
HAL Id: hal-01228274
https://hal.science/hal-01228274v1

Submitted on 17 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-management of machine-to-machine
communications: a multi-models approach

Cédric Eichler, Ghada Gharbi, Thierry Monteil, Patricia Stolf, Nawal
Guermouche

To cite this version:
Cédric Eichler, Ghada Gharbi, Thierry Monteil, Patricia Stolf, Nawal Guermouche. Self-management
of machine-to-machine communications: a multi-models approach. International journal of au-
tonomous and adaptive communications systems, 2016, 9 (3-4), pp.288-309. �hal-01228274�

https://hal.science/hal-01228274v1
https://hal.archives-ouvertes.fr

Int. J. Autonomous and Adaptive Communications Systems, Vol. x, No. x, xxxx 1

Self-management of machine-to-machine
communications: a multi-models approach

Cédric Eichler*, Ghada Gharbi,
Thierry Monteil, Patricia Stolf and
Nawal Guermouche
CNRS, LAAS,
7 avenue du Colonel Roche,
F-31400 Toulouse, France
and
IRIT,
118 Route de Narbonne,
F-31062 Toulouse, France
and
Univ de Toulouse,
UPS, F-31400, INSA, F-31400, UTM,
F-31100 Toulouse, France
E-mail: ceichler@laas.fr
E-mail: ggharbi@laas.fr
E-mail: monteil@laas.fr
E-mail: pstolf@laas.fr
E-mail: nguermou@laas.fr
*Corresponding author

Abstract: Machine-to-Machine (M2M) paradigm apply to systems composed
by numerous devices sharing information and making cooperative decisions
with little or no human intervention. The M2M standard defined by the
European Telecommunications Standards Institute (ETSI) is the only one
providing an end-to-end view of the global M2M architecture. Noticeably,
it furnishes a standardised framework for inter-operable M2M services that
satisfies most of M2M modelling requirements. However, and even though
M2M systems usually operate in highly evolving contexts, this standard does
not address the issue of system adaptations. It is furthermore unsuitable for
building self-managed systems. This paper introduces a multi-model approach
for modelling manageable M2M systems. Said approach consists in a formal
graph-based model on top of the ETSI M2M standard, alongside bi-directional
updates that ensure layer coherency. Its fitness for enforcing self-management
properties is demonstrated by designing high-level reconfiguration rules.
Finally, its applicability is illustrated and evaluated using a smart-metering
application.

Keywords: M2M communicating systems; dynamic reconfigurations;
autonomic computing; graph rewriting; ETSI M2M architecture.

Copyright 200x Inderscience Enterprises Ltd.

2 C. Eichler et al.

Reference to this paper should be made as follows: Eichler, C.,
Gharbi, G., Monteil, T., Stolf, P. and Guermouche, N. (xxxx)
‘Self-management of machine-to-machine communications: a multi-models
approach’, Int. J. Autonomous and Adaptive Communications Systems, Vol. x,
No. x, pp.xxx–xxx.

Biographical notes: Cédric Eichle is a PhD applicant at LAAS-CNRS and
IRIT Laboratories (Toulouse, France). After obtaining a Certified Engineer
degree in Computer Science and Applied Mathematics, he has been working
on formal methods for the specification of dynamic distributed systems. He
is currently co-managing the national ANR SOP project, for which he is
also developing an autonomous manager based on correct by construction
reconfigurations.

Ghada Gharbi is currently a PhD student at LAAS-CNRS Laboratory,
Toulouse, France. She has been awarded a Master Diploma in Software
Engineering and Multimedia Systems specialised in protocols and networks
systems and received an Engineering Diploma in Computer Science
from the National School of Computer Science of Tunisia (NSCS). Her
research interests include the architectural reconfiguration of distributed
communicating systems using formal models such as graph grammars
and ontology involving concepts such as deployment, self-adaptability and
communication models.

Thierry Monteil is an Associate Professor in Computer Science at INSA
of Toulouse and Researcher at LAAS-CNRS. He has a Doctorate in
parallel computing and Certified Engineer degree in Computer Science and
Applied Mathematics. He works on parallel computing (LANDA parallel
environment), grid resources management (AROMA project), internet of
things (OM2M project), computer and network modelling, autonomous
policies to improve performance on distributed applications and parallelisation
of large electromagnetic simulation.

Patricia Stolf is an Associate Professor at the Toulouse University, France.
She obtained a PhD in 2004 at LAAS-CNRS (Toulouse-France) on Tasks
scheduling on clusters for remote services with quality of service. She
is currently working in the IRIT Laboratory on the field of distributed
algorithms and autonomic computing in large scale distributed systems. She
studies resources management in energy and thermal-aware task scheduling
and autonomic systems. She is involved in different research projects:
the ACTION COST IC0804 ‘Energy efficiency in large scale distributed
systems’, the European CoolEmAll project and the national ANR SOP
project.

Nawal Guermouche received her MS and PhD in Computer Science,
respectively, in 2006 and 2010 from LORIA-INRIA, UHP University, Nancy
1, France. She is an Assistant Professor at INSA of Toulouse and a member
of the SARA team at the LAAS-CNRS research laboratory. Her research
interests focus on composition, analysis, reconfiguration and validation of
service and component based systems. She has been involved in several
transfer projects with industries (in France and Europe) for a wide range of
applications including M2M.

Self-management of machine-to-machine communications 3

This paper is a revised and expanded version of a paper entitled ‘Graph-based
formalism for machine-to-machine self-managed communications’ presented
at the 22nd IEEE International Conference on Collaboration Technologies and
Infrastructure (WETICE), Hammamet, Tunisia, 17–20 June 2013.

1 Introduction

During the last years, the exponential expansion of wireless communications devices
and the ubiquity of wireless communications networks have convey to the emanation of
wireless machine-to-machine (M2M) communications as the most promising solutions
to revolutionise the future ‘intelligent’ pervasive communications (Pandey et al., 2011).

Intrinsically, M2M systems are evolution prone as applications are stopped and
started, machines discovered and shut down, etc. As most of its peers, the ETSI
standard focuses on protocols and communications. It does not address the issue of
dynamic reconfiguration or provide a suitable model for the reasoning required to build
self-managed M2M architectures. These considerations belong to the field of dynamic
software architectures that enables adaptation in autonomic distributed systems, coping
with new requirements, new environments, and failures. To conciliate functionalities
and manageability, we elaborate in this paper a component-based, bi-layered framework
for modelling M2M systems. A graph-based representation built on top of the ETSI
M2M standard constitute respectively the formal and functional layers of the framework.
In order to ensure inter-layers coherency, the model also comprises bi-directional
communications between these two layers. In this way, the model benefits from
the best of both worlds. The graph-based characterisation allows the definition of
consistency preserving reconfiguration mechanisms. On the other hand, it still possess
the functionalities granted by the standard, such as discovery protocols and machine
interoperability. We exploit this model by defining high level policies of reconfiguration,
relying on graph rewriting, to enforce self-management properties.

The remainder of the paper is organised as follows. Section 2 investigates
existing approaches for representing M2M systems in particular and approaches
appropriate for the management of dynamic system in general. Since no single
representation handle every modelling requirements of M2M systems, Section 3
proposes a multi-models, bi-layered, approach to meet said needs. The fitness of the
resulting framework is demonstrated in Section 4, where the enforcement of high-level
adaptation policies is discussed. Application of the framework to model and reconfigure
an use-case is developed in Section 5. Finally, Section 6 is dedicated to conclusion and
outlooks.

2 Related work

2.1 Machine-to machine systems and communications

The M2M paradigm is a broad label. It can be used to describe any technology
that enables automated, wired or electronic devices. The aim of M2M systems is
to allow devices to be interconnected, networked, and controlled remotely with low

4 C. Eichler et al.

cost, scalable, and reliable technologies. M2M systems and communications have been
successfully exploited to enhance efficiency and to reduce (or even suppress) human
intervention in a vast range of contexts. They intervene for example in the specification
and the implementation of automotive, smart metering, eHealth, and smart grid
applications.

On one hand, M2M systems possess common characteristics and requirements
(Pandey et al., 2011), such as network heterogeneousness and dynamism, mobility and
time sensibility of data, and device intelligence. On the other hand, M2M technical
solutions are multiple, highly fragmented, and usually dedicated to single applications.
Consequently, the M2M market development is critically slowed down, while the costs
of development, maintenance, and research in M2M systems are increasing. To meet
these challenges, standardisation is a key enabler to remove the technical barriers and
ensures inter-operable M2M services and networks.

A significant number of standardisation bodies (TIA, http://tiaonline.org/standards;
ESNA, http://www.esna.org/; IPSO, http://www.ipso-alliance.org/) are currently working
on defining architecture and services standards to support M2M communication
requirements. Some alliances focus on specific M2M areas and do not intend to cover
every M2M characteristics. Among them, two approaches can be distinguished: from
scratch (e.g., the OMA for device manageability) and improvement of existing standards
to fit M2M requirements [e.g., promoting internet protocol (IP) for smart objects].
Furthermore most works are still in preliminary stage and provides only drafts (e.g., the
TIA working group, IETF).

The European Telecommunications Standards Institute (ETSI,
http://www.etsi.org/Website/Technologies/M2M.aspx) M2M group is the only one that
has developed an end-to-end view for M2M communications. Its standards facilitate the
deployment of vertical applications and the innovation across industries by exposing
data and providing services. This architecture is defined in several technical reports
fixing (ETSI TR, http://www.etsi.org/technologies-clusters/technologies/m2m; ETSI FA
TR, 2011):

1 functional and behavioural requirements of each network element to provide an
end-to-end view

2 the functional architecture with the different M2M services capabilities

3 the protocols of various interfaces.

However, the ETSI M2M standard does not address the issue of system adaptations,
even though M2M systems usually operate in highly evolving contexts. Besides, the
very model constituted by these specifications appears unfit for the specification of
self-management operations. Multi-models approaches (Roh et al., 2004; Sharrock et al.,
2008; Loulou et al., 2004) can successfully be applied when no single representation
meet all the requirements for modelling a system. To enable the management of M2M
systems, concepts of the ETSI M2M standard can be mapped unto an appropriate model,
the result benefiting from both representations.

2.2 Models for dynamic systems management

Concerns, models, and approaches discussed here are not necessarily related to M2M
systems. Rather, their merits regarding management are investigated to identify the one

Self-management of machine-to-machine communications 5

that should be integrated in the multi-models approach required to cover both functional
and management-related aspects of M2M systems.

Dynamic software architectures are studied for handling adaptation in autonomic
distributed systems, coping with new requirements, new environments, and failures.
Particularly, the description of evolving architectures cannot be limited to the
specification of a unique static topology. It must characterise the scope of all acceptable
configurations. This scope characterises an architectural style, qualifying what is correct
and what is not. Naturally, once this distinction made, the question of specification of
the modifications themselves arises.

Model-based approaches furnish very intuitive and visual formal or semi-formal
description of structural properties (Bradbury et al., 2004), and system evolution.
Designing and describing software models using UML, for example, OMG, UML (2005)
is a common practice in the software industry. It provides a standardised definition
of system structure and terminology, facilitating the understanding of the architecture
(Selonen and Xu, 2003). Nevertheless the generic fitness of model-based approaches
may imply poor means of describing specific issues like behavioural properties.
Therefore, they are often coupled with description using architecture description
languages (Roh et al., 2004; Sharrock et al., 2008), mapping the concepts of architecture
description languages into the visual notation of UML, or other formalism (Loulou
et al., 2004). In spite of its wide acceptance, UML-based descriptions appear to lack
expressiveness and formal tools for guaranteeing consistency, due to the inherent
semi-formalness of UML. Formal unambiguous methods are necessary to study the
consistency of a system at a given time (i.e., its compliance to an architectural style).
To efficiently tackle correctness in the scope of dynamic reconfiguration, correctness
by construction through formal approaches have emerged (Bonakdapour et al., 2010).
Based on formal proofs and reasoning in design-time, they guarantee the correctness of
a system, requiring little or no verifications in run-time. A way to achieve such proofs is
to investigate the properties of transformations with regard to consistency preservation,
so as to ensure that if a transformation is applicable on a correct configuration its result
is another correct configuration.

Graph-based methods for software modelling are appropriate for conceiving correct
by construction frameworks. Theoretical work in this field provides formal means to
specify and check structural constraints and properties (Rozenberg, 1997; Bruni et al.,
2008). Within this kind of approaches, some methods are restricted to the usage of
type graphs alone (Wermelinger and Fiadeiro, 2002) and suffer from the same lack of
expressiveness as UML-based methods. Other works (Hirsch et al., 1999; Le Metayer,
1998) are based on graph grammar, or graph rewriting system, offering a generative
definition of the scope of correctness. In this context, graph rewriting rewriting rules
intervene in the very definition of the style. This tight link with the scope of correctness
makes these rules fit for the specification of consistency preserving reconfigurations.
These advantages motivate the adoption of graph-grammar-based descriptions as a
management-centric model, lifting the identified restriction inherent to the consideration
of a functional representation alone.

6 C. Eichler et al.

3 A multi-models, bi-layered, approach

This section describes the proposed approach, its layers, and inter-layers
communications.

In the ETSI vision, M2M constituents are seen as resources. They are defined in
a tree structure and handled with the RESTful style of data exchange. This resource
tree consists on a logical grouping of resources that allows simple addressing of
resources, flexibility in exchanging application data and simple APIs. The formal layer is
composed by a generic graph grammar to enable the definition of consistency preserving
reconfigurations.

These two models characterise any M2M architecture. The management of actual
M2M architectures shall depend on their instantiations. Furthermore, only a subset
of functional properties is required to enforce the aimed management mechanisms.
Consequently, it is not relevant to duplicate every single piece of information contained
in the functional layer onto the formal one. Similarly, information required to
conduct adaptation may not be needed to guarantee the functioning of the system
(e.g., transmission delay).

Considering two layers impose guaranteeing theirs coherence. Since the system
is dynamic, layers will have to evolve to fit its current state. Besides, evolutions
can originate from both layers, since discovery and reconfigurations are conducted
respectively in the functional and formal one. To ensure the coherence of the two
layers, changes must thus be bi-directionally impacted. Bi-directional updates and
communications described in this section ensure this crucial property.

3.1 Functional layer based on the ETSI M2M standard

The ETSI has divided M2M systems, as shown in Figure 1, into three domains:

• The application domain runs the service logic and uses M2M services capabilities
accessible via an open interface. The application data is referred as resources.
Resources are defined in a tree structure and handled with the RESTful style of
data exchange.

• The M2M device domain includes data end points such as sensors, smart meters,
microprocessors, and gateway.

• The network domain is a network technology providing connectivity between
M2M devices from the M2M device domain.

As stated previously, M2M constituents are represented by a resource tree structure. This
structure exposes functions through a set of open interfaces grouped under the heading
‘M2M service capabilities layer (SCLL)’. This last comports:

• NSCL: network service capabilities layer refers to M2M service capabilities in the
network domain

• GSCL: gateway service capabilities layer refers to M2M service capabilities in the
M2M gateway

• DSCL: device service capabilities layer refers to M2M service capabilities in the
M2M device

Self-management of machine-to-machine communications 7

Figure 1 ETSI-Simple-M2M-Architecture (see online version for colours)

• SCL: service capabilities layer, refers to any of the following: NSCL, GSCL,
DSCL.

In M2M systems, data come from a large number of devices and are exchanged between
various entities (i.e., applications) through data containers. These lasts are used as
mediators taking care of buffering the data. They make the exchange abstracted from
the need to set direct connections and allow for scenarios where both parties in the
exchange are not online at the same time. To enable interactions between the distributed
applications and devices, the registration and the announcement of resources must be
fulfilled.

Registration comprises two sub-cases: SCLs registration and Applications
registration.

• SCLs registration defines the procedures that allow a GSCL or a DSCL to
register to the NSCL once discovery has been performed. SCL registration is a
necessary procedure allowing the SCL to start resource management procedures.
For scalability sake, peer-to-peer SCLs registrations (gateway/gateway,
device/device, device/gateway) are also considered in this paper.

• Applications registration defines the set of procedures that allows an application
to register to its local SCL. It is a necessary step for an application to be known
and to start exchanging data using the Restful procedures.

Announcement Defines the set of procedures for a resource to advertise for a remote
SCL. In order to enable the announcement of a container or an application on a remote
machine, it is necessary that the host and target machines are mutually registered.

3.2 Formal layer based on graph rewriting and graph grammars

Before characterising M2M systems using a graph grammar, general concepts related to
graph rewriting are introduced.

3.2.1 Graph rewriting rule and graph grammars

A configuration of a system captures its state at a given time. It can be modelled using
attributed graphs whose vertexes specify entities (e.g., devices, applications, containers)
and edges represent theirs relationships (e.g., registration deployment, utilisation).

8 C. Eichler et al.

Definition 1: Attributed graph

An attributed graph G is defined by the tuple (V, E, ATT) where:

• V and E ⊆ V2 correspond respectively to the set of vertexes and edges of G.

• ATT is a family of set indexed by V ∪ E. A set of this family is a sequence of
couple (A, DA) where A and DA are respectively the attribute value and domain
of definition. Accordingly, A is either a constant in DA, noted between quotations
marks, or a variable that may take any value in DA.

An architectural style can be formalised using a graph rewriting system or graph
grammar. Such systems are based on graph rewriting rules that require to identify
common sub-structures by the mean of morphisms. Particularly here, induced sub-graph
isomorphisms between graphs are considered. It should be stressed out that this relation
is not symmetric and that the ‘induced sub-graph’ part of the denomination refers
only to the second graph. In other words, the existence of an induced sub-graph
isomorphism between two graphs G and G’ means that there is an induced sub-graph
of G’ isomorph to G. An unattributed induced sub-graph isomorphism i between two
graphs G = (V, E, ATT) and G = (V , E, ATT) is defined as a mapping of V into a
sub-set of V so that if there is an edge between two vertexes of G, there is an edge
between their images in G and reciprocally (Rozenberg, 1997).

Definition 2: Unattributed induced sub-graph isomorphism

An unattributed induced sub-graph isomorphism i between two graphs G = (V, E, ATT)
and G = (V , E, ATT) is defined as an injective function f: V → V so that ∀ (v, ṽ)
∈ E2, (v, ṽ) ∈ E ⇔ (f(v), f(ṽ)) ∈ Ē.

By abuse of notation, for any vertex of G, i(G) refers to f(G). To tackle attributes, we
impose firstly that two vertexes or two edges associated through an isomorphism have
the same number of attributes. Attributes of two associated elements are themselves
correlated with regard to the order of their occurrences. Identified attributes should
have the same domain of definition. Secondly, identifications of attributes should
be consistent (e.g., a variable should not be identified with two different constants).
Therefore, a system of equations is built and the existence of an attributed induced
sub-graph isomorphism is conditioned by its resolvability.

Definition 3: Attributed induced sub-graph isomorphism

There is an induced sub-graph isomorphism iso between two attributed graphs
G = (V,E,ATT) and G′ = (V ′, E′, ATT ′), noted G iso−−→ G’ or simply G → G’, if
and only if there is an unattributed induced sub-graph isomorphism iso’ from (V, E) to
(V’, E’) such as

1 ∀ v ∈ V (resp. ∀ e = (v̄, ṽ) ∈ E2), |ATTv| = |ATTiso′(v)|
(resp. |ATTe| = |ATT(iso′(v̄),iso′(ṽ)|)

2 ∀ v ∈ V (resp. ∀ e = (v̄, ṽ) ∈ E2), ∀ i ∈ [|1, |ATTv|], Di
v = Di

iso′(v)

(resp. Di
e = Di

(iso′(v̄,iso′(ṽ))

Self-management of machine-to-machine communications 9

3 the system of equations S = { A = A’ | (∃ v ∈ V, ∃ i ∈ [|1, |ATTv|], A = Ai
v ∧ A’

= Ai
h(v)) ∨ (∃ e = (v̄, ṽ) ∈ E, ∃ i ∈ [|1, |ATTe|], A = Ai

e ∧ A’ = Ai
(h(v̄,h(ṽ))) }

has at least one solution.

where A and A’ are mute variable names, see Definition 1.

Solving the system of equations S results in identifying the value of some attributes
with some constants in their domains of definition and/or with the value of some
other attributes. Integrating the affectation obtained by solving the systems refers to
the update of the value of the attribute to reflect these identifications. For example,
if ((x,y), (x, "2") ∈ S2, meaning that x has been identified to the variable y and the
constant "2", integrating the affectations obtained by solving S will lead to replacing
each occurrence of x and y by "2". For genericness sake, we define the following
super-patterns.

Definition 4: Super-pattern

A super pattern is one of the following elements:

• A vertex whose only attribute is ‘any’, its domain of definition begin of no
interest. Its attributes do not take part in the conditions 1, 2 or 3. It is only
relevant in the phase where an unattributed sub-graph isomorphism is looked for.

• An attribute taking value in a subset of its domain of definition, materialised by
enumerating the possibility, e.g., ("a" or "b", {"a", "b", "c"}). Such an attribute
impacts the condition 3 by adding a constraint on the system of equation S.

The characterisation of graph rewriting rules used in this paper is based on the Double
PushOut (Ehrig, 1987) approach.

Definition 5: Graph rewriting rule

A graph rewriting rule is a triplet (L, K, R) where L and R are two graphs, and K-called
the Inv zone- is a sub-graph of both L and R. (L\K) is called the Del zone and (R\K) is
called the Add zone. A rule is applicable on a graph G if there is an induced sub-graph
isomorphism i: L → G and its application does not lead to the apparition of any dangling
edge. Its application consists in erasing (L\K) and adding an isomorph copy of (R\K)
integrating the affectation obtained by solving the system of equations related to i.

In this paper, graph rewriting rules are illustrated using the delta representation, where
only one graph is considered. This graph is visually partitioned into three zones, from
left to right the Del, Inv and Add zones.

10 C. Eichler et al.

Figure 2 An example of graph transformation

Figure 2 offers an example of how a transformation is handled in the previously defined
approach. To lighten the figure, the attributes of the edges have not been represented
and will all be considered equals. There exists an induced sub-graph isomorphism iso
associating 1", 2" and 3" with respectively 2, 5 and 4. It identifies b with x and a with
"2", these identification introducing no inconsistency. This morphism is such as L iso−−→
G1 and ∀ v ∈ VG1 \ iso(VK), ∀ v’ ∈ VL \ VK , (v, iso(v’)) /∈ EG1 ∧ (iso(v’), v) /∈ EG1,
the deletion of the graph identified with Del through iso would not lead to the apparition
of a dangling edge. The transformation R can be applied to G1 with the matching iso.
The graph corresponding to the Del zone is removed and an isomorph copy of the Add
zone is then added , with b being replaced by x to impact the identifications.

Inspired from Chomsky’s (1956) generative grammars, graph grammars specifying
an architectural style are defined as follows.

Definition 6: Graph grammar and their instances

A graph grammar is defined as a system < AX;NT ;T ;P >, where AX is the axiom,
NT is the set of the non-terminal vertexes, T is the set of terminal vertexes, and P is
the set of graph rewriting rules, also called grammar productions. An instance belonging
to the graph grammar is a graph G such as there is not any nt ∈ NT such as nt → G
and is obtained starting

Thanks to the very definition of compliance to an architectural style characterised
by a graph grammar, and in particular its generative aspect, consistency preserving
reconfigurations can be built from the productions rules. Correct by construction
reconfigurations is a key advantage of graph grammars.

Consider any rewriting rule r whose application is equivalent to the application of
a production or a sequence of productions of the grammar, noted p in this paragraph.
Note that we can consider a single production even in the case of a sequence,
through composition. Trivially, r preserves consistency if its applicability conditions
are equivalent or stronger than p’s ones, e.g. if r requires a larger pattern to be found
meaning that Lr is a sub-graph of Lp.

At first sight, we should be able to terminate anything that has been started. Such
rules can be obtained from the productions using graph rewriting rules’ property of
reversibility. Let’s consider a consistent instance of a graph grammar, constructed by

Self-management of machine-to-machine communications 11

applying the sequence of productions rules (pi)i∈[|1,N |] to the axiom. Intuitively, if a
rule r is applicable, the relationship or entity it terminates has previously been started,
meaning that there exists k ∈ [|1, N |] such as r is the reverse of pk. r preserves
consistency if r and each rule in [|k,N |] are sequence independent.

3.2.2 Formal characterisation of M2M systems

The formal layer, introduced to reason and manage actual M2M applications, is
composed by a generic graph grammar. This last characterises M2M systems.
Application built according to the M2M paradigm are instances of the ETSI M2M
standard. In a similar fashion, management of actual M2M architectures shall rely on
graph grammars instantiated from the meta-graph grammar.

For conciseness sake, the pieces of information considered here are restricted to:

• The deployed devices and the kind of applications they may run. We also keep
track of which devices ‘see each other’ (i.e., are registered to one another) and the
propagation delay due to the physical network through which they communicate.

• The deployed containers, on which device, and the devices they are announced to.

• The deployed applications, on which device, their type, the devices they are
announced to, the containers they currently use, and how they use each containers.

When building a graph grammar, the first thing to consider is the set of terminal
terms. These lasts characterise the kinds of entities constituting an M2M system, and
the information that has to be carried by each entity. Each vertex is identified by a
unique identifier, the set of identifier being noted Id. By convention and to simplify the
notations, a vertex v attributed by ATTv will be noted v(ATTv). In M2M systems, and
considering the previous paragraph, we distinguish three arch-entities representing the
vertexes modelling:

• The deployed containers, simply noted Vcontainers((id,Id)), and refereed to as
Vcontainers.

• The deployed applications and their type. Let applicationType be the set of
application’s type. The considered arch-vertex is Vapplications((id,Id), (appliType,
applicationType)).

• The network, gateways and ETSI devices that do not require a gateway to
communicate, and the type of applications that may run. Let applicationTypes be
the power set of applicationType. This kind of vertexes is represented by the
arch-vertex Vdevices((id,Id),(deviceType, {"Network", "Gateway",
"ETSIdevice"}), (runnableApplication, applicationTypes)).

Once the entities defined, one should consider their relationships, modelled by edges’
attributes:

• "registered": two instances of the device arch-vertex may be registered to one
another

• "created": between a container or an application and the device it is deployed on

12 C. Eichler et al.

• "announced": between a container or an application and a remote device.

The conditions that have to be met for a relationship to be initiated, or for an entity to
be deployed, as well as how to do it, are described by the productions of the grammar.
For readability sake and considering that there is no ambiguity on domains of definition,
they are implicit in the following. Furthermore, only the most representative productions
are graphically represented.

The production p1, illustrated in Figure 3(a), describes the initialisation of an M2M
network consisting in the deployment of the vertex representing the network. The
addition of a device, be it a gateway or an ETSI device, is managed by the rule p2,
represented in Figure 3(b). Such a device has to be registered to the network and see
the resources of the network in a similar fashion.

The rule p3, illustrated in Figure 3(c), formalises the addition of an application. The
rule p4 modelling the deployment of a container is similar and thus no represented. Note
that the device should be able to run such an application (i.e., appli ∈ runnableApplis).

The rule p5, presented in Figure 3(d), depicts the peer to peer registration of an
ETSI device or a gateway to another one. Registration is a symmetric relation. Attributes
type1 and type2 are variable and can take any value in {"Network", "ETSIdevice",
"Gateway"}. type1 and type2 can be replaced by "ETSIdevice" or "Gateway", since
neither type1 nor type2 should be equals to "Network". However, each device and each
gateway registers to the network when deployed, and remains registered. Since there is
no edge between the two vertexes in the invariant part of the rule, it is not possible to
find an induced sub-graph isomorphism with type1 or type2 equals to "Network".

The announcement to a device 2, of an application or a container deployed on a
device 1, requires devices 1 and 2 to be registered as shown by the production p6
depicted in Figure 3(e).

An application may use a container, i.e., reads and/or writes on it, if one of the
following conditions is met:

• Both are deployed on the same device. This very simple case is described by the
production p7, not represented here.

• The application is running on an entity on which the container is announced, p8,
illustrated in Figure 3(e). Note that, since a container can not be announced on
the device on which it is deployed, the application uses a remote container.

Finally, the graph grammar characterising M2M systems is
< AX, ∅, {Vcontainers, Vapplications, Vdevices}, {p1, p2, p3, p4, p5, p6, p7, p8} >.

3.3 Inter-layers communications and updates

Both layer can originate a model evolution, since discovery is conducted in the
functional layer and reconfigurations in the formal one. To ensure the coherence of the
two layers, changes must thus be bi-directionally impacted.

Self-management of machine-to-machine communications 13

Figure 3 Most representative productions of the grammar, (a) initialisation (p1) (b) addition
of a device (p2) (c) addition of an application (p3) (d) registration of a device (p5)
(e) announcement of an application or a container (p6) (f) an application uses a
distant container (p8)

(a) (b) (c)

(d) (e) (f)

3.3.1 From the functional layer to the formal one

Whenever a new entity joins the system or is started, it is spotted by the functional
layer through its discovery protocol. Three types of entities are considered: containers,
applications and devices. A container or an application can be discovered simultaneously
with the device they are deployed on, or on an already know device. In any
case, discovered devices are firstly treated, applications and containers being treated
thereafter. No specific order of treatment needs to be adopted within these two sets.

• Device discovery: A message is sent with the unique identifier of the device, the
types of application it may run, and its nature (i.e., gateway or ETSIdevice). The
graph is updated by applying the rule p2, id2, "Gateway" or "ETSIdevice" and
runnableApplis2 instantiated with the previous information.

• Container discovery: A message is sent with the unique identifiers of the
container and the device it is deployed on. The rule p4 is then applied to the
formal layer, with id1 and id2 fixed to the received identifiers.

• Application discovery: A message is sent with the unique identifiers of the
application and the device it is deployed on, as well as the type of the application.
The graph is updated by applying the rule p3 with id1, id2 and appli fixed to the
received values.

14 C. Eichler et al.

3.3.2 From the formal layer to the functional one

Whenever an action is applied consequently to a decision in the formal layer, the
implication must be impacted on the real system (i.e., the functional layer). Since
reconfigurations are modelled by graph rewriting rules, they can be decomposed
regarding each vertex and edge in the Add and Del zones. An action will be performed
for each element depending on its zone and its attributes. These operations are conducted
in the following order for addition: devices, containers, applications, registration,
announcement and utilisation. If linked to deletion, they are operated in the opposite
order. Neither deletion nor addition have the priority with regard to the other, and there
is no order within a type (e.g., if several applications are simultaneously started, they
may be treated in any order).

• Device: Suppression and addition of devices on the formal layer does not leads to
the suppression and addition of devices in the functional layer. Rather, it will lead
to a change in the status of the device notifying whether it is active or not. This
mechanism ensures that registrations of the devices, and remote information on
the device are not lost when it is stopped.

1 activation: an UPDATE call with the status ‘active’ is sent in the functional
layer to the resources tree of the concerned device

2 deactivation: an UPDATE call with the status ‘idle’ is sent in the functional
layer to the resources tree of the concerned device.

• Application and/or container:

1 addition: a CREATE call with all required information is sent to the
functional layer, more precisely to the resources tree of the device on which
the application or the container is deployed

2 deletion: a DELETE call with all required information is sent to the resources
tree of the device the application or the container is deployed on.

• Registration/de-registration: In this part, peer-to-peer interaction capabilities are
treated, which, as a unique feature, significantly improves system scalability and
performances by enabling gateway/gateway, device/device, and device/gateway
direct communications.

1 Registration: To add a peer-to-peer communication, a CREATE<scl> call is
sent from a device to another (Hosting device) in order to be able to interact
with it directly.

2 De-registration: To delete a peer-to-peer communication, a DELETE<scl>
call shall be used by the issuer device to de-register from the remote device.
When a device registers to another device, two resources are created, one in
the issuer and another in the hosting. The de-registration process shall consist
in the deletion of both resources previously created.

Self-management of machine-to-machine communications 15

• Announcement:

1 new announcement: a CREATE call of the resource ‘applicationAnnc’ or
‘containerAnnc’ with all required information is sent to the functional layer,
more precisely to the resources tree of the device where the resource will be
announced

2 de-announcement: a DELETE call of the resource ‘applicationAnnc’ or
‘containerAnnc’ with all required information is sent to the resources tree of
the device where the resource will be de-announced.

• Utilisation: If an application has to read and/or write on a container, or to stop
doing so, an UPDATE call with the corresponding application requesting entity is
sent to the container to update the access rights accordingly.

4 Enforcement of self-management policies

This section exploits the proposed framework and demonstrates its fitness by defining
self-management policies for any M2M system. In the following, we assume the
existence of a monitoring and/or an analysing routine able to throw the following events:

• a container c has been accessed more than x times by distant applications in an
interval of time t

• there is less than x% of battery left on a device d.

Each event triggers an algorithm using graph rewriting rules as described below. In
concordance with the remark on graph grammars and correctness of reconfigurations,
the application of the rewriting rules used in reconfiguration scenarios is equivalent to
the application of a production or a sequence of productions of the grammar, or the
reverse of a production. This ensures that the system stays in a state constructible with
a sequence of productions, and thus that the reconfiguration is correct.

The graph representing the formal layer when an event is thrown is noted
G = (V, E, ATT). In this section, ‘update the functional layer’ refers to the processes
described in Section 3.3.2.

When ‘a container c has been accessed more than x times by distant applications
in an interval of time t’, it should be moved to the network in order not to saturate
the communication channel of the device where c is deployed. Each application that
reads and/or writes on c is redirected to the corresponding container. These actions are
described in the algorithm migrate(idC, idD), where idC and idD are respectively the
identifiers of c and of the device where the new container shall be deployed, in this
case the network.

migrate(idC, idD)
createNannouce(idC, idD)
for each induced sub-graph isomorphism i: Lredirect(idC,idNewC)

i−→ G
apply graph rewriting rule redirect(idC, idNewC) w.r.t. i
update the functional layer

apply graph rewriting rule destroy(idC)
update the functional layer

16 C. Eichler et al.

With createNannounce(idC, idD) being the process first creating a new container on
the device identified by idD. Then, each registration and announcement required prior
to the redirection of applications using idC are conducted.

createNannounce(idC, idD)
apply graph rewriting rule p4 with id1 fixed to idD
update the functional layer
idNewC ← id2, the id of the new container
for each induced sub-graph isomorphism i: LregisterD(idC,idNewC)

i−→ G
apply graph rewriting rule registerD(idC, idNewC) w.r.t. i
update the functional layer

for each induced sub-graph isomorphism i: LannounceC(idC,idNewC)
i−→ G

apply graph rewriting rule announceC(idC, idNewC) w.r.t. i
update the functional layer

where redirect(idC,idNewC), destroy(idc),registerD(idC,idNewC) and announceC(idC,
idNewC) are described in Figure 4. Note that the uniqueness of the induced sub-graph
isomorphism, with regard to which p4, p6, duplicate(idC, idNewC) and destroy(idC) are
applied, is ensured by the uniqueness of the identifier of the container.

The case where ‘there is less than x% of battery left on a device d’, may lead to
the loss of data in the containers deployed on the device d whenever it will shut down
due to an empty battery. In order to prevent this loss, each container deployed on d
is moved elsewhere. The targets of these migrations impact the configuration quality
and should therefore be chosen carefully. To ensure service continuity, each application
that reads and/ or writes on a migrated container is redirected to the corresponding
container. These steps are conducted by the process backup(idD).

backup(idD)
for each induced sub-graph isomorphism i: G’(idD) i−→ G

idC ← the identifier of the container associated with id through i.
idTargD ← findSuitableDevice(idC)
migrate(idC, idTargD)

With G’ being nothing more than a container deployed on device, or Rp4 .
The function findSuitableDevice(idC) returns the identifier of the device on which a
container c̃ should be deployed in order to replace or reinforce the container c identified
by idC.

Intrinsically, the faster the container usage, the better. Consequently, the most
suitable location for a container is considered to be the one minimising the sum
of the transmission delays from each user (i.e., applications using the container). In
the present case, future users are applications using c, since they will eventually use
c̃ instead. Furthermore, an application can use a container only if their respective
locations are announced to each other. Consequently, there should be an edge
between the each device where an application using c is deployed and the target of the
migration.

Self-management of machine-to-machine communications 17

Figure 4 Rules intervening in migrate(idC, idD), (a) redirect(idC, idNewC): redirection of an
input and/or output of an application (b) registerD(idC,idNewC): registration of a
device on which an application to be redirected is deployed (c) [destroy(idc):
suppression of the original container (d) announceC(idC, idNewC): announcement
of the new container

(a) (b) (c)

(d)

In real-life system, it is highly probable that the appropriate device is currently
running an application using c, since they nullify a term of the sum to be minimised.
Accordingly, the potential targeted devices are restricted to the ones on which an
application using c is deployed (except the one where c is deployed) plus the network.
Considering this last ensures that at least one location can be seen from any other. This
set can be constructed by looking for induced sub-graph isomorphisms from Rp8 to G.
It is supposed to be known and noted potential(idC), while potential id(idC) qualifies
its set of identifiers.

findSuitableDevice(idC)
searchGraph ← the sub-graph of G induced by potential(idC)
for each i ∈ potential id(idC)

if ∀ id ∈ potential id\{i}, (i,id) ∈ EsearchGraph

sumFrom(i) ←
∑

id∈potential id\{i} (AsearchGraph)2(i,id)
else sumFrom(i) ← ∞

idD ← id such as sumFrom(id) = mini∈potential id sumFrom(i)
if sumFrom(idD) ̸=∞ return idD
else return idNetwork

18 C. Eichler et al.

5 Smart metering use case

Throughout this section, smart metering systems are used to illustrate and evaluate
the application of the described approach to a real-life use case. An advanced
metering infrastructure (AMI) contains numerous heterogeneous machines (e.g., meters,
sensors, actuators, gateways, processors, smart phones). They are interconnected
and cooperate to achieve clearly defined objectives such as house and cities monitoring
and billing.

Figure 5 Network resource tree

5.1 Example

In the present scenario, we consider the reconfiguration of an AMI monitoring a house.
The initial and final graphs modelling the application is represented in Figure 6. The
network resources tree, a representative part of the functional layer, is illustrated in
Figure 5. To clarify the figures, vertex attributes are implicit while "created" and
"announced" have been shortened to "c" and "a". The house is equipped with the
following devices: a microcontroller connecting temperature sensors, a gateway, a smart

Self-management of machine-to-machine communications 19

phone, and a smart meter recording the electric consumption of the house. These devices
are connected to the network.

Figure 6 The formal layer: an instance of the graph grammar depicting the state
of the system

Initially, the gateway is dedicated to ‘electricity’ and ‘temperature’ containers due to
its high storage capacity. The temperature sensors and the metering application write
on the ‘temperature’ container and the ‘electricity’ one, respectively. The monitoring
application is deployed on the smart phone and reads data from the ‘electricity’
container.

To illustrate self-management policies, let’s assume that the gateway has a low
battery and will soon breakdown. In order to prevent potential data loss, its containers
will be migrated using backup(idGateway). The formal layer will receive an http request
from the functional one (where the monitoring takes place) with the format PUT(backup,
idGateway). According to the policy, migrate(findSuitableDevice) will be applied to
‘electricity’ and ‘temperature’ containers. Firstly, the migration targets are chosen. This
is conducted by finding the device visible from any device on which an application
using the container is deployed and minimising the sum of transmission delays. The
‘temperature’ container is used by two applications executed on the microcontroller,
namely temperature sensor 1 and 2. This container should thus be migrated to the
microcontroller. This enables past temperature measurements not to be lost, and future
to still be backed up. The ‘electricity’ container, however, is used by the meter and
monitoring applications which are located on two distinct devices. The two devices are
not registered to one another so that the container may not be deployed on either of
them. Consequently, the Network is chosen as the migration target.

20 C. Eichler et al.

The container migrations take place using migrate(idTemperatureContainer,
idMicrocontroller) and migrate(idElecrticityContainer, idNetwork). Two containers,
newTemperatureContainer and newElectricityContainer, copies of the previous ones
are created on the chosen devices (i.e., the microcontroller and the network,
or more precisely a server in the network). No registration is necessary, but
newElectricityContainer is announced to the smart meter and the smartphone according
to announce. Applications are then redirected, and old containers removed.

5.2 Evaluation results

The objective of this section is to prove the feasibility and study the scalability
of the proposed approach. To implement the transformations rules intervening in
the reconfigurations policies, we used the graph matching and transformation engine
(GMTE, http://homepages.laas.fr/khalil/GMTE/).

The scenario described in the previous sub-section has been conducting with various
number of applications and containers. We started by the configuration described above
deploying two containers on the gateway and four applications. To evaluate scalability,
the number of applications using containers has been increased from 4 to 50. We
considered two, three, and four containers deployed on the gateway. To experiment
the dynamic reconfiguration approach, we simulate the worst case of the gateway
breakdown. Containers are migrated to suitable locations and corresponding applications
are reconfigured to read/write from the new containers locations. The experimental
performance evaluation focuses on the execution time. The results, shown in Table 1,
demonstrate that the execution time to handle dynamic reconfiguration is in the order
of seconds. These results remain acceptable in particular if we consider that

1 the case where 50 applications simultaneously use containers deployed on a
unique gateway is very infrequent

2 the execution time comprises decision making optimising the resulting
configuration, reconfiguration itself , and the guarantee that the result is an
instance of the style (i.e., that it is correct) and that no rollback will be required

3 since concurrency was not investigated in the present work, the process is
conducted on a single thread, even though every containers could be treated
simultaneously.

Table 1 Experimentation results

Containers Applications Execution time (ms)

Execution 1 2 4 850
Execution 2 3 10 1,531
Execution 3 3 50 12,655

6 Conclusions

This paper first underlines limitations of the currently available models of M2M
systems. The ETSI is the only standardisation institute that provides a global end-to-end

Self-management of machine-to-machine communications 21

view of M2M architectures. However, system adaptations are not addressed, even
though M2M systems generally operate in highly evolving environments. To enable
system management while still benefiting from functional advantages of the ETSI M2M
standard, a multi-model approach is elaborated in this paper. A graph-based formalism
allowing the definition of consistency-preserving reconfigurations has been targeted as
a second model. More precisely, we formally characterised M2M systems by a graph
grammar. Considering a bi-layered approach brings the issue of inter-layer coherency.
Since the system is dynamic, layers have to evolve to fit its current state. Besides,
evolutions can originate from both layers, since discovery and reconfigurations are
conducted respectively in the functional and formal one. Consequently, we defined
bi-directional communications. These lasts trigger actions updating a layer, such as both
representations evolve in a consistent fashion.

Additionally, the appropriateness of the proposed framework is shown by defining
high-level self-management policies. Noticeably, we elaborated scenarios related to
M2M issues and procedures to cope with new requirements and/or prevent failures.
Applicability of the approach is demonstrated through a smart-metering use case. In
particular, we conducted a procedure preventing data loss comporting optimisation
concerns. Implementation of this scenario also served as a basis for the approach
evaluation.

Since we demonstrated the approach applicability, outlooks are twofold: application
extension and further optimisation. Firstly, we plan on pursuing our implementations
efforts to furnish an autonomic framework handling as many events as possible. Second,
while considering reconfiguration policies in reaction of events, we supposed that events
are independent and occurring in sequence. To improve the scalability and performance,
we are considering the use of concurrency and priority within events and reactions plans.
In particular, we should grant the possibility to modify an ongoing reconfiguration in
reaction to an event.

Acknowledgements

The work presented in this paper has been partially funded by the ANR in the context
of the project SOP, ANR-11-INFR-001.

References
Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J. and Sifakis, J. (2010) ‘Automated

conflict-free distributed implementation of component-based models’, International
Symposium on Industrial Embedded Systems (SIES), pp.108–117.

Bradbury, J.S., Cordy, J.R., Dingel, J. and Werlinger, M. (2004) ‘A survey of self-management
in dynamic software architecture specifications’, Proceedings of the 1st ACM SIGSOFT
Workshop on Self-managed System (WOSS), pp.28–33, ACM, New York, USA.

Bruni, R., Bucchiarone, A., Gnesi, S., Hirsch, D. and Lafuente, A.L. (2008) ‘Graph based design
and analysis of dynamic software architectures’, in: P. Degano, R. Nicola, and J. Meseguer
(Eds.): Concurrency, Graphs and Models, Vol. 5065 of Lecture Notes in Computer Science,
pp.37–56, Springer, Berlin/Heidelberg.

Chomsky, N. (1956) ‘Three models for the description of language, information theory’, in IEEE
Transactions on, Vol. 2, No. 3, pp.113–124.

22 C. Eichler et al.

Ehrig, H. (1987) ‘Tutorial introduction to the algebraic approach of graph grammars’,
in H. Ehrig, M. Nagl, G. Rozenberg and A. Rosenfeld (Eds.): Graph-Grammars and Their
Application to Computer Science, Vol. 291 of Lecture Notes in Computer Science, pp.1–14,
Springer, Berlin/Heidelberg.

ESNA: Energy Services Network Association [online] http://www.esna.org/.
ETSI FA TR: ETSI Functional Architecture Technical Report [online]

http://www.etsi.org/deliver/etsi ts/102600 102699/102690/01.01.01 60/
ts 102690v010101p.pdf.

ETSI TR: ETSI Technical Reports [online] http://www.etsi.org/
technologies-clusters/technologies/m2m.

ETSI: European Telecommunications Standards Institute [online]
http://www.etsi.org/Website/Technologies/M2M.aspx.

GMTE: Graph Matching and Transformation Engine [online]
http://homepages.laas.fr/khalil/GMTE/.

Hirsch, D., Inverardi, P. and Montanari, U. (1999) ‘Modeling software architectures and styles
with graph grammars and constraint solving’, in P. Donohoe (Ed.): Software Architecture
(TC2 1st Working IFIP Conf. on Software Architecture (WICSA1), pp.127–143, Kluwer,
San Antonio, Texas, USA.

IPSO: IP-for the Connection of Smart Objects [online] http://www.ipso-alliance.org/.
Le Metayer, D. (1998) ‘Describing software architecture styles using graph grammars’,

IEEE Trans. Softw. Eng., Vol. 24, No. 7, pp.521–533.
Loulou, I., Kacem, A.H., Jmaiel, M. and Drira, K. (2004) ‘Towards a unified graph-based

framework for dynamic component-based architectures description in z’, Proceedings of the
ICPS Internal Conference on Pervasive Services, pp.227–234.

OMG, UML (2005) Object Management Group, Unified Modelling Language Specification 2.0:
Superstructure, OMG doc. formal/05-07-04.

Pandey, S., Mup, M-S., C, M-H. and Hong, J.W. (2011) ‘Towards management of machine
to machine networks’, in Network operations and Management Symposium (APNOMS),
13th Asia-Pacific, pp.1–7.

Roh, S., Kim, K. and Jeon, T. (2004) ‘Architecture modelling language based on uml2.0’,
Proceedings of the 11th Asia-Pacific Software Engineering Conference, APSEC ‘04,
pp.663–669, IEEE Computer Society, Washington, DC, USA.

Rozenberg, G. (Ed.) (1997) Handbook of Graph Grammars and Computing by Graph
Transformations, Foundations, World Scientific, Singapore, Vol. 1.

Selonen, P. and Xu, J. (2003) ‘Validating UML models against architectural profiles’, SIGSOFT
Softw. Eng. Notes, Vol. 28, pp.58–67.

Sharrock, R., Monteil, T., Stolf, P., Hagimont, D. and Broto, L. (2008) ‘Non-intrusive autonomic
approach with self-management policies applied to legacy infrastructures for performance
improvements’, in IJARAS, Vol. 2, No. 1, pp.58–76.

TIA: Telecommunications Industry Association [online] http://tiaonline.org/standards.
Wermelinger, M. and Fiadeiro, J.L. (2002) ‘A graph transformation approach to software

architecture reconfiguration’, Science of Computer Programming, Vol. 44, No. 2,
pp.133–155.

