
HAL Id: hal-01228303
https://hal.science/hal-01228303v1

Submitted on 12 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure OM2M Service Platform
Sabrina Sicari, Alessandra Rizzardi, Alberto Coen-Porisini, Luigi Alfredo

Grieco, Thierry Monteil

To cite this version:
Sabrina Sicari, Alessandra Rizzardi, Alberto Coen-Porisini, Luigi Alfredo Grieco, Thierry Monteil.
Secure OM2M Service Platform. International Workshop on Self-Aware Internet of Things (SELF-
IOT 2015), Jul 2015, Grenoble, France. 6p. �hal-01228303�

https://hal.science/hal-01228303v1
https://hal.archives-ouvertes.fr

Secure OM2M Service Platform

Sabrina Sicari, Alessandra Rizzardi, Alberto Coen-Porisini
DISTA, Università degli Studi dell’Insubria

Varese, Italy
{sabrina.sicari;a.rizzardi;alberto.coenporisini}@uninsubria.it

Luigi Alfredo Grieco
DEI, Politecnico di Bari

Bari, Italy
a.grieco@poliba.it

Thierry Monteil
LAAS-CNRS

Toulouse, France
monteil@laas.fr

Abstract—Machine-to-Machine (M2M) paradigm is one of
the main concern of Internet of Things (IoT). Its scope
is to interconnect billions of heterogeneous devices able to
interact in various application domains. Since M2M suffers
from a high vertical fragmentation of current M2M markets
and lacks of standards, the European Telecommunications
Standards Institute (ETSI) released a set of specifications for
a common M2M service platform. An ETSI-compliant M2M
service platform has been proposed in the context of the open
source OM2M project. However such a platform currently
only marginally addresses security and privacy issues, which
are fundamental requirements for its large-scale adoption.
Therefore, an extension of the OM2M platform is proposed,
defining a new policy enforcement plugin, which aims to
manage the access to the resources provided by the platform
itself and to handle any violation attempts of the policies.

Keywords-Internet of Things, OM2M, Security Enforcement

I. INTRODUCTION

Internet of Things (IoT) paradigm has been approaching
our lives thanks to the availability of wireless commu-
nications (e.g., RFID, WiFi, 4G, IEEE 802.15.x), which
have been increasingly employed as technology driver for
smart monitoring and control applications [5] [12]. The IoT
concept is many-folded, since it embraces many different
technologies, services, and standards. IoT deployments may
adopt different processing and communication architectures,
technologies, and design methodologies, based on the target
scenarios. Therefore, a middleware may be neeeded in order
to deal with such heterogeneity of devices and communica-
tion protocols [10].

In this context, Machine-to-Machine (M2M) market has
been spreading, due to the fact that the number of M2M con-
nections is continuously increasing. The advantages of M2M
applications range in various application domains from
building, energy, healthcare, industrial, transportation, retail,
to environmental services. The goal is to shift from the actual
vertical and fragmented deployments to a global horizontal
M2M platform. In this direction, several standardization
efforts have been done to face the M2M interoperability
challenge [7]. Among them, a very promising proposal
is being contributed by the European Telecommunications
Standards Institute (ETSI). ETSI released several specifi-
cations [1] [2] [3] covering M2M service requirements,
the functional architecture, communication interfaces, and

how to interwork with existing standards and technologies.
Moreover, in [4], the OM2M project is proposed, consisting
of an ETSI-compliant platform aiming at facilitating the
interoperability among M2M applications and devices. Such
an architecture is extensible via plugins and supports several
protocols and technologies.

However, the actual OM2M platform only marginally
addresses the security and privacy requirements. In fact, such
a high level of heterogeneity of involved technologies and
protocols makes such an architecure as object of multiple
security and privacy attacks. Traditional security counter-
measures and privacy solutions cannot be directly applied
to IoT technologies [14] (e.g., limited power resources,
scalability issues). Furthermore, privacy and security issues
should be treated with a high degree of flexibility and
adaptation to the target environment [6] [8]. Note that, in
order to reach a full acceptance by users it is mandatory
to define valid security and privacy mechanisms suitable for
IoT as well as M2M applications [9] [13] [12] [15]. More in
details, confidentiality and integrity have to be guaranteed, as
well as authentication and authorization mechanisms in order
to prevent unauthorized users (i.e., humans and devices)
to access the system. Whereas, concerning privacy require-
ment, both data protection, anonymity and users personal
information confidentiality have to be ensured, since devices
may manage sensitive information (e.g., user habits). It is
important to remember that in IoT and M2M contexts the
number of violation attempts is high. So, it is fundamen-
tal to define and develop some enforcement mechanisms.
Therefore, our contribution lies in the extension of OM2M
platform with a policy enforcement layer, able to deal with
security and privacy application-specific requirements and
violation attempts, in order to increase the robustness of the
actual architecture.

The rest of the paper is organized as follows. Section II
describes the OM2M standard platform with the involved
plugins and functionalities, then our security extension is
discussed. Section III analyzes the behavior of the extended
platform. Section IV presents an application example, while
V ends the paper and provides some hints for future works.

II. OM2M SECURE PLATFORM

A. OM2M standard platform

OM2M project has been proposed as an ETSI-compliant
platform for M2M interoperability [4]. OM2M provides a
horizontal service platform which facilitates the deployment
of vertical applications and leads innovation towards an
effective interoperability. It provides a RESTful Service
Capability Layer (SCL) accessible via open interfaces to
enable the development of services and applications in-
dependently of the underlying network. RESTful API are
provided for XML data exchange through unreliable con-
nections within a highly distributed environment. Each SCL
contains a standardized resource tree where the information
is stored. A resource is uniquely addressable via a Universal
Resource Identifier (URI), and has a representation that can
be transferred and manipulated with methods (e.g., retrieve,
update, delete, execute). An SCL resources tree supports
different kind of resources, as described in the following.
The ”sclBase” resource describes the hosting SCL, and is
the root for all other resources within the hosting SCL. The
”scl” resource stores information related to distant SCLs,
for example residing on other machines, after a successful
mutual authentication. The ”application” resource stores in-
formation about the application after a successful registration
on the hosting SCL. The ”container” resource acts as a
mediator for data buffering to enable data exchange between
applications and SCLs. The ”contentInstance” resource rep-
resents a data instance in the container. The ”accessRight”
resource manages permissions and permissions holders to
limit and protect the access to the resource tree structure.
The ”group” resource enhances resources tree operations
by adding the grouping feature. The ”registration” resource
allows subscribers to receive asynchronous notification when
an event happens such as the reception of new event or the
creation, update, or delete of a resource. The ”announced”
resource contains a partial representation of a resource in
a remote SCL to simplify discovery request on distributed
SCLs. The ”discovery” resource acts as a search engine
for resources. The ”collection” resource groups common
resources together.

Moreover, the SCL works as an interface between the
network access and the application domain. Each device has
to register the resources in the OM2M standard platform
which in turn can be accessed from the applications from
OM2M platform in a seamless way. More in details, an SCL
can be deployed on an M2M Network (NSCL), a Gateway
(GSCL), or a Device (DSCL). It provides several service
capabilities to enable: machine registration, synchronous and
asynchronous communication, resource discovery, access
rights management, group broadcast, etc. Fig. 1 presents an
high level representation of OM2M architecture.

An M2M Device runs applications using the SCL (i.e.,
DSCL). It can connect directly to the network domain via

�

�

����������	
����

�������
�����

��
����������

�������������	�	����
���

��	�

����

����

������	
����

������������

�	�	����
���

��	�

�����	
��	��

����

������	
����

������������

�	�	����
���

�����������

����������

	
�������
��

�����������

��	

�

�

�

�

�

�

�

�

�

	

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

Figure 1. OM2M high level architecture

the access network and may provide service to other devices
connected to it. It can also be connected to the network
domain via a Gateway through a Local Area Network.
A Gateway also runs M2M applications using the SCL
(i.e.,GSCL), and can act as a proxy between local de-
vices and the network domain. The Network Access allows
M2M devices and gateways to communicate with the Core
Network. The SCL provides functions that can be shared
by different applications. Well-defined network management
functions enables to manage the Access and Core Networks.
They consist of all the functions required to manage the SCL
in the network domain.

Three reference points based on open APIs are specified:
mIa, dIa, and mId. The mIa reference point allows a Network
Application (NA) to access the NSCL. The dIa allows
a Device or Gateway Application (D/GA) to access the
D/GSCL. The mId reference point allows a D/GSCL to
access the NSCL. These interfaces are defined in a generic
way to support a wide range of network technologies and
protocols in order to enhance interoperability. Note that
OM2M platform is accepted as an open source project by the
Eclipse foundation and it is part of the Eclipse IoT Working
group 1.

Summarizing, the building blocks of an ETSI M2M
system are: devices, gateways, and networks. A device is
a machine equipped with a set of resources/services that
can be made accessible to the rest of the system. Many
devices may also bind to the same gateway in order to make
their resources available outside their local domain. Finally,

1http://www.om2m.org

the resources available at many gateways and devices are
exposed at a wide area scope through an ETSI M2M
network.

B. OM2M secure extended platform

As just described, OM2M provides a flexible SCL, which
can be deployed in an M2M network, a gateway, or a
device. An SCL is composed of small tightly coupled
plugins, each one offers specific functionalities. A plugin
can be remotely installed, started, stopped, updated, and
uninstalled, without requiring a reboot. It can also detect the
addition or the removal of services and adapt to the changes,
thus facilitating SCL extension. Thus, OM2M platform is
extensible via plugins and is able to support several protocols
and technologies. The OM2M layers are shown in Fig. 2.

��������	
���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 2. OM2M building layers

In particular, OM2M proposes a modular architecture
running on top of an OSGi Equinox runtime [11]. The
CORE is the main plugin that should be deployed in each
SCL. It provides a protocol-independent service for handling
RESTful requests. Specific communication mapping plugins
can be added to support multiple protocol bindings, such as
HTTP and CoAP. In fact, we can easily use HTTPS with
the jetty plugin. As regards security, the TLS-PSK protocol
is used, which aims at securing M2M communications on
the basis of pre-shared keys. For TLS-PSK we need to
use an other plugin that is not in the open-source version
because there is a problem of license. Nevertheless, such a
secure plugin only refers to securing the communications
among the involved modules. In fact, OM2M currently only
marginally addresses security issues: no attention is paid
to the definition of security and privacy policies for the
management of services and the filtering of data among
the requesting applications. Therefore, this contribution is
focused on adding a secure policy enforcement layer. It
provides the same interfaces of the services, but before
proceeding with the processing operations by the CORE
plugin, verifies the compliance with the security and privacy
policies associated to the requested services.

More in details, as shown in the component diagram
in Fig. 3, the CORE plugin implements the SCL Service
interface to handle generic RESTful request. It receives a
protocol-independent request indication and answers with a
protocol-independent response confirm. The Router defines
a single route to handle each request in a resource controller
simply using request URI and the required method. In fact,
the Resource Controller implements CRUD methods (i.e.,
create, retrieve, update, delete) for each resource. It performs
required checking operations such as access right authoriza-
tion, and resource syntax verification. The Resource DAO
provides an abstract interface to encapsulate all access to
resource persistent storage without exposing any details of
the database. The Event Notifier sends notifications to all
interested subscribers when a resource is created, updated
or deleted. It executes filtering operations to discard events
not of interest to a subscriber. The Resource Announcer
announces a resource to a remote SCL to make it visible
and accessible to other machines. It also handles resource
de-announcement. The Request Sender holds discovered
protocol-specific clients implementing the Client Service
interface. It acts as a proxy to send a generic request via the
correct communication protocol. The Interworking Proxy
holds discovered interworking proxy units (IPUs) imple-
menting the IPU Service interface, and acts as a proxy
to call the correct IPU controller. Device Manager holds
discovered Remote Entity Managers (REMs) implementing
the REM Service interface, and acts as a proxy to call the
correct device manager controller. More details about these
components and their interactions are available in [4].

Other plugins can be deployed using the same approach
in order to interwork with other protocols or to integrate
new capabilities. In our contribution, a new component
plugin, named Policy Enforcement plugin, is added and
provides an interface towards the CORE plugin. Within the
Policy Enforcement plugin, the Policy Enforcement compo-
nent is responsible of handling the requests, while the Pol-
icy Manager manages the security and privacy policies de-
fined for the M2M services and data. Note that, for each re-
source request or event notification, the Policy Enforcement
component queries the Policy Manager component, in order
to take a decision on the basis of well-defined enforcement
mechanisms (i.e., a set of policies specified for each kind of
resource). In this way, the Policy Enforcement plugin acts
as a layer (Fig. 2) between the CORE plugin and the other
interacting plugins.

III. BEHAVIORAL ASPECTS

In a typical ETSI M2M scenario, firstly the gateway and
the device mutually authenticate to the NSCL. In order to
add the proposed Policy Enforcement plugin to the existing
OM2M platform implementation (available at 2), it has

2http://wiki.eclipse.org/OM2M/Download

Figure 3. OM2M component diagram

to be registered to the D/G/NSCL, which in turn create
a description container, where descriptive information are
stored, and a data container, where the data are stored.
Such data regards, in the case of the Policy Enforcement
plugin, the set of policies related to the resources handled
by the OM2M platform. As shown in Fig. 4, such a
plugin provides an application for handling the service/data
requests (i.e., POLICY ENFORCEMENT REQ) and an ap-
plication for handling the service/data responses (i.e., POL-
ICY ENFORCEMENT RESP). Such applications represent
the interfaces exposed to the CORE plugin, in order to allow
the interactions between the two components.

Note that the Policy Enforcement plugin can be activated
or not within the OM2M platform at the different levels (i.e.,
D/G/NSCL), depending on the desired level of security and
the importance of the compliance of the defined security and
privacy policies with the services/data disclosure.

In the following section, an application example is pre-
sented, in order to clarify the effectiveness of the proposed
policy enforcement mechanism.

IV. APPLICATION EXAMPLE

In the following application scenario, an issuer wants
to handle, via RESTful requests, a set of GPS location
information regarding the vehicles in a particular area.
Supposing that communications happen by means of HTTP
protocol, the sequence diagram in Fig. 5 illustrates the case
study, in which a device reports the GPS values and the
issuer receives the relative notifications (i.e., the presence of
a particular vehicle on which the GPS device is installed).

Once the GPS IPU plugin discovers the device which
sends the GPS information, it creates on the SCL the
corresponding GPS application and data container, where
to store the location events (i.e., transactions 1-7 in Fig. 5).

Figure 4. OM2M enforcement plugin

Note that, during this phase, the Policy Enforcement plugin
is informed about the new resource and, as a consequence,
asks to the CORE plugin what kind of security and privacy
policies it has to apply for the future requests of the data
provided by the application just created (i.e., transactions
8-11 in Fig. 5). For example, a policy to be applied to
the location information is that only issuers registered as

Figure 5. OM2M interactions with policy enforcement plugin

members of the ”traffic analytics department” can access
to the relative data. Such a policy may be expressed in
XML syntax, following the SCL RESTful API (Section II),
as presented in Listing 1. Of course, such policies can be
set by a system administrator or can be based on rules
established according to an ontology of the data provided
by the different applications, which interact with the CORE
plugin.

1 <p o l i c y r e s o u r c e = ’GPS a p p l i c a t i o n ’>
2 <a c c e s s>
3 <r o l e> t r a f f i c a n a l y t i c s d e p a r t m e n t< / r o l e>

4 < / a c c e s s>
5 < / p o l i c y>

Listing 1. XML policy

The issuer sends a GET HTTP request in order to
discover the registered applications (i.e., transactions 11-
15 in Fig. 5); therefore, it sends a POST request to
subscribe to the GPS application, in order to receive the
corresponding contentInstances resources (i.e., transactions
16-17). Before giving the consent to the subscription, a
POLICY ENFORCEMENT REQ as to be sent by the CORE

plugin to the Policy Enforcement plugin (i.e., transaction
18), as presented in Section III). The Policy Enforcement
plugin has to evaluate each request from subscribers and
decide wheter to approve or not the request itself on the
basis of the stored security and privacy policies (i.e., POL-
ICY ENFORCEMENT RESP in Section III, transactions 19-
25 in Fig. 5). More in details, if the requesting issuer is
registered as a member of the ”traffic analytics department”,
the response if the Policy Enforcement plugin will be ”STA-
TUS CREATED”, otherwise the subscription is denied and
the response sent to the issuer is ”STATUS DENIED”.

As soon as an event is reported by the IoT device, the
GPS IPU plugin creates a new contentInstances resource,
which is notified to the issuer only if he is authorized by
the Policy Enforcement plugin (i.e., transactions 26-37 in
Fig. 5). In particular, the Policy Enforcement plugin verifies
the correspondance of the issuer role with the policies
associated to the requested data; in case of positive outcome,
the notification is allowed and a POST request is sent to
the subscribed issuer, otherwise the notification is denied.
Note that Policy Enforcement plugin traces the transactions
both from outside and from the inside of the SCL, as a
firewall, in order to prevent misbehaving activities. Hence,
it is important to point out the definition of enforcement
mechanisms, which allow to deal with violation attempts.

The presence of the Policy Enforcement plugin generates
an overhead of communications with respect to the standard
OM2M platform, but it allows to integrate the system with
a policy management and enforcement point, in which
security and privacy policies can change without the need to
reconfigure the CORE plugin, exploiting the XML language
potentiality. In particular, regarding the example investigated
in this section, there is an overhead in the initial phase
of the device discovering (the transactions 3, 6, 8-11 in
Fig. 5); such an overhead occurs only once, as well as the
overhead due to the subscription requested by the issuer
(the transactions 18, 19, 20, 23 in Fig. 5). Finally, at each
reported event, there is an overhead due to the verification of
policies (the transactions 29, 30 in Fig. 5) and, possibly, the
notification to the issuer (the transactions 31, 36 in Fig. 5).
Note that such a distribution of the overhead can be applied
to other case studies.

V. CONCLUSION

In this paper, an extension of the open source OM2M plat-
form has been presented, in order to add new functionalities
related to the security and privacy management of resources.
To this end, a new policy enforcement plugin has been
integrated in the actual OM2M architecture, communicating
through RESTful requests. In such a way, the plugin is able
to trace the transactions both from outside and from the
inside of the system, thus filtering the event notifications
and preventing violation attempts. In the next future, we
plan to investigate a real case-study in order to verify the

effectiveness of the proposed solution in a context in which
well-defined policies are defined for the provided resources.

VI. CONCLUSION

REFERENCES

[1] ETSI TS 102 921 v1.1.1. machine-to-machine communica-
tions (M2M); mIa, dIa and mId interfaces. February 2012.

[2] ETSI TS 102.689 v1.1.1. machine-to-machine communica-
tions (M2M); M2M service requirements. August 2010.

[3] ETSI TS 102.690 v1.1.1. machine-to-machine communica-
tions (M2M); functional architecture. October 2011.

[4] M. Ben Alaya, Y. Banouar, T. Monteil, C. Chassot, and
K. Drira. OM2M: Extensible ETSI-compliant M2M service
platform with self-configuration capability. Procedia Com-
puter Science, 32(0):1079 – 1086, 2014.

[5] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The
internet of things: A survey. Comput. Netw., 54(15):2787–
2805, October 2010.

[6] S. Bandyopadhyay, M. Sengupta, S. Maiti, and S. Dutta.
A survey of middleware for internet of things. In Third
International Conferences, WiMo 2011 and CoNeCo 2011,
pages 288–296, Ankara, Turkey, June 2011.

[7] D. Boswarthick, O. Elloumi, and O. Hersent. M2M Com-
munications: A Systems Approach. John Wiley & Sons, Ltd,
2012.

[8] M. A. Chaqfeh and N. Mohamed. Challenges in middleware
solutions for the internet of things. In 2012 International Con-
ference on Collaboration Technologies and Systems (CTS),
pages 21–26, Denver, CO, May 2012.

[9] H. Feng and W. Fu. Study of recent development about
privacy and security of the internet of things. In 2010
International Conference on Web Information Systems and
Mining (WISM), pages 91–95, Sanya, October 2010.

[10] L. A. Grieco, M. B. Alaya, T. Monteil, and K. K. Drira.
Architecting information centric ETSI-M2M systems. In
IEEE PerCom, 2014.

[11] S. Archer J. McAffer, P. VanderLei. OSGi and Equinox:
Creating Highly Modular Java Systems. Addison-Wesley
Professional, 2010.

[12] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini,
and Imrich Chlamtac. Survey internet of things: Vision, appli-
cations and research challenges. Ad Hoc Netw., 10(7):1497–
1516, September 2012.

[13] R. Roman, J. Zhou, and J. Lopez. On the features and
challenges of security and privacy in distributed internet of
things. Computer Networks, 57(10):2266–2279, July 2013.

[14] Sabrina Sicari, Alessandra Rizzardi, Luigi Alfredo Grieco,
and Alberto Coen-Porisini. Security, privacy and trust in
internet of things: The road ahead. Computer Networks,
76:146–164, 2015.

[15] Rolf H. Weber. Internet of things - new security and privacy
challenges. Computer Law & Security Review, 26(1):23–30,
January 2010.

