain Specific Language) and a virtual machine for this 
language. The language is defined by a meta-model and provides a graphical notation in the form of a 
UML profile. Two concepts are important: the importance of defining roles and use of specific language 
comprehensible for users. 

http://en.wikipedia.org/wiki/Self-management_(computer_science)
http://en.wikipedia.org/wiki/Self-management_(computer_science)
http://en.wikipedia.org/wiki/Self-management_(computer_science)


 

 Gryphon [6] is an IBM project focusing on the design and development of highly scalable, available 
and secure publish/subscribe systems. It allows to dynamically adding brokers into the network to 
provide support for additional clients. It is able to respond to the failure of one broker in a network by 
rerouting traffic around the failed broker.   

Astrolabe [7] is a hierarchically organized pear-to-pear query processing system. It support more 
expressive query used to collect the states of a very large-scale nodes according to zones. It also enables a 
variety of communication paradigms such as publish/subscribe, caching and multi-casting. The main 
drawback of astrolabe is that topology must be manually maintained by an administrator. 

Facus [8] is a Framework for Adaptive Collaborative Ubiquitous Systems. This solution proposes a 
multi-layer modeling of system architectures in order to manage collaborative activities carried out by 
groups of user in complex issues. This framework proposes a Generic Collaboration Ontology (GCO) [9] 
and aims to deploy and configure collaborative session for users using event based communication 
modules. It is implemented using ontology and graph models and rule-oriented techniques. Although this 
framework uses generic collaboration ontology, there is no clear separation between the autonomic 
manager and knowledge base. Moreover, managed resources must generate the ontology instance, which 
induces a bad strong coupling between them and the framework.  

Cited autonomic frameworks are designed to handle problems in specific domains, and are in most 
cases highly dependent on the type of managed resources. Although these solutions are effective in their 
domain and are relatively easy to use, but when it comes to maintain or to extend their architecture, they 
prove to be complex. These solutions are not modular and don’t support multi-model representations in 
their knowledge bases for advanced management. 

B. Knowledge  model representation 

Independently from the technical issues that may be encountered during the design of an autonomic 
system for M2M, a fundamental problem to be solved consists in the choice of the sort of formal 
vocabulary to enable representing vertical M2M domains knowledge in a horizontal way.  

Relational database model is based on first-order predicate logic and enables to organize a collection 
of data items as a set of formally described tables from which data can be accessed easily. The purpose of 
this model is to provide a declarative method for specifying data and queries. Database enables to save 
only knowledge of a closed world system making difficult to extend or to share the relational model. It is 
more advantageous to represent knowledge according to the open world assumption [10] with machine 
understandable semantics. 

Ontology model has proven beneficial for intelligent information integration, information retrieval, 
and knowledge management. Ontologies enable to index resources content using semantic annotations 
that can result in the representation of explicit knowledge that cannot be assessed and managed because 
of their mess.  Given the increasing use of ontologies as a way of cleverly structuring a domain making 
use of semantic hierarchical and property/value relationships, utilizing a vocabulary of concepts/instances 
in order to describe rules, ontology represents now a very popular approach and is very useful to 
overcome challenges fixed in the proposed study [11]. 

The most popular language in the domain of semantic knowledge modeling making use of ontologies 
is the Web Ontology Language (OWL)[12]. OWL is a semantic an expressive schema language for 
publishing and sharing ontologies using RDF (the Resource Description Framework) extensions. OWL 
facilitates interoperability between entities by providing a shared understanding of the domain in 
question. It is an effective means for explicating implicit design decisions and underlying assumptions at 
system build time based on powerful deductive reasoning capabilities such as the Semantic Web Rule 
Language (SWRL) [13]. 



 

C. M2M high level architecture 

M2M is a recent domain and standards are under construction. Even, the European 
Telecommunications Standards Institute (ETSI) is developing standards for M2M, the autonomic 
computing paradigm is missing to build self-managed M2M communication. In October 2011 ETSI 
published the M2M functional architecture standard [14]. Figure 1 describes the high level architecture 
for M2M as defined by ETSI specification. The architecture includes a Device and Gateway Domain, and 
a Network domain. 

 

Figure 1.  High level architecture for M2M 

An M2M Device is able to run M2M Applications using M2M Service Capabilities. It can connect 
directly to the Network Domain via the Access network and may provide service to other devices 
connected to it that are hidden from the Network Domain. It can also connect to the Network Domain via 
an M2M Gateway through the M2M Area Network. M2M Area Network provides connectivity between 
M2M Devices and M2M Gateways. M2M Gateway also runs M2M Applications using M2M Service 
Capabilities, and acts as a proxy between M2M Devices and the Network Domain and may provide 
service to other devices connected to it that are hidden from the Network Domain. 

Access Network allows the M2M Devices and Gateways to communicate with the Core Network. 
M2MService Capabilities Layer (SCL) provides M2M function that can be shared by different 
Applications. It provides services through a set of open interfaces to manage subscriptions and 
notifications pertaining to events. M2M applications run the service logic and use M2M Service 
Capabilities. Network Management Functions consist of all the functions required to manage the Access 
and Core networks: these include Provisioning, Supervision, Fault Management, etc. M2M Management 
Functions consists of all the functions required to manage M2M Service Capabilities in the Network 
Domain. 

D. Communication patterns 

The service oriented architecture (SOA) [15] relies on the request/response pattern underlying 
structure supporting communications between services. SOA defines how computing entities interact in 
such a way to enable one entity to perform a unit of work on behalf of another entity. The goal of SOA 
can be described as bringing the benefits of loose coupling and encapsulation to integration at highly 



 

distributed system. SOA is quite useful for the web-services to synchronously request distributed 
actuators, but it is no suitable for decoupling asynchronous monitoring activities. In contrast to SOA, the 
event-driven architecture (EDA)[16] provides full decoupled communication between computing entities. 
EDA supports asynchronous publish/subscribe pattern. It prescribes that communication between 
components has to be performed on the basis of event notifications, where events are basically 
understood as changes in the state of something relevant in the system. EDA complements SOA by 
introducing long-running processing capabilities. Event consumers receive events as they happen, and 
loosely coupled services can be invoked to provide more timely and accurate data to customers. This kind 
of mixed communication architecture is called Event-Driven Service Oriented Architecture 
(EDSOA)[17].  

III. AUTONOMIC FRAMEWORK PRINCIPLES 

In this section, an overview of the FRAMESELF architecture will be presented. The global 
functioning of its main modules and the capability of the proposed solution to mix different models to 
manage system will be explained. 

A. FRAMESELF architecture overview 

The FRAMESELF architecture is based on the IBM autonomic architecture reference [2]. In our 
approach, the monitor, analyzer, planer, and executer operate as expert systems to emulate the decision-
making ability of human experts. These modules are designed to solve complex problems by reasoning 
about knowledge, like an expert. Each module is divided into two parts, one fixed, independent of the 
system: the inference engine, and one variable: the knowledge base model. The FRAMESELF global 
architecture is described in Figure 2. 

 

 

Figure 2.  FRAMESELF architecture overview 

The monitor role is to answer to the "what is happening?” question. It collects events from sensors 
from managed resources, updates a model describing the sensors environment and topology located on 
the knowledge base with relevant information from events, and infers new knowledge about symptom 
occurrences, then extracts relevant information and sends them to the analyzer.  

The analyzer focuses on the "what to do?" question. It provides the mechanisms that correlate and 
model complex situation. These mechanisms allow the autonomic manager to learn about the 
environment and help to predict environment changes. The analyzer receives symptoms as input, uses 



 

them to update a knowledge model describing the complex situation. The inference engine generates new 
knowledge about required requests for change (RFCs), and sends them to the planner. 

The planner acts as a decision module and focuses on the question "how to do?". It saves received 
RFCs as goal states, reads models of possible actions and facts from the knowledge base and checks 
policies to guide its work. Then, it selects actions leading to the goal states and sends them to the 
executer. 

The executor receives as input logical description of the sequence of actions to be executed, and 
consults a model containing actuators description and available operations details. It matches actions with 
their correspondent concrete operations, then performs the plan using actuators and controls the sequence 
of actions execution with consideration for dynamic updates. The executor must answer to the question 
"how is it done?” by generating reports and saving relevant information into the knowledge base. 

B. Monitoring process 

In this subsection, the monitor process will be explained in more details. The monitor component 
diagram and the M2M architecture ontology model will be presented.  

 
1) Monitoring component diagram 

 

Figure 3.  Monitor components diagram 

Figure 3 describes the UML components diagram of the monitor: 

 Event Receiver enables collecting events from different sources. It could be an event subscriber 
able to receive event from an event broker, it could be also an event log file parser, or an event 
service requester.  

 Event normalizer consists in transforming, extending and formatting captured events in a 
standardized event format to make them consistent for processing. 

 Event filter consists in discarding events that are deemed to be irrelevant for the management 
platform. 

 Event aggregation consists in merging duplicates of the same event that may be caused by network 
instability.  

 Event masking consists in ignoring events pertaining to systems that are downstream of a failed 
resource. Masking is different from filtering because masking allows to dynamically hiding 
unfiltered events according to the context changes. 

 Monitor Knowledge Communication enables the monitor to read/write information from/to the 
M2M architecture and to read rules from the knowledge base.  



 

 Symptom inference engine receives events as input, checks knowledge model, then generates 
symptoms as a response. 

 Symptom sender enables delivering generated symptoms in different ways to the Analyzer using 
different technologies. 
 

2) M2M Architecture knowledge model for monitoring 
The model used by the monitoring component is based on ontology to manage the events during the 

discovery, configuration and deployment phases of the different part of the M2M system: M2M 
machines, M2M applications and M2M services. The monitor builds progressively an M2M ontology 
instance model, located the knowledge base, in line with the ETSI M2M high level architecture using 
received events. 

The proposed ontology model, described in figure 3, is composed of four main classes: M2M Object, 
M2M Machine, M2M Application, and M2M Service Capability Layer (SCL).  

 M2M Object class can be specialized to a hardware M2M machine or software M2M Application. 
An M2M Object can belong to a group, have a role, and have a specific profile. 

 M2M Machine class can be described using machine name, type, location, state, and category 
details as well as runtime changing information such as the battery level, CPU, RAM, etc. A M2M 
Machine can be specialized to a Network Server, or a Gateway as well as a Sophisticated Device or 
Constraint Device. 

 M2M SCL class belongs to a M2M machine and runs deployed communication services. It can be 
specialized to a Network SCL, a Gateway SCL, or a Device SCL. 

 M2M Application class can be described using application type, targeted location, and targeted 
category information, and is able to register to a SCL.  A M2M Application can be specialized to a 
Network Application, a Gateway Application, or a Device Application.   
 

 

Figure 4.  M2M architecture ontology model 



 

3) Example of detecting non configured M2M constraint devices and M2M applications using SWRL 
rules. 

This model can be used to interconnect M2M application with their corresponding M2M constraint 
devices. The constraint device could be a sensor or an actuator according to its type information. It could 
own one communication service and have one of the following status: “not_configured”, “to_configure”, 
“configuring”, and “configured” to enable handing constraint device life cycle. An M2M application 
could interact with one or more constraint devices according to its targeted location, and targeted 
category information. The following types are used to handle connections life cycle: “not_connected_to”, 
“to_connect_to”, and “connected_to”. 

As a first step, the monitor applies a semantic rule on the ontology model instance to detect non 
configured devices and toggle their status to: “to_configure”. The following SWRL rule is used for this 
issue: 

 

Constraint_Device(?cd) ˄ has_status(?cd, 
"not_configured")  

→ has_status(?cd, "to_configure") 

 
As a second step, the monitor applies a second rule to detect eventual correlation between existing 

applications and available constraint devices to spot missing connections between them. If a constraint 
device location is equal to an application targeted location, and if a constraint device type is equal to an 
application targeted type, then the monitor concludes that this application should be connected to this 
constraint device. The following SWRL rule is used for this issue: 

 

Constraint_Device(?cd) ˄ has_location(?cd, ?l) ˄  
has_category(?cd, ?c) ˄ Application(?a) ˄ 

has_target_location(?a, ?tl) ˄   
has_target_category(?a, ?tc) ˄ swrlb:equal(?l, ?tl) 

˄ swrlb:equal(?c, ?tc)  
→ to_connect_to(?a, ?cd) 

 
After executing these rules and inferring new axioms, the monitor generates symptom containing 

details of constraint devices to be installed and applications to be connected, and sends them to the 
analyzer. 

C. Analyzing process 

In this subsection, the analyzer components diagram and M2M communication services knowledge 
model will be detailed.  

 
1) Analyzing components diagram 
Figure 5 describes the UML components diagram of the analyzer: 

 Policy Validator enables to validate a policy entered by the administrator, located on the knowledge 
base, to guide the control loop operations. 

 Symptom Receiver enables collecting events from the monitor sources using different technologies. 

 Symptom Normalizer consists in formatting received symptom in a standardized symptom format 
to make them consistent for analyzing. 

 Analyzer Knowledge Communication enables to handle the M2M communication services model 
and read rules and policies from the knowledge base. 



 

 Request Inference Engine receives Symptom as input, checks knowledge model, then generates 
Request for change as a response. 

 Request Sender enables to send generated request for change to the planner or another module 
using different technologies. 

 

Figure 5.  Analyzer components diagram 

2) Communication services knowledge model for analyser 
Based on received symptoms, the analyzer tries to determine required communication components that 

can be installed on M2M constraint devices and M2M applications. To perform this task, a service 
communication knowledge model containing details of relevant communication patterns and information 
of how this patterns work is required. In this study, the event-driven and service-oriented communication 
patterns are considered as shown in figure 6. 

 

Figure 6.  M2M communication services ontology model 

A M2M communication Service is defined using a profile. It can be deployed on a M2M SCL and can 
be owned by an M2M object. According to the request/response communication pattern, a SOA service 



 

could be specialized to Service Provider, or Service Requester. A service requester invokes a service 
provider to execute an action and gets back a response. According to the publish/subscribe 
communication pattern, an EDA service could be specialized to an event publisher, an event subscriber, 
or an event Broker. The event broker has a list of topics and the publisher publishes events on a topic. A 
subscriber is linked to one or more topics, and only receives events that are of interest.  

 
3) Example of defining communication services for M2M constraint devices and M2M applications 

using SWRL rules 
Firstly, the analyzer applies semantics rules on the ontology model instance to detect appropriate 

communication service for not installed constraint devices. A constraint device doesn’t implement a SCL, 
so communication services will be deployed on the gateway SCL to which it is connected. If a constraint 
device has the “actuator” type, then a service provider will be selected and deployed for this actuator, and 
the constraint device status will be changed to "configuring". The following SWRL rule is applied for this 
issue: 

 

Constraint_Device(?cd) ˄  has_status(?cd, 
"to_configure") ˄ is_connected_to(?cd, ?g) ˄ 

belongs_to(?gscl1, ?g) ˄  
has_type(?cd, "actuator") ˄ 

swrlx:makeOWLIndividual(?sp, ?cd) 
→ Service_Provider(?sp) ˄ owns(?cd, ?sp) ˄ 
is_deployed_on(?sp, ?gscl1) ˄ has_status(?cd, 

"installing") 

 
If a constraint device has the “sensor” type, then an event publisher will be selected and deployed for 

this sensor, and the constraint device status will be changed to "configuring". The following SWRL rule 
is applied for this issue: 

 

Constraint_Device(?cd) ˄ has_status(?cd, 
"to_configure") ˄ is_connected_to(?cd, ?g) ˄ 

belongs_to(?scl1, ?g) ˄  
has_type(?cd, "sensor") ˄ has_category(?cd, ?c) 

˄  
Event_Broker(?eb) ˄ is_deployed_on(?eb, 

?scl1) ˄ 
swrlx:makeOWLIndividual(?ep, ?cd) ˄  
 swrlx:makeOWLIndividual(?to, ?cd) 
→ Event_Publisher(?ep) ˄ Topic(?to) ˄ 

has_name(?to, ?c) ˄ is_deployed_on(?ep, ?scl1) 
˄ has_topic(?eb, ?to) ˄  

publishes_on(?ep, ?to) ˄ owns(?cd, ?ep) ˄  
has_status(?cd, "installing") 

 
Secondly, the analyzer applies semantics rules to determine appropriate communication services for 

M2M applications. If an application must be connected to an actuator, then a service requester will be 
selected to be deployed on the SCL to which the application is registered. The application service 



 

requester binds to the actuator service provider. The link between the application and the actuator is 
changed to "connecting_to". The following SWRL rule is applied for this issue.  
 

Application(?a) ˄ is_registred_to(?a, ?scl2) 
˄ Constraint_Device(?cd) ˄ to_connect_to(?a, 

?cd) ˄  
has_type(?cd, "actuator") ˄ 

swrlx:makeOWLIndividual(?sr, ?a) ˄ 
Service_Provider(?sp) ˄ owns(?cd, ?sp)  

→ Service_Requester(?sr) ˄ 
is_deployed_on(?sr, ?scl2) ˄  

binds(?sr, ?sp) ˄ owns(?a, ?sr) ˄ connecting(?a, 
?cd) 

 
If an application must be connected to a sensor, then an event subscriber will be selected and deployed 

on the SCL to which the application is registered. This event subscriber subscribes to the same topic as 
the corresponding sensor event publisher. The link between the application and the actuator is changed to 
"connecting_to". The following SWRL rule is applied for this issue.  

 

Application(?a) ˄ is_registred_to(?a, ?scl1) 
˄ Constraint_Device(?cd) ˄ has_type(?cd, 

"sensor") ˄  
to_connect_to(?a, ?cd) ˄ Topic(?to) ˄ 

owns(?cd, ?ep) ˄ publishes_on(?ep, ?to) ˄ 
swrlx:makeOWLIndividual(?es, ?a) 

 → Event_Subscriber(?es) ˄ 
is_deployed_on(?es, ?scl1) ˄ subscribes_to(?es, 

?to) ˄ owns(?a, ?es) ˄ connecting(?a, ?cd) 

 
After executing these rules and inferring new axioms, the analyzer generates requests for change 

containing information of M2M communication services to be deployed and how they are linked 
together, and sends them to the planner. 

D. Planning process 

In this subsection, the planer process will be explained in more details. The planner components 
diagram and the deployment graph model will be presented.  

 
1) Planner components diagram 

The UML components diagram of the planner is composed by (figure 7): 

 Policy Interpreter enables to processes a policy located on the knowledge base and to apply it to 
guide the decisions that affect the autonomic manager behavior.  

 RFC Receiver receives RFCs from the analyzer using different technologies. 

 RFC Normalizer consists in formatting received request for change according to a RFC template to 
make them ready for planning. 

 Planner Knowledge Communication enables to handle the deployment graph model and read 
policies from the knowledge base. 



 

 Plan Generator receives RFCs as input, checks knowledge model, then generates action plans as 
response. 

 Plan Sender enable to sends generated action plan to the Executer or another module using different 
technologies. 

 

Figure 7.  Planner components diagram 

2) Deployment plan graph model. 
To deploy requested communication services, the planner generates a deployment plan graph model 

according to received RFCs details. A 2-level nested graph model based on the GraphML [18] standard is 
proposed to model the deployment plans. In the first level graph, nodes represent M2M SCLs and contain 
information of M2M machines context. In the second level, nodes represent M2M communication 
services to be deployed on the SCLs and contain configuration parameters (topics name, service provider 
address, etc.) as well as deployment actions such as install, start, update, stop, uninstall, and configure. 
Arrows direction informs of the next services to deploy and arrows values inform of the sleeping time 
before moving onto the next operation. The second level graph is considered as a precedence graph to 
ensure deployment scheduling.  

 

Figure 8.  Deployment graph plan model 



 

 
The following rules are used for this issue: For EDA communications, event brokers will be deployed 

before event publishers and event subscribers. For SOA communications service providers will be 
deployed before service requesters. An example of a graph plan model for communication service 
deployment is given in figure 8. According to this model instance, the first step consists of deploying an 
event broker and a service provider. The next step consists of deploying, after "X" seconds, an event 
subscriber, an event publisher, and a service requester. 

E. Executing process 

In this subsection, the Execution components diagram and the deployment graph model will be 
presented.  

 
1) Executor components diagram 

 

Figure 9.  Executor components diagram 

Figure 9 describes the UML components diagram of the planner: 

 Plan Receiver enables receiving action plans from the planner using different technologies. 

 Plan Normalizer consists in formatting received plan to make them easy to parse by the Action 
interpreter. 

 Executor Knowledge Communication enables to handle the deployment result graph model from 
the knowledge base. 

 Action Interpreter focuses on processing received actions and checking whether the executor has 
the rights and means to execute them. 

 Action Orchestrator enables to describe the automated arrangement and coordination of actions in 
time. 

 Action scheduler determines, for simultaneous actions, which action to be executed next to load 
balance the system. 
 

2) Deployment result report 
Initially, a M2M deployment service is started in each SCL that can be invoked by the executor to 

deploy new M2M communication services according to the deployment plan graph. After each operation, 
the executor generates a result reports containing deployment operations status (Successful, fail), new 
components life-cycle details (installed, resolved, starting, active, stopping, uninstalled, etc.) and eventual 
errors messages. If the deployment process fails, the executor is able to display an alert message with the 



 

occurred errors to the administrator, to return back to the previous deployment checkpoint, or, if it is 
possible, to plan a new deployment graph taking in consideration deployment errors. 

IV. EXPERIMENTS 

In this section a smart metering use case will be demonstrated and performance results will be 
presented. 

A. Smart metering use case description 

Let's consider a M2M distributed system composed of six M2M machines connected as follows: a 
home gateway and a Smartphone connected to a smart metering server through a wide area network. 
Three constrained devices: a smart meter, a light sensor, and a lamp actuator connected to the home 
gateway through a home area network. These constraint devices will be used by four M2M applications 
as following: a home gateway application for automatic lamp regulation according to the light level, a 
M2M server application for energy consumption log saving, and two M2M applications for smartphone: 
the first one for lamp controlling and the second one for energy consumption displaying. Figure 10 
describes the use case architecture. 

To be able to manage this M2M system, the autonomic manager must be adapted for resource-
constrained devices and supports standardized mechanisms for seamless interaction with constraint 
managed resources by meeting a set of requirements: 

 Transport-neutral mechanisms to address managed resources hosted services, 

 Discovery protocol to locate available services, 

 Generic protocol for accessing service-based resources representation, 

 Messaging protocol that allows services to accept subscriptions for event notifications, 

 

Figure 10.  M2M smart use case architecture 

B. Seamless integration of managed resources using DPWS 

To meet requirements cited above, the Devices Profile for Web Services (DPWS) [19] specification 
was considered in the proposed approach. DPWS defines a minimal set of implementation constraints to 
enable secure web service messaging, discovery, description, and eventing that is fully aligned with web 



 

services standards and includes numerous extension points for seamless integration of device-provided 
services in a highly distributed system. DWPS is based on existing Web Service (WS) standards such as 
WS-Addressing, WS-Discovery, WS-Eventing, WS-MetadataExchange, WS-Transfer, and WS-Security 
adapted for mobile and resource-constrained devices. 

Using DPWS, a device is able to host and offer two types of services. The first one is the "Operation 
Service" which is suitable for making synchronous communication on actuators based on 
request/response design pattern. It is further used to declare and return operations or events input and 
output parameters as well as any faults that may occur on invocation. The second type is "Default Event 
Source Service" which is suitable for making asynchronous communication on sensors based on 
publish/subscribe pattern. The DPWS framework supports two types of WS-Eventing compliant events: 
notifications and solicit-response operations. While the first ones represent one-way messages sent from 
the event source to its subscribers, the later additionally includes response messages sent back from the 
subscribers to the source. 

C. Self-configuration using FRAMESELF 

Monitor discovers available M2M machines and M2M applications using WS-Discovery, and 
generates the M2M architecture ontology instance. After applying semantic rules using the JESS [20] 
inference engine, the Monitor detects that the three constraint devices should be configured: 

 The lamp regulating application should be connected to the light sensor and the lamp actuator,  

 The energy log saving application should be connected to the energy smart meter, 

 The lamp controlling application and energy consumption displaying application should be connected 
respectively to the lamp actuator and the energy smart meter.  

To sum up, three constraint device configurations and five application connections must be analyzed 
which represents eight symptoms to be generated and sent to the analyzer. The M2M architecture 
ontology instance is described in figure 11. 

 

Figure 11.  M2M architecture ontology instance 

On the second step, the analyzer updates the communication service ontology instance based on the 
data extracted from the eight symptoms. After applying semantic rules using the JESS inference engine, 
the analyzer determines required M2M communication services:  

 Light sensor owns an event publisher and publishes event on the light topic of the gateway broker. 



 

 The gateway application owns a light event subscriber to collect events from the light topic. 

 The gateway application checks the light intensity and then uses a lamp service requester to control 
the lamp service provider.   

 The Smartphone application owns a lamp service requester to remote control the lamp service 
provider.  

 The energy smart meter owns an event publisher and publishes events on the energy topic of the event 
broker.  

 The smart metering server and the Smartphone each owns an energy metering subscriber and uses it 
to collect events for the energy topic to, respectively, save and display home energy consumption.  

The M2M communication ontology instance is given on figure 12. 

 

Figure 12.  M2M communication services ontology instance 

On the third step, the planner generates the deployment graph plan based on received RFCs. It plans the 
deployment of the event brokers of the home gateway and the smart metering server, and the lamp service 
provider. It plans the configuration of a light topic on the gateway broker and an energy topic on the 
smart metering server broker. The lamp service provider is configured to be invoked externally. The 
planner plans the deployment of the smart meter event publishers and the light sensor event subscribers 
and configures them to connect, respectively, to the energy and the light topics. The planner plans also 
the deployment of the lamp service requester and configures it to bind the lamp service provider. Figure 
13 depicts the generated deployment graph plan instance. 



 

 

Figure 13.  Deployment graph plan example 

On the last step of the control loop, the executor reads M2M communication services description from 
the graph plan model, and determines the location of the corresponding software components. It finally 
deploys required software components on their appropriate M2M machines, configures and starts them 
according to the plan using the OSGi technology [21]. The executor generates a report detailing the result 
of each actions and the state of each deployed components.  

D. Performance results 

In this part performance results were conducted to calculate the overload generated by FRAMESELF 
during the control loop steps in the context of a big M2M system. The capacity of the autonomic loop 
iteration and the knowledge base model processing and reasoning overload will be discussed. The 
experimentations were performed using a computer having an Intel Core i7-2670QM CPU 2.20GHz and 
a 8GB of RAM. 

 
1) FRAMESELFcontrol loop performance 
The monitoring, analysing, planning and executing phases of the control loop are done by four threads. 

It looks like a pipeline. First measures are done to evaluate the processing capacity of the loop with no 
knowledge base only to evaluate the components architecture. Time is firstly collected at the beginning of 
a burst of events and secondly when all events have created a single action in the executor module. On 
figure 14, the processing capacity is shown for the treatment of a burst. For a single event, wake-up time 
of thread invocation of component and runtime of component need 30 ms. FRAMESELF could create 
action every 0.55 ms in a burst. In a pipeline system, it corresponds to the time of treatment of the slowest 
element of the pipeline. So in a burst, an event creates an action in less than 2.2 ms. The proposed 
components architecture is not a limitation for the capacity of FRAMESELF.   



 

 

Figure 14.  Processing capacity of the autonomic loop   

2) Knowledge base processing and reasoning performance 
Scalability could become a serious problem when dealing with OWL models containing a large 

number of entities and especially when using inference engine with complex rules. In fact, each time, the 
inference engine must load the full OWL instance content before reasoning, and save all inferred 
knowledge when finished. Therefore, scalability tests were focused on the monitoring and analyzing 
functions to measure the impact of using OWL with JESS inference engine on the scalability of the 
proposed system.  

The curve presented in figure 15 describes the time needed for the monitor to detect simultaneously up 
to 90 events of non-configured devices. Although it is rare to reach this high number, because most of 
time device and application will be added one by one, the monitor reasoning time remains low.  

 

Figure 15.  Monitoring capacity 

The curve presented on figure 16 tells about the time needed for the analyzer to handle simultaneously 
up to 250 symptoms. As a reminder: each symptom contains details of a machine or an application to 



 

configure. Beyond 200 symptoms, the overload increases considerably and may disrupt the normal 
functioning of the system. 

 

Figure 16.  Analyzing capacity 

V. CONCLUSION 

In this paper, the basis of a generic autonomic framework called FRAMESELF aiming at self-
managing of M2M system was presented. The FRAMESELF global architecture and the functioning of 
its main module were explained. The proposed solution focused on the self-configuration of M2M 
communication services according to semantic annotation collected from M2M objects within a M2M 
system. A multi-model knowledge based was considered to perform the control loop steps and a M2M 
architecture ontology model was defined for the monitoring process. A M2M communication services 
ontology model based on the publish/subscribe and request/response design patterns was specified for the 
analyzing process and a deployment graph plans was generated during the planning process. This 
approach was demonstrated using a M2M smart metering use case and performance results were 
presented to measure the overload generated by FRAMESELF facing scalability. 

As future work, we propose to apply FRAMESELF for self-configuring M2M communication 
services in more complex M2M scenario by integrating standardized ontology model like the OWL-S 
[22] and the SSN [23] ontologies to represent in more details services, events and devices. We propose to 
such advanced models to support additional self-management capabilities such as self-optimization, self-
healing and self-protecting and apply it to manage new M2M business cases such as e-health, domotic, 
and smart grid. We plan also to contribute on M2M standardization within ETSI for the autonomic 
computing and semantic aspects. 
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