
HAL Id: hal-01228304
https://hal.science/hal-01228304

Submitted on 16 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient resource naming for enabling constrained
devices in SmartM2M architecture

Elvis Vogli, Mahdi Ben Alaya, Thierry Monteil, Luigi Alfredo Grieco, Khalil
Drira

To cite this version:
Elvis Vogli, Mahdi Ben Alaya, Thierry Monteil, Luigi Alfredo Grieco, Khalil Drira. An efficient re-
source naming for enabling constrained devices in SmartM2M architecture. IEEE International Con-
ference on Industrial Technology (ICIT 2015), Mar 2015, Seville, Spain. �10.1109/ICIT.2015.7125363�.
�hal-01228304�

https://hal.science/hal-01228304
https://hal.archives-ouvertes.fr


An efficient resource naming for enabling
constrained devices in SmartM2M architecture

Elvis Vogli1, 2, Mahdi Ben Alaya2, 3, Thierry Monteil2, Luigi Alfredo Grieco1 and Khalil Drira2

1 DEI, Politecnico di Bari,via Orabona 4, 70125, Bari, Italy ,
2CNRS, LAAS,7 avenue du Colonel Roche,F-31400 Toulouse, France,

3Univ. deToulouse,INSA,LAAS,F-31400 Toulouse,France,
Email: {elvis.vogli, alfredo.grieco}@poliba.it; {evogli, ben.alaya, monteil, khalil}@laas.fr

Abstract—The Internet of Things (IoT) paradigm envisions
an interconnected world where things can communicate with
each other, transmit state information and execute smart tasks.
The number of devices connected in Internet has been growing
exponentially in the past years and the Machine-to-Machine plays
a major role in enabling IoT paradigm while it is expected that
in the near future billion of devices will be connected. Till now
many vertical solutions in the M2M domain exist. To bridge
this gap , the European Telecommunications Standards Institute
(ETSI) has defined SmartM2M a horizontal service layer that
separates the communication part from the application domain
and guaranteeing interoperability among different technologies.
Each device independently from the technology should register
and post data to the service layer, which makes them available
to applications in a seamless way. However the integration with
very constrained devices like a 6LoWPAN based network is not
straight forward. In this paper at first it is analyzed the problem
of the hierarchical Uniform Resource Identifier (URI) in the
SmartM2M standard specifications. Then a new non hierarchical
resource structure is presented which enables the use of very short
overall URI for constrained devices.

Keywords—6LoWPAN, CoAP, ETSI, IoT, M2M, SmartM2M,
REST

I. INTRODUCTION

The Internet of Things (IoT) represents, in the context
of networking and services, one of the most relevant inno-
vations of the third millennium [1], [2]. The vision of this
new paradigm is a world-wide network with a tremendous
amount of heterogeneous interconnected objects where all
the types of real-world physical elements (sensors, actuators,
personal electronic devices, or home appliances) are able to
autonomously interact with each other. The IoT defines in other
words a cyber-physical system that enables many advanced
applications, either in domestic (i.e, domotics, assisted living,
e-health etc.) or in industry domain (i.e, automation, logistics,
manufacturing, intelligent transportation etc.). At the same
time, the IoT entails an unprecedented gamut of new technical
challenges, only partially addressed so far [3], [4].

In this context, low power and short range wireless com-
munication technologies play a key role since they can enable
the creation of spontaneous, pervasive, and energy efficient
communication networks of smart nodes. Such technologies
are commonly adopted in Wireless Sensor Networks (WSNs)
and Machine-to-Machine (M2M) systems [5]. The standard
with the longest-standing impact is IEEE 802.15.4 [6], which

defines a low-power Physical (PHY), and a Medium Access
Control (MAC) layer, which has been the foundation of
ZigBee [7]. This standard has been extended by its new
IEEE 802.15.4e amendment [8]. Among other features, it
introduces the Time Slotted Channel Hopping (TSCH) mode to
increase the reliability and the energy efficiency of short range
wireless communications in noisy environments [9]. More-
over various Internet Engineering Task Force (IETF) Working
Groups (WGs) facilitate the integration of low-power wireless
networks into the Internet and define a complete IoT stack
for WSN [10]. The IPv6 over Low power Wireless Personal
Area Networks (6LoWPAN) WG [11] defined an adaptation
layer that compresses the IPv6 header to make it suitable for
constrained networks. The IPv6 over Networks of Resource-
constrained Nodes (6lo) WG focuses on the work that fa-
cilitates IPv6 connectivity over constrained node networks.
The Routing Over Low power and Lossy networks (ROLL)
WG has defined the IPv6 Routing Protocol for Low-Power
and Lossy Networks (RPL) a routing protocol for WSN[12].
Finally the Constrained RESTful Environments (CORE) WG
has defined The Constrained Application Protocol (CoAP)
a lightweight protocol which enables Representational State
Transfer (REST) architecture in constraint devices.

Many other component-level standards exist, addressing
different radio interfaces or different networking choices.
Each choice is optimized for a particular application scenario
therefore many vertical M2M solutions have been designed
independently. This inevitably hinders a large-scale M2M
deployment. Therefore the largest part of the challenge facing
the M2M actors is to transform vertical silos into a set of easily
developable and incrementally deployable applications. This in
term has brought to the deployment of horizontal platforms.
What is meant by “horizontal” is a coherent framework valid
across a large variety of business domains, networks, and
devices. This horizontal middleware layer makes the data
independent from the network access, which in term facilitates
the interoperability among different network technologies.

To this end, the European Telecommunications Standards
Institute (ETSI) has been working to define a set of specifica-
tions which provide a RESTful architecture able to standardize
the way heterogeneous devices can offer services and access to
them seamlessly [13]. Such platform facilitates the deployment
of vertical applications and boosts innovation across industries
for an effective interoperability. Therefore a device which uses
REST application protocol like HyperText Transfer Protocol



(HTTP) or CoAP should not have problems interacting with
the ETSI M2M platform. This however is not straight forward
when it comes to constrained devices like the 6LoWPAN
sensor/actuator devices.

In this paper we analyze the application registration phase
of 6LoWPAN constrained devices in an ETSI SmartM2M
platform and the impact of the URI is highlighted. Consid-
ering that hierarchical resource names produce long URIs, an
efficient and non hierarchical resource structure was proposed
and evaluated. In particular, it is demonstrated that the URIs
in the proposed solution are shorter with fixed length and
the number of messages required in the initialization phase
is smaller, making this solution better suited for constrained
devices.

The rest of the paper is organized as follows. In Sec. II,at
first an overview on ETSI SmartM2M architecture and the
resource registration phase is given, than it is described the
the protocol stack of the constrained devices. In Sec. III it
is described a non hierarchical schema for M2M resources
to reduce the overall length of URIs. Sec. IV are evaluated
the proposed solutions in comparison with the standardized
SmartM2M approach. Finally, Sec. V gives the conclusions
and future works

II. AN OVERVIEW ON ETSI M2M STANDARD

According to the Global Standards Collaboration Machine-
to-Machine Task Force, more than 140 organizations around
the world are involved in M2M standardization. A considerable
effort is done by ETSI to decrease M2M market fragmentation
by defining a horizontal service platform for M2M interop-
erability. The proposed solution provides a RESTful Service
Capability Layer (SCL) [14] accessible via open interfaces
to enable developing services and applications independently
of the underlying network. A SCL interfaces the network
access from the application domain. Each device has to register
the resources in the SmartM2M standard platform which in
turn can be accessed from the applications from SmartM2M
platform in a seamless way.

Figure 1 describes the SmartM2M functional architecture.
An SCL can be deployed on an M2M Network (NSCL), a
Gateway (GSCL), or a Device (DSCL). It provides several ser-
vice capabilities to enable machine registration, synchronous
and asynchronous communication, resource discovery, access
rights management, group broadcast, etc.

An M2M Device runs applications using the SCL. It
can connect directly to the Network Domain via the Access
network and may provide service to other devices connected
to it that are hidden from the Network Domain. It can also be
connected to the Network Domain via a Gateway through a
Local Area Network. A Gateway also runs M2M Applications
using the SCL, and can act as a proxy between local devices
and the network domain.

The access network allows M2M devices and gateways
to communicate with the Core Network. The SCL provides
functions that can be shared by different Applications. Network
Management Functions enables to manage the Access and
Core Networks, such as Provisioning, Supervision, and Fault
Management. M2M Management Functions consist of all the
functions required to manage the SCL in the Network Domain.

Three reference points [15] based on open APIs are spec-
ified: mIa, dIa, and mId. The mIa reference point allows
a Network Application (NA) to access the NSCL. The dIa
allows a Device or Gateway Application (D/GA) to access the
D/GSCL. The mId reference point allows a D/GSCL to access
the NSCL. These interfaces are defined in a generic way to
support a wide range of network technologies and protocols
to enhance interoperability.

SmartM2M adopts a RESTful architecture style. Each SCL
contains a standardized resource tree where the information is
stored. A resource is uniquely addressable via a URI, and has
a representation that can be transferred and manipulated with
verbs (e.g. retrieve, update, delete, and execute).

An SCL resources tree supports different kind of resources.
The “sclBase” resource describes the hosting SCL, and is the
root for all other resources within the hosting SCL. The “scl”
resource stores information related to distant SCLs, residing
on other machines, after successful mutual authentication. The
“application” resource stores information about the applica-
tion after a successful registration on the hosting SCL. The
“container” resource acts as a mediator for data buffering to
enable data exchange between applications and SCLs. The
“contentInstance” resource represents a data instance in the
container. The “accessRight” resource manages permissions
and permissions holders to limit and protect the access to
the resource tree structure. The “group” resource enhances
resources tree operations by adding the grouping feature. The
“registration” resource allows subscribers to receive asyn-
chronous notification when an event happens such as the
reception of new sensor event or the creation, update, or delete
of a resource. The “announced” resource contains a partial rep-
resentation of a resource in a remote SCL to simplify discovery
request on distributed SCLs. The “discovery” resource acts as
a search engine for resources. The collection resource groups
common resources together. A partial view of the resource tree
is shown in Figure 2.

In this work the OM2M project[16], which provides a com-
plete open source implementation of the SmartM2M standard
including both the server and the gateway part will be used
to validate the proposed approaches. The main concern of this
contribution is focused in connecting constrained devices (i.e.,
6LoWPAN based wireless sensor network) to the Gateway over
the dIa interface.

A. Device Application Gateway SCL registration

Each Device Application (DA) should register to its Gate-
way SCL. The registration phase can be divided in three
parts. In the first part, an “Application” resource is created. In
the second part it is created a description “container” where
are stored descriptive information related to the application.
Finally in the last part there is created a data “container” where
are stored the application data (i.e., sensor or actuator data).

In Table I there are described the messages that an
example application called TEMPERATURE will send to
the G/NSCL as defined in ETSI SmartM2M standard.
After each POST message a new resource in the resource
tree will] be created. In particular there are created the
highlighted resources shown in Fig. 2. The first message
sent will create TEMPERATURE application resource



Fig. 1: SmartM2M high level architecture.

accessed through the /gscl/applications URI. The second
message will create a DESCRIPTOR container with URI
/gscl/applications/TEMPERATURE/containers which will
contain a content instance created from the third message.
The third message will provide descriptions and semantics
related to the created application accessed through the URI
/gscl/applications/TEMPERATURE/containers/DESCRIPTOR-
/contentInstances. The fourth message will create a
DATA container resource with URI /gscl/applications
/TEMPERATURE/containers/DATA which will hold content
instances created from the fifth message. And finally, the fifth
will send to the SCL the sensor data which are stored in
/gscl/applications/TEMPERATURE/containers/DATA/content-
Instances. The last message will be sent from the DA each
time it needs to communicate a new sensor value.

B. Overview on the WSN stack

The protocol stack depicted in Figure 3(a) represents one
of the most promising stacks for IoT. Above the efficient
802.15.4(e) MAC the Internet connectivity is obtained thanks
to 6LoWPAN which enables IPv6 addressing in constrained
devices. In addition the CoAP application protocol provides a
RESTful protocol for constrained devices. Despite the fact that
this stack is designed to be implemented in M2M scenarios
their integration is not a simple task. A major constraint is
imposed from the packet length where the MAC layer limits
the maximum frame length to 127 bytes.

If we consider the headers of each of the protocols in the
depicted stack, in the application layer will barely be available
50 Bytes. Neither one of the messages depicted in Tab. I)
can be transmitted in a single frame, therefore fragmentation
mechanisms should be used. The use of fragmentation in
the link layer or at the IP layer to enable the transport of
larger representations is possible, but the fragmentation and

TABLE I: POST messages requested for the registration of
a Device application in the GSCL. Example in the OM2M
implementation.

Msg. Content Size

Msg. Nr. 1 - Create an application Resource (TEMPERATURE)

POST /gscl/applications 18

<om2m:application xmlns:om2m="http://uri.etsi.org/m2m"
appId="TEMPERATURE">
<om2m:aPoCPaths>
<om2m:aPoCPath>
<om2m:path>

Payload coap://[IPv6_Prefix::IPv6_Suffix]:5683 234
</om2m:path>

</om2m:aPoCPath>
</om2m:aPoCPaths>

</om2m:application>

Msg. Nr. 2 - Create an DESCRIPTOR container

POST /gscl/applications/TEMPERATURE/containers 41

Payload <om2m:container xmlns:om2m="http://uri.etsi.org/m2m" 75
om2m:id="DESCRIPTOR"/>

Msg. Nr. 3 - Create a content instance in the DESCRIPTOR container

POST /gscl/applications/TEMPERATURE/containers/DESCRIPTOR 69
/contentInstances

<obj>
<str name="type" val="Temperature_Sensor"/>

Payload <str name="location" val="Home"/> 260
<op name="getValue" href="gscl/applications

/TEMPERATURE/containers/DATA/contentInstances
/latest/content" is="retrieve"/>

<op name="getDirectValue" href="gscl/applications
/TEMPERATURE/sl" is="retrieve"/>

</obj>

Msg. Nr. 4 - Create an DATA container

POST /gscl/applications/TEMPERATURE/containers 41

Payload <om2m:container xmlns:om2m=ḧttp://uri.etsi.org/m2m" 70
om2m:id="DATA"/>

Msg. Nr. 5 - Create a content instance in the DATA container

POST /gscl/applications/TEMPERATURE/containers/DATA 63
/contentInstances

Payload <str name="data" val="XYZ"/> 28

successively the reassembly is a burden on the lower layers
of resource constrained devices and can be more efficiently
managed in the CoAP layer.

In CoAP there are defined Block options which provide a
way to transfer large representations in block-wise fashion.
Using these options, larger resource representations can be
fragmented and reassembled by CoAP independently of the
lower layers as well as the above applications. In Figure 3(b)
it is described the format of CoAP packets.

The header of fixed length of four bytes is followed from a
token with size that can be up to 8 bytes. Than there are a set
of several options. Finally there is the payload which should
always be preceded from payload delimiter option (0xFF byte).
Despite the existence of all the mechanisms necessary for
the transfer of long representations the long URI length of
the resources defined in the ETSI SmartM2M standard could
become a relevant issue. The URI are sent as options in the
CoAP header and should be present in each block. If it is
very long there will not be possible to send the block in only



Fig. 2: ETSI URI resource tree structure (example).

one message and the further datagram fragmentation will be
needed.

In the case of the ETSI SmartM2M resource tree as it can
be seen from the Figure 2 there are up to six different levels of
the URI which can make the overall length particularly long.
In some cases it not be possible to send in a single datagram
CoAP blocks even if it is used the minimum block size (16
byte) due to the length of the URI.

This example clearly shows the necessity for optimal de-
sign of URIs in order to improve the efficiency in constrained
devices.

(a) stack

(b) Coap Format

Fig. 3: Protocol stack and CoAP format.

III. MODELS

The SmartM2M standard has descriptive naming conven-
tions for the resources such that the meaning of each resource
can be clearly conveyed and understood. Some of these names

are very long and in addition, the fact that the resource
structure is hierarchical (i.e., tree like resource structure), as it
can be verified from the Table I, can generate very long overall
URIs. In the second version of the SmartM2M standard [17],
in order to cope with constrained devices, there were intro-
duced as an informative annex shorter naming conventions for
resource and attributes. In particular resource names which are
long only two byte and shorter attribute names are provided.
The first one tend to minimize the URI length whether the
second one have an impact on the payload data representation
length. This short alias where defined appositely to cope with
limitation imposed from constrained devices.

In Fig. 4 it is described the registration phase using the
short resource names and structure provided from SmartM2M.
The resource names provided from SmartM2M are respectively
the resources in the level two, four and six in the resource tree
of the Figure 2. Instead for the user defined resources have
been considered three byte long names. For each request sent
from the device application, the gateway will send back the
resource created in the confirmation response. It can be clearly
noticed that this approach provides shorter URIs compared
to the standard descriptive names. However, despite the short
length of the resources, the hierarchal resource structure sets a
limit on the overall URI length. In the case there is retrieved
a content instance which is in the seventh level, only for the
path separator character (/) will be needed 7 bytes.

Fig. 4: Messages in the ETSI-M2M tree URI case.

A. Non Hierarchical URI model

Previously we have shown an example about SmartM2M
with up to seven nested resources but in general this number
can be bigger. To overcome the limitations imposed form the
hierarchical resource structure defined in ETSI SmartM2M
hereby we propose a flat non hierarchical resource structure.



We propose a new approach which limits the number of nested
resources and therefore optimizes the overall URI length. In
particular we distinguish two cases depending on the type of
request message that will be used. In the first case, in the
POST messages that will be used to create new resources the
structure of the URI will be:

/<prefix>/<resource_id>/<suffix>

Each URI will have to three levels called “prefix”, “re-
source_id” and “suffix”. In order to create a new resource a
POST request should be made to a URI having the aforemen-
tioned structure. The generic URI of the created resources will
be:

/<prefix>/<resource_id>

The “prefix” of the resource created should be the “suffix”
of the URI in the POST message used to create the resource.
Moreover the resource URI will be the generic URI structure
that will be used with the other REST methods (i.e., GET,
PUT or DELETE).

In analogy to the SmartM2M example described previously
in Fig. 5 there is shown the subscription phase of a device
application to its gateway using the non hierarchical URI
structure proposed. There are used two byte names for the
“prefix“ and ”suffix“ (the same names defined in SmartM2M)
and three byte names for created resources. In the first message
a POST to /SB/SCL/AP will create the TMP application
resource in /AP/TMP. In the response there will be included the
created resource URI to inform the DA. In the second message
it is created the descriptor container by a POST message sent
on the ”container“ collection of the TMP application. The
descriptor container resource will not be nested under the
collection as in the SmartM2M case instead it will respect the
generic URI defined. In this case the collection of the TMP
application resource will become the prefix of the descriptor
container resource. Therefore the descriptor resource path will
be /CO/DES and it will have its own collections nested to it. Fi-
nally, in the third message it is created the description instance
by POST message sent to the contentInstance collection with
URI /CO/DES/CI. Again the new resource with containing
the application description will be created in /CI/DES. In the
fourth and fifth message there are created the data container
(/CO/DAT) and the data content instance (/CI/dat).

In this schema, once it is decided the length of a resource,
the overall URIs will always have the same length. As it can
be seen the URIs used in POST messages have a length of
ten bytes whether the URIs used for the other methods are
seven byte. The length of the resource name should be long
enough to be able to address all the resources in the gateway.
In addition the prefix and the suffix represent collections. The
number of this collections is really limited such that only one
byte can be used to represent them all. Therefore the size can
be furtherly reduced with two bytes becoming eight bytes for
the POST messages and six bytes for the other methods.

IV. EVALUATION

In the Tab. II and Tab. III there are compared the four
different approaches which were described throughout the
paper. The values shown in the table are calculated taking in
consideration the following conditions.

Fig. 5: Messages in the flat URI case.

• The user defined resources for the SmartM2M hierar-
chical resource scheme (i.e., the first, third, fifth and
seventh level resources) and the “resource_id” in the
proposed scheme are considered to have all the same
length equal to three bytes.

• The number of messages and the number of blocks
sent are calculated taking in consideration message
representation described in Tab. I.

• It is considered a CoAP block-wise transmission with
blocksize 16 bytes.

• It is considered that a CoAP packet bigger than 50
bytes will be fragmented into multiple datagrams.

• Only the messages required in the registration phase
and the relative URIs are considered.

In the case of the SmartM2M with long resource names
the overall number of block sent in registration phase will be
doubled compared to the other cases. This happens because
each CoAP fragment will split in two datagrams when the
payload and CoAP header and options will exceed the length
of the datagram payload.

In the Table II there are shown the length of the URIs
used in the five POST messages sent during the registration
phase and the length of the URI used in the GET message sent
to retrieve the data of the resource created. The descriptive
long names produce very long URI as it can be seen form the
first raw of the Table II. In addition the URI lengths of the
SmarM2M structured resources will be very long in the nested
resources. The GET message will address resource which is
in the seventh level therefore if we compare with the first
POST it will be about three times bigger. This is happening
only because of the hierarchical resource structure. The non



hierarchical resource structure proposed as it can be seen has
a constant length among the POST messages and it has even
a shorter length for the other methods.

In Table III there are evidenced the maximal URI sizes for
the POST and the GET messages for the URI schema proposed
and they are compared with both, the descriptive and the short
named resource structure proposed defined in SmartM2M. In
particular the non hierarchical names the corresponding URI
is always 10 (8) bytes for POST (GET) messages whether
the SmartM2M in the best case, where are used short names
is 21 (25) bytes. In this situation the SmarM2M with short
URIs requires the same number of messages as the proposed
solutions but this scenario is not always possible. In particular
if there are other options to be included in the CoAP header
(i.e., like the authorization option in case there is enabled
security) it is very easy that the messages will be fragmented
even in the SmartM2M . In this situation it will be very easy
that the CoAP length will become long enough to require the
datagram fragmentation. In this context the non hierarchical
URI proposed will be the choice where the spared bytes due
to URI length reduction can be used to improve security or
implement other functions without having to fragment the
packets, or there can be used a CoAP block with a bigger
size.

TABLE II: URI lengths in the POST messages used in
subscription phase and the GET message to retrieve the data
content instance created.

POST POST POST POST POST GET
Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5

SmartM2M 18 41 69 41 63 71
Long names

SmartM2M 7 14 21 14 21 25
Short names

Non-Hierarchical 10 10 10 10 10 7

Non-Hierarchical 8 8 8 8 8 6
One Byte names

TABLE III: Maximal URI lengths and the number of frames
required from each Device Application to register

Maximal URI Length
POST GET, PUT Nr. of blocks

or DELETE for registration

SmartM2M 69 71 100
Long names

SmartM2M 21 25 50
Short names

Non-Hierarchical 10 7 47

Non-Hierarchical 8 6 47
One Byte names

V. CONCLUSION

Machine-to-Machine communication will boost up in the
near future, but connecting constrained devices is not chal-
lenging. Beside the definition of lightweight protocols a very
careful design of the resource names should be done to guar-
antee the correct use of the constrained devices. In this paper
it was shown that the hierarchical resource names can produce

very long URIs which can cause an increase of datagram
fragmentation. For this reason a non hierarchical schema for
resource naming was proposed and it was shown that the
overall URIs will be short and suited for constrained devices.
Despite the optimizations made in the URI length, there is still
an elevated number of messages in the subscription phase.
Considering the low data rate that characterizes constrained
devices (like 6LoWPAN device), the overall time required for
registration can be long. In addition to a careful URI design
the message formats should be thoroughly optimized in order
to decrease the overall number of messages.

REFERENCES

[1] D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac, “Internet of
things: Vision, applications and research challenges,” Ad Hoc Networks,
vol. 10, no. 7, pp. 1497 – 1516, Feb. 2012.

[2] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787 – 2805, Oct. 2010.

[3] A. Whitmore, A. Agarwal, and L. D. Xu, “The internet of things—a
survey of topics and trends,” Information Systems Frontiers, pp. 1–14,
Mar. 2014.

[4] S. Li, L. Xu, and S. Zhao, “The internet of things: a survey,” Information
Systems Frontiers, pp. 1–17, Jun. 2014.

[5] K. Chen and S. Lien, “Machine-to-machine communications: Technolo-
gies and challenges,” Ad Hoc Networks, vol. 18, no. 0, pp. 3 – 23, Jun.
2014.

[6] IEEE std. 802.15.4, Part 15.4: Low-Rate Wireless Personal Area Net-
works (LR-WPANs), Standard for Information Technology Std., Jun.
2011.

[7] ZigBee Alliance. [Online]. Available: www.zigbee.org
[8] 802.15.4e-2012: IEEE Standard for Local and Metropolitan Area

Networks – Part 15.4: Low-Rate Wireless Personal Area Networks (LR-
WPANs) Amendment 1: MAC Sublayer, IEEE Std., Apr. 2012.

[9] L. Tang, K. Wang, Y. Huang, and F. Gu, “Channel characterization and
link quality assessment of ieee 802.15.4-compliant radio for factory
environments,” IEEE Transactions on Industrial Informatics, vol. 3,
no. 2, pp. 99–110, May 2007.

[10] M. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. Grieco,
G. Boggia, and M. Dohler, “Standardized Protocol Stack for the Internet
of (Important) Things,” IEEE Communications Surveys & Tutorials,
vol. 15, no. 3, pp. 1389–1406, Mar. 2013.

[11] N. Kushalnagar, G. Montenegro, and C. Schumacher, IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview, As-
sumptions, Problem Statement, and Goals, RFC 4919, Internet Engi-
neering Task Force RFC 4919, August 2007.

[12] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. P. Vasseur, and R. Alexander, RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks, RFC 6550, IETF RFC 6550, March
2012.

[13] O. Elloumi and C. Forlivesi, M2M Communications: A Systems Ap-
proach. John Wiley & Sons, Ltd, 2012.

[14] ETSI TS 102.690 v1.1.1. Machine-to-Machine communications (M2M);
Functional architecture, Std., October 2011.

[15] ETSI TS 102 921 v1.1.1. Machine-to-Machine communications (M2M);
mIa, dIa and mId interfaces, Std., February 2012.

[16] M. B. Alaya, Y. Banouar, T. Monteil, C. Chassot, and K. Drira,
“Om2m: Extensible etsi-compliant {M2M} service platform with self-
configuration capability,” Procedia Computer Science, vol. 32, pp. 1079
– 1086, 2014.

[17] ETSI TS 102 921 v2.1.1. Machine-to-Machine communications (M2M);
mIa, dIa and mId interfaces, Std., December 2013.


