
HAL Id: hal-01228322
https://hal.science/hal-01228322v1

Submitted on 12 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FRAMESELF: A generic autonomic framework for
self-management of distributed systems -Application on

the self-configuration of M2M architecture using
semantic and ontology

Mahdi Ben Alaya, Thierry Monteil

To cite this version:
Mahdi Ben Alaya, Thierry Monteil. FRAMESELF: A generic autonomic framework for self-
management of distributed systems -Application on the self-configuration of M2M architecture using
semantic and ontology. International Conference on Collaboration Technologies and Infrastructures
(IEEE WETICE 2012)„ Jun 2012, Toulouse, France. �hal-01228322�

https://hal.science/hal-01228322v1
https://hal.archives-ouvertes.fr

FRAMESELF: A generic autonomic framework

for self-management of distributed systems

- Application on the self-configuration of M2M architecture using semantic and ontology

Mahdi BEN ALAYA
1,2

 , Thierry MONTEIL
1,2

1
CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse, France

2
Univ de Toulouse, INSA, LAAS, F-31000 Toulouse, France

{ben.alaya, monteil}@laas.fr

Abstract— M2M systems need to connect thousands of various fix and mobile machines that are

widely distributed and evolve frequently according to their profile and context changes. The

increasing complexity of managing current distributed systems needs new solutions. Designing

autonomic systems, which are self-managing, and context aware is a solution and also a challenge.

This paper proposes the FRAMESELF framework, a generic autonomic architecture based on

decision models. The proposed solution capabilities are used for the self-deployment and self-

configuration of machine-to-machine (M2M) systems. Components diagrams are illustrated to

describe FRAMESELF modules and to show how they are connected together. FRAMESELF

implements Devices Profile for Web Services (DPWS) protocol to describe and to discover

managed resources. It implements multi models representation based on ontologies and graphs to

describe the M2M concepts and relationships on a multi-level knowledge base. Two

communication patterns modules based on service-oriented and event-driven communications are

dynamically selected and configured in deployment plans. Finally, a smart metering scenario is

experimented to validate this approach and to calculate the overload that FRAMESELF generates

facing scalability.

Keywords- autonomic computing, self-deployment, self-configuration, M2M architecture ,

ontology, graph.

I. INTRODUCTION

Over the last years, Internet of Things (IoT) has evolved at an exceptional speed. Things can both
correspond to physical things (sensors, actuators, smartphones, machines, etc.) or immaterial ones
(applications, multimedia content providers, directories, etc.). Such environments consist of a high
amount of heterogeneous entities having mutual interactions and delivering high-level services that could
be discovered, monitored, composed, and executed. One of the main concepts behind IoT is Machine-to-
Machine (M2M) communication. M2M provides seamless integration of the heterogeneous participating
machine domains overcoming the interoperability issues raised between them. The growing number
of interconnected machines and the diversity of communication technologies and protocols as well as the
increasing volume of exchanged data mirrored the increase of complexity in M2M systems. Deployment,
configuration and maintenance of M2M platforms are costly in term of time and money and require a
permanent presence of high skilled administrator. For this purpose, it is paramount to provide efficient
M2M systems with capability of self-management to increase the autonomic potential of M2M systems.

On the first hand, autonomic computing paradigm was introduced by IBM to deal with system
complexity which is inspired by the human autonomic nervous system that handles complexity and
uncertainties, and aims at realizing computing systems and applications capable of managing themselves
with minimum human intervention. In theory, Autonomic computing encompasses four self-management
capabilities including self-configuring, self-healing, self-optimizing and self-protecting. Up until the
present time, available autonomic systems are restricted to specific problems and are not applied in M2M
systems due to the vertical fragmentation of M2M application domains. On the other hand, ETSI defined

a horizontal M2M service platform for M2M services interoperability that can be applied in different
vertical domains. However, this M2M platform did not implements any self-management capabilities.

With the advent of technology, the possibility has arisen to integrate the autonomic computing
paradigm into a horizontal M2M service platform. An autonomic M2M system should be able to
automatically manage communication between interacting machines by taking actions based on the
available information and the knowledge about what is happening in the environment. Administrators
interact with the autonomic tools only to monitor business processes or alter the objectives. Overcoming
complexity within M2M networks needs also a multi-view autonomic framework with semantic
knowledge representation and reasoning capabilities. These kinds of autonomic manager should be
capable of providing a semantic description of the interacting objects with respect to both their context
characteristics and their behaviors or situations. From a concrete point of view, interacting entities need to
be made semantically and automatically interoperable. Any management system will be, then, capable to
dynamically detect these entities and capture their contexts in order to identify what are the changes that
are happening in the environment, infer the current situation and react accordingly.

In the present effort, a generic autonomic framework called FRAMESELF [1] was designed and
implemented for self-deployment and self-configuration of M2M communication services according to
machines and applications description and environment changes. The substantive focus is the dynamic
deployment of asynchronous event driven communications modules required to monitor distributed
resources and to receive events as they happens from sensors, as well as the dynamic deployment of
synchronous service oriented communications modules required to remote control distributed resources
and invoke timely and accurate operations on actuators. FRAMESELF is designed in a way to be generic
and extensible in order to be easily applied in various M2M domains. The proposed solution supports
multi-models knowledge based on ontologies and graphs describing the ETSI M2M highlevel
architecture, the communication service models, and the deployment graph plan.

The remainder of the paper is organized as follows: in section 2, a state of the art of the autonomic
computing paradigm, knowledge model representation, ETSI M2M high level architecture, and existing
communications patterns will be presented. In section 3, FRAMESELF architecture overview, UML
components diagrams and knowledge models used for monitoring, analyzing, planning and execution will
be detailed. In section 4, a smart metering use case will be demonstrated, and experiments results testing
FRAMESELF scalability will be discussed. In section 5, a conclusion will be provided, and some
perspectives and limitations will be pointed out.

II. STATE OF THE ART

A. Autonomic computing paradigm

Autonomic Computing is a paradigm proposed by IBM in 2001 [2,3,4]. It aims at developing
distributed system capable of self-management to hide intrinsic complexity to administrators and users.
An autonomic manager is organized into four main modules, which are Monitor, Analyzer, Planer and
Executor. These modules share a same knowledge (managed resources details, policies, symptoms,
request for change, plans, etc.), exploit policies based on goal and environment awareness and constitute
together the MAPE-K control loop. Recent works on autonomic computing addressed some of the self-
management capabilities applied in specific domains such as software deployment, data store, resource
allocation, communication patterns adaptation, and query processing.

DeployWare [5] is an extensible component-based framework for automatic deployment of distributed
and heterogeneous software systems. This approach defines three roles in the management of the
software: the expert software, the system administrator and the end user. This framework proposes
specific language for deployment (DSL Domain Specific Language) and a virtual machine for this
language. The language is defined by a meta-model and provides a graphical notation in the form of a
UML profile. Two concepts are important: the importance of defining roles and use of specific language
comprehensible for users.

http://en.wikipedia.org/wiki/Self-management_(computer_science)
http://en.wikipedia.org/wiki/Self-management_(computer_science)
http://en.wikipedia.org/wiki/Self-management_(computer_science)

 Gryphon [6] is an IBM project focusing on the design and development of highly scalable, available
and secure publish/subscribe systems. It allows to dynamically adding brokers into the network to
provide support for additional clients. It is able to respond to the failure of one broker in a network by
rerouting traffic around the failed broker.

Astrolabe [7] is a hierarchically organized pear-to-pear query processing system. It support more
expressive query used to collect the states of a very large-scale nodes according to zones. It also enables a
variety of communication paradigms such as publish/subscribe, caching and multi-casting. The main
drawback of astrolabe is that topology must be manually maintained by an administrator.

Facus [8] is a Framework for Adaptive Collaborative Ubiquitous Systems. This solution proposes a
multi-layer modeling of system architectures in order to manage collaborative activities carried out by
groups of user in complex issues. This framework proposes a Generic Collaboration Ontology (GCO) [9]
and aims to deploy and configure collaborative session for users using event based communication
modules. It is implemented using ontology and graph models and rule-oriented techniques. Although this
framework uses generic collaboration ontology, there is no clear separation between the autonomic
manager and knowledge base. Moreover, managed resources must generate the ontology instance, which
induces a bad strong coupling between them and the framework.

Cited autonomic frameworks are designed to handle problems in specific domains, and are in most
cases highly dependent on the type of managed resources. Although these solutions are effective in their
domain and are relatively easy to use, but when it comes to maintain or to extend their architecture, they
prove to be complex. These solutions are not modular and don’t support multi-model representations in
their knowledge bases for advanced management.

B. Knowledge model representation

Independently from the technical issues that may be encountered during the design of an autonomic
system for M2M, a fundamental problem to be solved consists in the choice of the sort of formal
vocabulary to enable representing vertical M2M domains knowledge in a horizontal way.

Relational database model is based on first-order predicate logic and enables to organize a collection
of data items as a set of formally described tables from which data can be accessed easily. The purpose of
this model is to provide a declarative method for specifying data and queries. Database enables to save
only knowledge of a closed world system making difficult to extend or to share the relational model. It is
more advantageous to represent knowledge according to the open world assumption [10] with machine
understandable semantics.

Ontology model has proven beneficial for intelligent information integration, information retrieval,
and knowledge management. Ontologies enable to index resources content using semantic annotations
that can result in the representation of explicit knowledge that cannot be assessed and managed because
of their mess. Given the increasing use of ontologies as a way of cleverly structuring a domain making
use of semantic hierarchical and property/value relationships, utilizing a vocabulary of concepts/instances
in order to describe rules, ontology represents now a very popular approach and is very useful to
overcome challenges fixed in the proposed study [11].

The most popular language in the domain of semantic knowledge modeling making use of ontologies
is the Web Ontology Language (OWL)[12]. OWL is a semantic an expressive schema language for
publishing and sharing ontologies using RDF (the Resource Description Framework) extensions. OWL
facilitates interoperability between entities by providing a shared understanding of the domain in
question. It is an effective means for explicating implicit design decisions and underlying assumptions at
system build time based on powerful deductive reasoning capabilities such as the Semantic Web Rule
Language (SWRL) [13].

C. M2M high level architecture

M2M is a recent domain and standards are under construction. Even, the European
Telecommunications Standards Institute (ETSI) is developing standards for M2M, the autonomic
computing paradigm is missing to build self-managed M2M communication. In October 2011 ETSI
published the M2M functional architecture standard [14]. Figure 1 describes the high level architecture
for M2M as defined by ETSI specification. The architecture includes a Device and Gateway Domain, and
a Network domain.

Figure 1. High level architecture for M2M

An M2M Device is able to run M2M Applications using M2M Service Capabilities. It can connect
directly to the Network Domain via the Access network and may provide service to other devices
connected to it that are hidden from the Network Domain. It can also connect to the Network Domain via
an M2M Gateway through the M2M Area Network. M2M Area Network provides connectivity between
M2M Devices and M2M Gateways. M2M Gateway also runs M2M Applications using M2M Service
Capabilities, and acts as a proxy between M2M Devices and the Network Domain and may provide
service to other devices connected to it that are hidden from the Network Domain.

Access Network allows the M2M Devices and Gateways to communicate with the Core Network.
M2MService Capabilities Layer (SCL) provides M2M function that can be shared by different
Applications. It provides services through a set of open interfaces to manage subscriptions and
notifications pertaining to events. M2M applications run the service logic and use M2M Service
Capabilities. Network Management Functions consist of all the functions required to manage the Access
and Core networks: these include Provisioning, Supervision, Fault Management, etc. M2M Management
Functions consists of all the functions required to manage M2M Service Capabilities in the Network
Domain.

D. Communication patterns

The service oriented architecture (SOA) [15] relies on the request/response pattern underlying
structure supporting communications between services. SOA defines how computing entities interact in
such a way to enable one entity to perform a unit of work on behalf of another entity. The goal of SOA
can be described as bringing the benefits of loose coupling and encapsulation to integration at highly

distributed system. SOA is quite useful for the web-services to synchronously request distributed
actuators, but it is no suitable for decoupling asynchronous monitoring activities. In contrast to SOA, the
event-driven architecture (EDA)[16] provides full decoupled communication between computing entities.
EDA supports asynchronous publish/subscribe pattern. It prescribes that communication between
components has to be performed on the basis of event notifications, where events are basically
understood as changes in the state of something relevant in the system. EDA complements SOA by
introducing long-running processing capabilities. Event consumers receive events as they happen, and
loosely coupled services can be invoked to provide more timely and accurate data to customers. This kind
of mixed communication architecture is called Event-Driven Service Oriented Architecture
(EDSOA)[17].

III. AUTONOMIC FRAMEWORK PRINCIPLES

In this section, an overview of the FRAMESELF architecture will be presented. The global
functioning of its main modules and the capability of the proposed solution to mix different models to
manage system will be explained.

A. FRAMESELF architecture overview

The FRAMESELF architecture is based on the IBM autonomic architecture reference [2]. In our
approach, the monitor, analyzer, planer, and executer operate as expert systems to emulate the decision-
making ability of human experts. These modules are designed to solve complex problems by reasoning
about knowledge, like an expert. Each module is divided into two parts, one fixed, independent of the
system: the inference engine, and one variable: the knowledge base model. The FRAMESELF global
architecture is described in Figure 2.

Figure 2. FRAMESELF architecture overview

The monitor role is to answer to the "what is happening?” question. It collects events from sensors
from managed resources, updates a model describing the sensors environment and topology located on
the knowledge base with relevant information from events, and infers new knowledge about symptom
occurrences, then extracts relevant information and sends them to the analyzer.

The analyzer focuses on the "what to do?" question. It provides the mechanisms that correlate and
model complex situation. These mechanisms allow the autonomic manager to learn about the
environment and help to predict environment changes. The analyzer receives symptoms as input, uses

them to update a knowledge model describing the complex situation. The inference engine generates new
knowledge about required requests for change (RFCs), and sends them to the planner.

The planner acts as a decision module and focuses on the question "how to do?". It saves received
RFCs as goal states, reads models of possible actions and facts from the knowledge base and checks
policies to guide its work. Then, it selects actions leading to the goal states and sends them to the
executer.

The executor receives as input logical description of the sequence of actions to be executed, and
consults a model containing actuators description and available operations details. It matches actions with
their correspondent concrete operations, then performs the plan using actuators and controls the sequence
of actions execution with consideration for dynamic updates. The executor must answer to the question
"how is it done?” by generating reports and saving relevant information into the knowledge base.

B. Monitoring process

In this subsection, the monitor process will be explained in more details. The monitor component
diagram and the M2M architecture ontology model will be presented.

1) Monitoring component diagram

Figure 3. Monitor components diagram

Figure 3 describes the UML components diagram of the monitor:

 Event Receiver enables collecting events from different sources. It could be an event subscriber
able to receive event from an event broker, it could be also an event log file parser, or an event
service requester.

 Event normalizer consists in transforming, extending and formatting captured events in a
standardized event format to make them consistent for processing.

 Event filter consists in discarding events that are deemed to be irrelevant for the management
platform.

 Event aggregation consists in merging duplicates of the same event that may be caused by network
instability.

 Event masking consists in ignoring events pertaining to systems that are downstream of a failed
resource. Masking is different from filtering because masking allows to dynamically hiding
unfiltered events according to the context changes.

 Monitor Knowledge Communication enables the monitor to read/write information from/to the
M2M architecture and to read rules from the knowledge base.

 Symptom inference engine receives events as input, checks knowledge model, then generates
symptoms as a response.

 Symptom sender enables delivering generated symptoms in different ways to the Analyzer using
different technologies.

2) M2M Architecture knowledge model for monitoring
The model used by the monitoring component is based on ontology to manage the events during the

discovery, configuration and deployment phases of the different part of the M2M system: M2M
machines, M2M applications and M2M services. The monitor builds progressively an M2M ontology
instance model, located the knowledge base, in line with the ETSI M2M high level architecture using
received events.

The proposed ontology model, described in figure 3, is composed of four main classes: M2M Object,
M2M Machine, M2M Application, and M2M Service Capability Layer (SCL).

 M2M Object class can be specialized to a hardware M2M machine or software M2M Application.
An M2M Object can belong to a group, have a role, and have a specific profile.

 M2M Machine class can be described using machine name, type, location, state, and category
details as well as runtime changing information such as the battery level, CPU, RAM, etc. A M2M
Machine can be specialized to a Network Server, or a Gateway as well as a Sophisticated Device or
Constraint Device.

 M2M SCL class belongs to a M2M machine and runs deployed communication services. It can be
specialized to a Network SCL, a Gateway SCL, or a Device SCL.

 M2M Application class can be described using application type, targeted location, and targeted
category information, and is able to register to a SCL. A M2M Application can be specialized to a
Network Application, a Gateway Application, or a Device Application.

Figure 4. M2M architecture ontology model

3) Example of detecting non configured M2M constraint devices and M2M applications using SWRL
rules.

This model can be used to interconnect M2M application with their corresponding M2M constraint
devices. The constraint device could be a sensor or an actuator according to its type information. It could
own one communication service and have one of the following status: “not_configured”, “to_configure”,
“configuring”, and “configured” to enable handing constraint device life cycle. An M2M application
could interact with one or more constraint devices according to its targeted location, and targeted
category information. The following types are used to handle connections life cycle: “not_connected_to”,
“to_connect_to”, and “connected_to”.

As a first step, the monitor applies a semantic rule on the ontology model instance to detect non
configured devices and toggle their status to: “to_configure”. The following SWRL rule is used for this
issue:

Constraint_Device(?cd) ˄ has_status(?cd,
"not_configured")

→ has_status(?cd, "to_configure")

As a second step, the monitor applies a second rule to detect eventual correlation between existing

applications and available constraint devices to spot missing connections between them. If a constraint
device location is equal to an application targeted location, and if a constraint device type is equal to an
application targeted type, then the monitor concludes that this application should be connected to this
constraint device. The following SWRL rule is used for this issue:

Constraint_Device(?cd) ˄ has_location(?cd, ?l) ˄
has_category(?cd, ?c) ˄ Application(?a) ˄

has_target_location(?a, ?tl) ˄
has_target_category(?a, ?tc) ˄ swrlb:equal(?l, ?tl)

˄ swrlb:equal(?c, ?tc)
→ to_connect_to(?a, ?cd)

After executing these rules and inferring new axioms, the monitor generates symptom containing

details of constraint devices to be installed and applications to be connected, and sends them to the
analyzer.

C. Analyzing process

In this subsection, the analyzer components diagram and M2M communication services knowledge
model will be detailed.

1) Analyzing components diagram
Figure 5 describes the UML components diagram of the analyzer:

 Policy Validator enables to validate a policy entered by the administrator, located on the knowledge
base, to guide the control loop operations.

 Symptom Receiver enables collecting events from the monitor sources using different technologies.

 Symptom Normalizer consists in formatting received symptom in a standardized symptom format
to make them consistent for analyzing.

 Analyzer Knowledge Communication enables to handle the M2M communication services model
and read rules and policies from the knowledge base.

 Request Inference Engine receives Symptom as input, checks knowledge model, then generates
Request for change as a response.

 Request Sender enables to send generated request for change to the planner or another module
using different technologies.

Figure 5. Analyzer components diagram

2) Communication services knowledge model for analyser
Based on received symptoms, the analyzer tries to determine required communication components that

can be installed on M2M constraint devices and M2M applications. To perform this task, a service
communication knowledge model containing details of relevant communication patterns and information
of how this patterns work is required. In this study, the event-driven and service-oriented communication
patterns are considered as shown in figure 6.

Figure 6. M2M communication services ontology model

A M2M communication Service is defined using a profile. It can be deployed on a M2M SCL and can
be owned by an M2M object. According to the request/response communication pattern, a SOA service

could be specialized to Service Provider, or Service Requester. A service requester invokes a service
provider to execute an action and gets back a response. According to the publish/subscribe
communication pattern, an EDA service could be specialized to an event publisher, an event subscriber,
or an event Broker. The event broker has a list of topics and the publisher publishes events on a topic. A
subscriber is linked to one or more topics, and only receives events that are of interest.

3) Example of defining communication services for M2M constraint devices and M2M applications

using SWRL rules
Firstly, the analyzer applies semantics rules on the ontology model instance to detect appropriate

communication service for not installed constraint devices. A constraint device doesn’t implement a SCL,
so communication services will be deployed on the gateway SCL to which it is connected. If a constraint
device has the “actuator” type, then a service provider will be selected and deployed for this actuator, and
the constraint device status will be changed to "configuring". The following SWRL rule is applied for this
issue:

Constraint_Device(?cd) ˄ has_status(?cd,
"to_configure") ˄ is_connected_to(?cd, ?g) ˄

belongs_to(?gscl1, ?g) ˄
has_type(?cd, "actuator") ˄

swrlx:makeOWLIndividual(?sp, ?cd)
→ Service_Provider(?sp) ˄ owns(?cd, ?sp) ˄
is_deployed_on(?sp, ?gscl1) ˄ has_status(?cd,

"installing")

If a constraint device has the “sensor” type, then an event publisher will be selected and deployed for

this sensor, and the constraint device status will be changed to "configuring". The following SWRL rule
is applied for this issue:

Constraint_Device(?cd) ˄ has_status(?cd,
"to_configure") ˄ is_connected_to(?cd, ?g) ˄

belongs_to(?scl1, ?g) ˄
has_type(?cd, "sensor") ˄ has_category(?cd, ?c)

˄
Event_Broker(?eb) ˄ is_deployed_on(?eb,

?scl1) ˄
swrlx:makeOWLIndividual(?ep, ?cd) ˄
 swrlx:makeOWLIndividual(?to, ?cd)
→ Event_Publisher(?ep) ˄ Topic(?to) ˄

has_name(?to, ?c) ˄ is_deployed_on(?ep, ?scl1)
˄ has_topic(?eb, ?to) ˄

publishes_on(?ep, ?to) ˄ owns(?cd, ?ep) ˄
has_status(?cd, "installing")

Secondly, the analyzer applies semantics rules to determine appropriate communication services for

M2M applications. If an application must be connected to an actuator, then a service requester will be
selected to be deployed on the SCL to which the application is registered. The application service

requester binds to the actuator service provider. The link between the application and the actuator is
changed to "connecting_to". The following SWRL rule is applied for this issue.

Application(?a) ˄ is_registred_to(?a, ?scl2)
˄ Constraint_Device(?cd) ˄ to_connect_to(?a,

?cd) ˄
has_type(?cd, "actuator") ˄

swrlx:makeOWLIndividual(?sr, ?a) ˄
Service_Provider(?sp) ˄ owns(?cd, ?sp)

→ Service_Requester(?sr) ˄
is_deployed_on(?sr, ?scl2) ˄

binds(?sr, ?sp) ˄ owns(?a, ?sr) ˄ connecting(?a,
?cd)

If an application must be connected to a sensor, then an event subscriber will be selected and deployed

on the SCL to which the application is registered. This event subscriber subscribes to the same topic as
the corresponding sensor event publisher. The link between the application and the actuator is changed to
"connecting_to". The following SWRL rule is applied for this issue.

Application(?a) ˄ is_registred_to(?a, ?scl1)
˄ Constraint_Device(?cd) ˄ has_type(?cd,

"sensor") ˄
to_connect_to(?a, ?cd) ˄ Topic(?to) ˄

owns(?cd, ?ep) ˄ publishes_on(?ep, ?to) ˄
swrlx:makeOWLIndividual(?es, ?a)

 → Event_Subscriber(?es) ˄
is_deployed_on(?es, ?scl1) ˄ subscribes_to(?es,

?to) ˄ owns(?a, ?es) ˄ connecting(?a, ?cd)

After executing these rules and inferring new axioms, the analyzer generates requests for change

containing information of M2M communication services to be deployed and how they are linked
together, and sends them to the planner.

D. Planning process

In this subsection, the planer process will be explained in more details. The planner components
diagram and the deployment graph model will be presented.

1) Planner components diagram

The UML components diagram of the planner is composed by (figure 7):

 Policy Interpreter enables to processes a policy located on the knowledge base and to apply it to
guide the decisions that affect the autonomic manager behavior.

 RFC Receiver receives RFCs from the analyzer using different technologies.

 RFC Normalizer consists in formatting received request for change according to a RFC template to
make them ready for planning.

 Planner Knowledge Communication enables to handle the deployment graph model and read
policies from the knowledge base.

 Plan Generator receives RFCs as input, checks knowledge model, then generates action plans as
response.

 Plan Sender enable to sends generated action plan to the Executer or another module using different
technologies.

Figure 7. Planner components diagram

2) Deployment plan graph model.
To deploy requested communication services, the planner generates a deployment plan graph model

according to received RFCs details. A 2-level nested graph model based on the GraphML [18] standard is
proposed to model the deployment plans. In the first level graph, nodes represent M2M SCLs and contain
information of M2M machines context. In the second level, nodes represent M2M communication
services to be deployed on the SCLs and contain configuration parameters (topics name, service provider
address, etc.) as well as deployment actions such as install, start, update, stop, uninstall, and configure.
Arrows direction informs of the next services to deploy and arrows values inform of the sleeping time
before moving onto the next operation. The second level graph is considered as a precedence graph to
ensure deployment scheduling.

Figure 8. Deployment graph plan model

The following rules are used for this issue: For EDA communications, event brokers will be deployed

before event publishers and event subscribers. For SOA communications service providers will be
deployed before service requesters. An example of a graph plan model for communication service
deployment is given in figure 8. According to this model instance, the first step consists of deploying an
event broker and a service provider. The next step consists of deploying, after "X" seconds, an event
subscriber, an event publisher, and a service requester.

E. Executing process

In this subsection, the Execution components diagram and the deployment graph model will be
presented.

1) Executor components diagram

Figure 9. Executor components diagram

Figure 9 describes the UML components diagram of the planner:

 Plan Receiver enables receiving action plans from the planner using different technologies.

 Plan Normalizer consists in formatting received plan to make them easy to parse by the Action
interpreter.

 Executor Knowledge Communication enables to handle the deployment result graph model from
the knowledge base.

 Action Interpreter focuses on processing received actions and checking whether the executor has
the rights and means to execute them.

 Action Orchestrator enables to describe the automated arrangement and coordination of actions in
time.

 Action scheduler determines, for simultaneous actions, which action to be executed next to load
balance the system.

2) Deployment result report
Initially, a M2M deployment service is started in each SCL that can be invoked by the executor to

deploy new M2M communication services according to the deployment plan graph. After each operation,
the executor generates a result reports containing deployment operations status (Successful, fail), new
components life-cycle details (installed, resolved, starting, active, stopping, uninstalled, etc.) and eventual
errors messages. If the deployment process fails, the executor is able to display an alert message with the

occurred errors to the administrator, to return back to the previous deployment checkpoint, or, if it is
possible, to plan a new deployment graph taking in consideration deployment errors.

IV. EXPERIMENTS

In this section a smart metering use case will be demonstrated and performance results will be
presented.

A. Smart metering use case description

Let's consider a M2M distributed system composed of six M2M machines connected as follows: a
home gateway and a Smartphone connected to a smart metering server through a wide area network.
Three constrained devices: a smart meter, a light sensor, and a lamp actuator connected to the home
gateway through a home area network. These constraint devices will be used by four M2M applications
as following: a home gateway application for automatic lamp regulation according to the light level, a
M2M server application for energy consumption log saving, and two M2M applications for smartphone:
the first one for lamp controlling and the second one for energy consumption displaying. Figure 10
describes the use case architecture.

To be able to manage this M2M system, the autonomic manager must be adapted for resource-
constrained devices and supports standardized mechanisms for seamless interaction with constraint
managed resources by meeting a set of requirements:

 Transport-neutral mechanisms to address managed resources hosted services,

 Discovery protocol to locate available services,

 Generic protocol for accessing service-based resources representation,

 Messaging protocol that allows services to accept subscriptions for event notifications,

Figure 10. M2M smart use case architecture

B. Seamless integration of managed resources using DPWS

To meet requirements cited above, the Devices Profile for Web Services (DPWS) [19] specification
was considered in the proposed approach. DPWS defines a minimal set of implementation constraints to
enable secure web service messaging, discovery, description, and eventing that is fully aligned with web

services standards and includes numerous extension points for seamless integration of device-provided
services in a highly distributed system. DWPS is based on existing Web Service (WS) standards such as
WS-Addressing, WS-Discovery, WS-Eventing, WS-MetadataExchange, WS-Transfer, and WS-Security
adapted for mobile and resource-constrained devices.

Using DPWS, a device is able to host and offer two types of services. The first one is the "Operation
Service" which is suitable for making synchronous communication on actuators based on
request/response design pattern. It is further used to declare and return operations or events input and
output parameters as well as any faults that may occur on invocation. The second type is "Default Event
Source Service" which is suitable for making asynchronous communication on sensors based on
publish/subscribe pattern. The DPWS framework supports two types of WS-Eventing compliant events:
notifications and solicit-response operations. While the first ones represent one-way messages sent from
the event source to its subscribers, the later additionally includes response messages sent back from the
subscribers to the source.

C. Self-configuration using FRAMESELF

Monitor discovers available M2M machines and M2M applications using WS-Discovery, and
generates the M2M architecture ontology instance. After applying semantic rules using the JESS [20]
inference engine, the Monitor detects that the three constraint devices should be configured:

 The lamp regulating application should be connected to the light sensor and the lamp actuator,

 The energy log saving application should be connected to the energy smart meter,

 The lamp controlling application and energy consumption displaying application should be connected
respectively to the lamp actuator and the energy smart meter.

To sum up, three constraint device configurations and five application connections must be analyzed
which represents eight symptoms to be generated and sent to the analyzer. The M2M architecture
ontology instance is described in figure 11.

Figure 11. M2M architecture ontology instance

On the second step, the analyzer updates the communication service ontology instance based on the
data extracted from the eight symptoms. After applying semantic rules using the JESS inference engine,
the analyzer determines required M2M communication services:

 Light sensor owns an event publisher and publishes event on the light topic of the gateway broker.

 The gateway application owns a light event subscriber to collect events from the light topic.

 The gateway application checks the light intensity and then uses a lamp service requester to control
the lamp service provider.

 The Smartphone application owns a lamp service requester to remote control the lamp service
provider.

 The energy smart meter owns an event publisher and publishes events on the energy topic of the event
broker.

 The smart metering server and the Smartphone each owns an energy metering subscriber and uses it
to collect events for the energy topic to, respectively, save and display home energy consumption.

The M2M communication ontology instance is given on figure 12.

Figure 12. M2M communication services ontology instance

On the third step, the planner generates the deployment graph plan based on received RFCs. It plans the
deployment of the event brokers of the home gateway and the smart metering server, and the lamp service
provider. It plans the configuration of a light topic on the gateway broker and an energy topic on the
smart metering server broker. The lamp service provider is configured to be invoked externally. The
planner plans the deployment of the smart meter event publishers and the light sensor event subscribers
and configures them to connect, respectively, to the energy and the light topics. The planner plans also
the deployment of the lamp service requester and configures it to bind the lamp service provider. Figure
13 depicts the generated deployment graph plan instance.

Figure 13. Deployment graph plan example

On the last step of the control loop, the executor reads M2M communication services description from
the graph plan model, and determines the location of the corresponding software components. It finally
deploys required software components on their appropriate M2M machines, configures and starts them
according to the plan using the OSGi technology [21]. The executor generates a report detailing the result
of each actions and the state of each deployed components.

D. Performance results

In this part performance results were conducted to calculate the overload generated by FRAMESELF
during the control loop steps in the context of a big M2M system. The capacity of the autonomic loop
iteration and the knowledge base model processing and reasoning overload will be discussed. The
experimentations were performed using a computer having an Intel Core i7-2670QM CPU 2.20GHz and
a 8GB of RAM.

1) FRAMESELFcontrol loop performance
The monitoring, analysing, planning and executing phases of the control loop are done by four threads.

It looks like a pipeline. First measures are done to evaluate the processing capacity of the loop with no
knowledge base only to evaluate the components architecture. Time is firstly collected at the beginning of
a burst of events and secondly when all events have created a single action in the executor module. On
figure 14, the processing capacity is shown for the treatment of a burst. For a single event, wake-up time
of thread invocation of component and runtime of component need 30 ms. FRAMESELF could create
action every 0.55 ms in a burst. In a pipeline system, it corresponds to the time of treatment of the slowest
element of the pipeline. So in a burst, an event creates an action in less than 2.2 ms. The proposed
components architecture is not a limitation for the capacity of FRAMESELF.

Figure 14. Processing capacity of the autonomic loop

2) Knowledge base processing and reasoning performance
Scalability could become a serious problem when dealing with OWL models containing a large

number of entities and especially when using inference engine with complex rules. In fact, each time, the
inference engine must load the full OWL instance content before reasoning, and save all inferred
knowledge when finished. Therefore, scalability tests were focused on the monitoring and analyzing
functions to measure the impact of using OWL with JESS inference engine on the scalability of the
proposed system.

The curve presented in figure 15 describes the time needed for the monitor to detect simultaneously up
to 90 events of non-configured devices. Although it is rare to reach this high number, because most of
time device and application will be added one by one, the monitor reasoning time remains low.

Figure 15. Monitoring capacity

The curve presented on figure 16 tells about the time needed for the analyzer to handle simultaneously
up to 250 symptoms. As a reminder: each symptom contains details of a machine or an application to

configure. Beyond 200 symptoms, the overload increases considerably and may disrupt the normal
functioning of the system.

Figure 16. Analyzing capacity

V. CONCLUSION

In this paper, the basis of a generic autonomic framework called FRAMESELF aiming at self-
managing of M2M system was presented. The FRAMESELF global architecture and the functioning of
its main module were explained. The proposed solution focused on the self-configuration of M2M
communication services according to semantic annotation collected from M2M objects within a M2M
system. A multi-model knowledge based was considered to perform the control loop steps and a M2M
architecture ontology model was defined for the monitoring process. A M2M communication services
ontology model based on the publish/subscribe and request/response design patterns was specified for the
analyzing process and a deployment graph plans was generated during the planning process. This
approach was demonstrated using a M2M smart metering use case and performance results were
presented to measure the overload generated by FRAMESELF facing scalability.

As future work, we propose to apply FRAMESELF for self-configuring M2M communication
services in more complex M2M scenario by integrating standardized ontology model like the OWL-S
[22] and the SSN [23] ontologies to represent in more details services, events and devices. We propose to
such advanced models to support additional self-management capabilities such as self-optimization, self-
healing and self-protecting and apply it to manage new M2M business cases such as e-health, domotic,
and smart grid. We plan also to contribute on M2M standardization within ETSI for the autonomic
computing and semantic aspects.

ACKNOWLEDGEMENT

This work is part of the European project ITEA2 A2NETS. It will be integrated on the smart metering
business case demonstrator.

REFERENCES

1. Mahdi Ben Alaya, Thierry Monteil, "FRAMESELF: A Generic Context-Aware Autonomic

Framework for Self-Management of Distributed Systems," wetice, IEEE 21st International

Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp.60-65, 2012

2. Parashar, Manish, and Salim Hariri. Autonomic Computing: Concepts, Infrastructure, and

Applications. Boca Raton: CRC/Taylor & Francis, 2007. Print.

3. Kephart, J.O.; Chess, D.M.; , "The vision of autonomic computing," Computer , vol.36, no.1, pp. 41-

50, Jan 2003 doi: 10.1109/MC.2003.1160055

4. S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey. Fulfilling the vision of autonomic computing.

Computer, 43:35{41, 2010.

5. Flissi, A.; Dubus, J.; Dolet, N.; Merle, P.; , "Deploying on the Grid with DeployWare," 8th IEEE

International Symposium on Cluster Computing and the Grid, 2008. CCGRID '08, vol., no., pp.177-

184, 19-22 May 2008, doi: 10.1109/CCGRID.2008.59.

6. Peter R. Pietzuch and Sumeer Bhola. 2003. Congestion control in a reliable scalable message-

oriented middleware. In Proceedings of the ACM/IFIP/USENIX 2003 International Conference on

Middleware (Middleware '03), Markus Endler (Ed.). Springer-Verlag New York, Inc., New York,

NY, USA, 202-221.

7. Birman, K.P.; van Renesse, R.; Vogels, W.; "Scalable data fusion using Astrolabe", Proceedings of

the Fifth International Conference on Information Fusion, 2002, vol.2, no., pp. 1434- 1441 vol.2,

2002, doi: DOI: 10.1109/ICIF.2002.1020984.

8. Sancho G., Villemur T., Tazi S., “An Ontology-driven Approach for Collaborative Ubiquitous

Systems”, InderScience Publishers Mai 2010. pp 263 - 279. www.inderscience.com/ijac/

International Journal of Autonomic Computing (IJAC) ISSN 1741-8577 - ISSN (Print): 1741-8569

9. Sancho, G., Tazi, S., Villemur, T.: A Semantic-driven Auto-adaptive Architecture for Collaborative

Ubiquitous Systems. In: 5th International Conference on Soft Computing as Transdisciplinary

Science and Technology (CSTST’2008), Cergy Pontoise (France) (2008) 650–655, doi:

10.1145/1456223.1456354.

10. Russell, Stuart J.; Norvig, Peter (2010). Artificial intelligence: A modern approach (3rd ed. ed.).

Upper Saddle River: Prentice Hall. ISBN 9780136042594.

11. Stojanovic, L., Schneider, J., Maedche, A., Libischer, S., Studer, R., Lumpp, Th., Abecker, A.,

Breiter, G., Dinger, J., "The role of ontologies in autonomic computing systems," IBM Systems

Journal , vol.43, no.3, pp.598-616, 2004

12. OWL Web Ontology Language Reference, Mike Dean and Guus Schreiber, Editors, W3C

Recommendation, 10 February 2004.

13. W. Zhang and K. M. Hansen. Towards self-managed pervasive middleware using owl/swrl

ontologies. In Fifth International Workshop on Modeling and Reasoning in Context (MRC 2008),

pages 1–12, Delft, TheNetherlands, Jun. 2008.W3C Member Submission 21 May 2004M.

14. Boswarthick, David, Omar Elloumi, and Olivier Hersent. M2M Communications: A Systems

Approach. Chichester, West Sussex, U.K.: Wiley, 2012. Print.

15. Erl, Thomas. SOA Design Patterns. Upper Saddle River, NJ: Prentice Hall, 2009. Print.

16. Mühl, Gero, Ludger Fiege, and Peter Pietzuch. Distributed Event-based Systems. Berlin: Springer,

2006. Print.

17. Laliwala, Z., Chaudhary, S., "Event-driven Service-Oriented Architecture", 2008 International

Conference on Service Systems and Service Management, vol., no., pp.1-6, June 30 -July 2 2008

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/9780136042594

18. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M.S. Marshall: GraphML Progress Report:

Structural Layer Proposal. Proc. 9th Intl. Symp. Graph Drawing (GD '01), LNCS 2265, pp. 501-512.

19. F. Jammes, A. Mensch, and H. Smit. Service-oriented device communications using the devices

profile for web services. In Proceedings of the 3rd international workshop on Middleware for

pervasive and ad-hoc computing, MPAC '05, pages 1-8, New York, NY,USA, 2005. ACM.

20. Choonhwa Lee, D. Nordstedt, and S. Helal. "Enabling Smart Spaces with OSGi." IEEE Pervasive

Computing 2.3 (2003): 89-94. Print.

21. Friedman-Hall, Ernest (2003). "Jess in Action: Rule Based Systems in Java" . Pearson Education.

Retrieved March 30, 2012. ISBN 1-930110-89-8

22. David Martin, Mark Burstein, Drew Mcdermott, Sheila Mcilraith, Massimo Paolucci, Katia Sycara,

Deborah L. Mcguinness, Evren Sirin, and Naveen Srinivasan. 2007. Bringing Semantics to Web

Services with OWL-S. World Wide Web 10, 3 (September 2007), 243-277. DOI=10.1007/s11280-

007-0033-x http://dx.doi.org/10.1007/s11280-007-0033-x

23. Michael Compton, Payam Barnaghi, Luis Bermudez, Raúl García-Castro, Oscar Corcho, Simon

Cox, John Graybeal, Manfred Hauswirth, Cory Henson, Arthur Herzog, Vincent Huang, Krzysztof

Janowicz, W. David Kelsey, Danh Le Phuoc, Laurent Lefort, Myriam Leggieri, Holger Neuhaus,

Andriy Nikolov, Kevin Page, Alexandre Passant, Amit Sheth, Kerry Taylor, The SSN ontology of

the W3C semantic sensor network incubator group, Web Semantics: Science, Services and Agents

on the World Wide Web, Volume 17, December 2012, Pages 25-32, ISSN 1570-8268,

10.1016/j.websem.2012.05.003.

http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz
http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz
http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz
http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz
http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz
http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz
http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz
http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz
http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz
http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz
http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz

