
HAL Id: hal-01228316
https://hal.science/hal-01228316

Submitted on 12 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Framework to Create Multi-domains Autonomic
Middleware

Mahdi Ben Alaya, Thierry Monteil, Khalil Drira, Tom Guérout

To cite this version:
Mahdi Ben Alaya, Thierry Monteil, Khalil Drira, Tom Guérout. A Framework to Create Multi-
domains Autonomic Middleware. The Eighth International Conference on Autonomic and Au-
tonomous Systems (ICAS 2012), Mar 2012, St. Maarten, Netherlands. 4p. �hal-01228316�

https://hal.science/hal-01228316
https://hal.archives-ouvertes.fr


A Framework to Create Multi-domains Autonomic Middleware

Mahdi Ben Alaya and Thierry Monteil and Khalil Drira and Tom Guérout

CNRS; LAAS; 7 avenue du Colonel Roche, F-31077 Toulouse Cedex 4, France

Université de Toulouse; UPS, INSA, INP, ISAE; UT1, UTM, LAAS; F-31077 Toulouse Cedex 4, France

Email: ben.alaya@laas.fr, monteil@laas.fr, khalil@laas.fr, tguerout@laas.fr

Abstract—This paper proposes an enumeration and a classifi-
cation of the services or functionality needed in the autonomic
middleware. This allows to propose a second time the foun-
dation for a framework that will be able to generate different
middleware implementing autonomic loop and adapted to areas
with different constraints and different needs. An illustration
in the field of ”Machine to Machine” and more particularly of
smart metering is given.

Keywords- autonomic computing; middleware; architecture;
components.

I. INTRODUCTION

The increasing complexity for the management of current

distributed software and system needs new solutions. The

computer system ”selfware” was created in the year 1995

for this purpose. By applying the properties of ”self-*” to

the computer systems, Kephart and Chess [2] and Brantz [1]

define in 2003 the four paradigms to be implemented at least

in such systems to become self-managed: self-configuring,

self-optimizing, self-healing and self-protecting.

In the last year, we are witnessing a widespread use of

autonomic loop in many areas: high performance computing,

service management, M2M (Machine to Machine) system,

network, etc. The expression of autonomic behavior in

each area often results in the construction of middlware

completely different. Yet, the basic principle remains the

same even if the elementary actions constituting the various

phases of the autonomic loop vary.

We propose in this work in progress paper to enumerate

the main ”components”, ”services”, ”features” needed to

create a generic framework for building autonomous mid-

dleware specific to each area. We then describe a generic

architecture between the proposed components. Finally, we

give an example of future utilization of this Framework in

the case of M2M.

II. RELATED WORK

There are many middlewares to implement autonomic

principles. They can be intrusive in the managed system or

not.

DeployWare [3], manages the deployment of autonomic

distributed applications. This approach defines three roles in

the management of the software. The ”expert software” is

the specialist in software technology to deploy. ”The system

administrator” gives the network configurations (description

of the physical infrastructure deployment). ”The end user” is

using the application deployed. The peculiarity of Deploy-

Ware is that it proposes specific language for deployment

(DSL Domain Specific Language) and a virtual machine

for this language. DeployWare language is defined by a

meta-model and provides a graphical notation in the form

of a UML profile. Two concepts are important for us: the

importance of defining roles and use of specific language

nearest for users.

OceanStore [4] is used for the field of distributed and per-

sistent storage of data. Its main goal is the implementation

of the four properties of ”self-management” applied to the

high data availability. Its features are for ”self-healing” fault

tolerance through data redundancy and automatic repair.

Here the focus is on the ability of middleware to provide

services. This requires an application of the autonomic loop

in the middleware itself.

Oceano [5] is applied to the field of cluster management

for computing intensive applications or applications with a

processor load varies with time (web servers). The pecu-

liarity of this approach is the way it manages the property

of ”self-Optimizing” policies dictated by contracts SLAs

(Service Level Agreement) to specify a level of service by

type of cluster or client (using one or more clusters). The

use of SLA seems an important step by the possibility of

applying it to many areas.

Gryphon [6] brings to the monitoring the notion of prior-

itization of events, as well as processing and agglomeration

of events. This is an event management system self-adaptive,

in fact, this approach also uses the events described as

meta-events that trigger a reconfiguration of its internal

functioning. Intelligent processing of events is a prerequisite

for scalability. This will also be addressed in the framework

that we propose.

Astrolabe [7] is an approaches providing an API to

develop applications with properties of ”self-management”.

It is used to collect the states of a very large scale (several

thousand to several million nodes) according to zones.

The area is also cutting into a solution that we wish to

implement through the use of the concept of group and

adapted communication patterns.

TUNe [8] is based on a component model. Its particularity

is to add autonomous behavior to different types of existing

legacy software. It provides a uniform vision of controlled



softwares using the method of encapsulation with compo-

nents. The administration then uses the standardized inter-

face provided by the component model and a set of generic

sensors or probes reusable skeletons. we will implement a

model of components and services based on SCA (Service

Component Architecture)[10].

None of those middlewares can address different domains.

Each one has some specific characteristics. The goal of

our framework is to build different autonomic middlewares

with specific properties covering the needs of the domain of

utilization.

III. FRAMEWORK PRINCIPLE

A. Functionalities

In this part, we presented the functionalities that should

be provided by our framework. We are inspired by the list

of the M2M (Machine to Machine) functionalities detailed

by ETSI (European Telecommunications Standards Institute)

[9] to specify our classification. We decided to structure our

framework features into six classes which are: communi-

cation, security, data toolkit, autonomic, management and

entity classes. Complex/structured Communication class

involves machine-to-machine, machine-to-man, and man-to-

machine communications based on multiple communication

means, e.g. SMS, GPRS and IP Access:

• Event processing: integrate different kind of event pro-

cessing style: simple, stream and complex flow.

• Service oriented interactions: support service invocation

between requester and provider.

• Transmission scheduling: Manage the scheduling of

network access and of messaging.

• Delivery modes: support any-cast, uni-cast, multi-cast

and broadcast communication.

• Flow management: handle asymmetric flows and sup-

port flow priority.

• Multi path: support physical paths diversity.

• Addressing: abstraction of the underlying network

structure including any network addressing mechanism.

Security class involves structures and processes needed to

protect the system and the connected users and devices

against danger, damage, loss, and crime:

• Authentication: support two-way authentication and

strength level selection.

• Encryption: support appropriate confidentiality of the

data exchange.

• Anonymous: Possibility to hide the identity and the

location of the requestor.

• Data integrity: support verification of the integrity of

the data exchanged.

• Privacy: System shall be capable of protecting privacy.

• Security credential and software upgrade: secure up-

dates of application security software and context (keys

and algorithm).

Data toolkit class contains modules used for collection,

representation and reporting of data:

• Data Base: gives a tool to store all necessary data

• Data collection: it includes pre collection activities

(target data, definitions, method, etc.), collection and

present findings.

• Reporting: Supports many type of reporting: periodic,

on-demand, scheduled and event-based reporting.

• Graph modeling: provide mechanism to represent data

in advanced structures like tree or graph to have a

mapping describing in details the physical system.

Autonomic class contains modules making a system able

to manage itself [2] (self-configuring, self-healing, self-

optimization and self-protecting) and dynamically adapt to

change in accordance with business policies:

• Monitoring: Provides the mechanisms that collect, ag-

gregate, filter and report details collected from managed

entities.

• Analyzing: provides the mechanisms that correlate and

model complex situations. Help to learn about the

environment and predict future situations.

• Planning: provides mechanisms that construct the ac-

tions needed to achieve objectives using policy infor-

mation to guide its work.

• Executing: provides the mechanisms that control the

execution of a plan with considerations for dynamic

updates.

• Policy: supports different type of behavior for the

planning component.

Management class contains modules that allow remotely

configuring and controlling connected devices.

• Configuration: supports maintaining consistency of a

system performance and its functional and physical

attributes with its requirements, design, and operational

information.

• Deployment: manages components life-cycle and ac-

tivities of release, install, uninstall, activate, deactivate,

update, adapt, built-in and version tracking.

• Remote administration: Supports advanced control re-

quest and receive acknowledgments to administrate the

middleware

• HMI (Human-Machine Interface) system: helps to man-

age the system graphically .

Entity class it handles resource that exist in the run-time

environment of an IT system and that can be managed:

• Group: support a mechanism to create and remove

groups, to introduce an entity into a group, modify

the invariants of the members, remove an entity, list

members, search entities in a group, identify entity

groups where the entity is a member, etc.

• Session: start and stop session supporting cooperation

between two or more communicating entities [11].



• Profile: support computer representation of a user and

device model [11].

• Role: possibility to assign role to a connected entity to

manage their behaviors, rights and obligations.

• Discovery: a connected entity to a network should be

able to advertise itself and to discover other entities.

• Description: each entity should be able to describe itself

and to detail its hosted services in a standard format.

• Registration: allowing an entity to subscribe to asyn-

chronous event messages produced by a given service.

• Meta-data exchange: provide dynamic access to a de-

vice’s hosted services and to their meta-data.

B. Architecture

The different classes and services defined above are

included in an architecture based on the SCA standard. This

will have great flexibility in the use and construction of a

middleware. Indeed, the interactions between components

can be defined by different means: rmi, web-service, java,

etc. Similarly, it is very easy to replace the instantiation of a

component by another, or to take only part of the available

components.

It is planned to establish the composition of middleware

from eclipse by drawing in architecture and components

available and so generate the autonomic middleware cor-

responding to his need. In Figure 1, a UML components

diagram shows a part of the relation between components

of the framework.

Figure 1. Framework architecture

We find the different elements of the autonomic loop

with the monitoring of the system to manage (P monitor)

but also the monitoring of the autonomic middleware

(M P monitor). The observed data are transformed into

a generic vision through the L monitor to be transmitted

via a component of effective communication (Structured

Communication Monitor, one or more component of the

class communication) to be used by the component analysis

(Analysis). The latter built a diagnosis that will generate a

reaction (Planning) based on various policies (Policy). The

set of elementary actions are effectively transmitted via the

communication component (Action Structured Communica-

tion) to component (L Execute) responsible for transforming

the logical actions in specific actions to be executed by the

actuators of the managed system (P Execute) or middleware

(M P Execute).

Depending on the area treated, there is a set of component

toolbox class entity that can be used to provide specific

services needed. There should be also the possibility in

the toolbox to define specific languages readily available

in various trades. There is also the use by the major

components part of a toolbox to manage data from different

patterns. Safety aspects are transversal to all this by using

the notion of politics in SCA. All these components are con-

figurable via the component configuration that orchestrates

the system. Components of administration (Administration)

and visualization (HMI) also allow to control the use of

middleware in its execution.

IV. EXAMPLE IN M2M DOMAIN

The smart metering is a domain of M2M where autonomic

loop could be used. Information such as energy consump-

tion, temperature, light etc are collected with sensors. They

are networked into a communication network that allows

the sensed information to be fed to a central system where

data can be analyzed then a list of actions can be planned.

Actuators and appliances can next be automatically config-

ured such as remotely reducing the level of the lamps or

turning off the heating. ETSI specified six functionalities

[12] related to smart metering expressed in broad terms, so

that they can be related to electricity, gas, heating/cooling

and water. Identifying functionalities at high level will

permit flexibility, innovation and competition:

• Remote reading of metro-logical registers and provision

to designated market organization.

• Provide two-way communication between the metering

system and designated market organization.

• Support advanced tariffing and payment systems.

• Remote activation and deactivation of supply.

• Communicating with (and where appropriate directly

controlling) individual devices within the building

• Providing information via gateway to an in-home dis-

play or auxiliary equipment.

The Figure 2 describes our smart metering architecture

which involves the smart building ADREAM [13] that will

serve as a real experimental platform to test our solution

capabilities.

MAPE-K Loop modules will be used to self-manage

smart metering operations: (P Monitor) collects data from

smart meters (electric, gaz, water and photovoltaic meters)

and also from sensors (temperature, light, presence, etc).

After analysing and planning, (P Execute) executes required



Figure 2. Smart metering architecture

actions to control different kind of actuators (roller shutter,

on/off light, heating level, etc.).

(M P Monitor) supervises the middleware components

and devices. It collects information about the middleware

distributed machines context (Server memory, CPU, Root-

ing, etc.). If a problem is detected (Server down, big

number of users, etc.) so, after analysing and planning,

(M P Execution) executes actions such as deploying addi-

tional servers in new distributed machines or re-configuring

gateways parameters to optimise the communication flows

to add more scalability to the middleware.

For example, consider a scenario where a Customer

decides to add a new sensor to regulate his consumption

as a function of luminosity, so he looks his consumption

and changes the way he wants that energy is consumed in

his house. After being authenticated, the system character-

izes his rights (role). It connects the new sensor that will

be inserted dynamically into the system after authentica-

tion (discovery, Registry, description and inclusion in the

database). It then displays (HMI) the consumer consumption

and decides to change the behavior of the system of energy

regulation (profile) because the system has automatically

update the new possibilities offered in terms of regulation

of energy thanks to this new sensor. The new autonomous

policy (policy) is connected to the planning module (Plan-

ning).

V. CONCLUSION

In this paper, we present the basis for a framework that

aims to create autonomic middleware specific to different

application areas. The goal is to build a single tool that

will be enriched and developed with many new components.

The use of SCA should facilitate this. This framework

will be used in various research projects and industry.

A first prototype showing the feasibility of concepts is

underway with the first application as the area of M2M.

Future work will develop the framework and use it as part

of large scale distributed computing. We can even think

about interpretability scenarios between multiple autonomic

middleware allowing to link several M2M domains.

REFERENCES

[1] D. F Bantz, C. Bisdikian, D. Challener, J. P Karidis, S. Mas-
trianni, A. Mohindra, D. G Shea, and M. Vanover, Autonomic
personal computing, IBM Systems Journal, pp. 165-176, 2003

[2] J. O. Kephart, and D. M. Chess, The vision of autonomic
computing, Computer, pp. 41-50, 2003

[3] Areski Flissi, J Dubus, Nicolas Dolet, and Philippe Merle,
Deploying on the Grid with DeployWare, 2008 Eighth IEEE
International Symposium on Cluster Computing and the Grid
(CCGRID), Lyon France, pp. 177-184, 2008

[4] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D.
Geels, R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells, and
others, Oceanstore: An architecture for global-scale persistent
storage, ACM SIGARCH Computer Architecture News, V. 28
N. 5, pp. 190-201, 2000

[5] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar,
S. Krishnakumar, D. Pazel, J. Pershing and B. Rochwerger,
Oceano-SLA based management of a computing utility, Pro-
ceedings of the 7th IFIP/IEEE International Symposium on
Integrated Network Management, Seattle USA, 2001

[6] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B.
Mukherjee, D. Sturman, and M. Ward, Gryphon: An infor-
mation flow based approach to message brokering, IBM TJ
Watson Research Center Reports, 1998

[7] R. Van Renesse, K. P Birman, and W. Vogels, Astrolabe: A
robust and scalable technology for distributed system moni-
toring, management, and data mining, ACM Transactions on
Computer Systems (TOCS), V. 21 N. 2, pp. 164-206, 2003

[8] Remi Sharrock, Thierry Monteil, Patricia Stolf, Daniel Hagi-
mont, and Laurent Broto, Non-intrusive autonomic approach
with self-management policies applied to legacy infrastructures
for performance improvements, International Journal of Adap-
tive, Resilient and Autonomic Systems (IJARAS), V. 2 N. 2,
pp. 1-20, 2010

[9] ETSI TS 102 689 Machine-to-Machine communications
(M2M); M2M service requirements.

[10] Simon Laws, Mark Combellack, Raymond Feng, Haleh Mah-
bod, and Simon Nash, Tuscany SCA in Action, February, 2011
— 472 pages ISBN 9781933988894, manning

[11] M.Ben Alaya, V.Baudin, and K.Drira, Dynamic deployment
of collaborative components in service-oriented architectures
11th International Conference of New Technologies in Dis-
tributed Systems (IEEE NOTERE2011), Paris, France, 2011.

[12] ETSI TR 102 691 Machine-to-Machine communications
(M2M); Smart Metering Use Cases.

[13] http://www.laas.fr/ADREAM/


