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Abstract- This article describes some work in the domain of 
application execution time prediction, which is always 
necessary for schedulers. We define a hybrid method of time 
prediction that is both profile-based and historic-based. This 
prediction is achieved by combining a program structure 
analysis with an instance-based learning method. We 
demonstrate that taking account of an application's profile 
improves predictions compared with classical historic-based 
prediction methods. 
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I. INTRODUCTION 

Much research has been conducted into the prediction of 
application execution times to determine how to connect 
this execution time them with it their launching contexts 
(application input, platform performance, etc.). The ultimate 
aim, therefore, is to estimate the execution time of an 
application before it starts. In the field of real-time 
computing, the usefulness of such data is crucial for the 
proper functioning of the systems, whether critical or not [1]. 
Indeed, real-time applications are subject to time constraints 
and should be strictly observed deadlines for hard real-time 
systems, or at best for soft real-time systems. In all cases, 
knowledge of the execution time of applications is 
necessary for real-time schedulers to manage the execution 
order of applications submitted to them using the WCET 
(Worst-Case Execution Time) [2],[3],[4]. Scheduling 
mechanisms applied to the fields of clusters and grids also 
require an estimation of the duration of applications to map 
[5],[6],[7]. 

In this article, we focus on regular parallel programs. We 
propose a hybrid method not to estimate the WCET but to 
predict execution time depends on specific inputs. This 
method combines several approaches: 

• Analysis of history of past executions 

• Statistical analysis of the parameters and input files of 
the program 

• An annotation of source code 

II. RELATED WORK 

WCET estimation can be done with two main techniques 
[8]: 

• The prediction based on a history of past executions 

(historic-based prediction): this technique is used to 
predict the time of sequential or parallel applications, in 
order to schedule them in a cluster or grid computing. 

• The prediction based on the profile of applications  
(profile-based prediction): this type of analysis is 
commonly used in real time to determine the execution 
time of an application in the worst case. 

A. Dynamic method for WCET 

In this method, the program execution time is measured 
either on a real system or using a simulator. The application 
is well executed on the target hardware, and a measure of its 
execution time is performed [9]. Where such execution is 
impossible, a software simulator can be used to simulate the 
system hardware. 

All methods used to measure the WCET need a set of 
inputs to run the program and the main difficulty on 
dynamic methods is to choose a set of inputs in accordance 
with the execution time duration. To do this, it is possible to 
use explicit test sets or symbolic test sets. 

B. Static method for WCET 

Static analysis analyse the structure of the program from 
its source code or object code, in order to deduce its WCET 
[1]. It involves three steps: 

1. Flow analysis: this phase determines all possible 
execution paths in the program. 

2. The low-level analysis: this allows assessment of the 
impact of the hardware architecture on the WCET. 

3. The calculation of the WCET: this value is 
determined from the results of the two previous phases. 

The flow analysis determines all possible execution 
paths of a program. For this, the first step is to cut the code 
of this program into basic blocks. 

A basic block is a maximum sequence of instructions 
with a single entry point and one, and only one exit point in 
the flood control program. A basic block contains simple 
instruction which exclude the branch instruction (control 
structures, function calls, etc)  [10]. 

A control flow graph can then be used to display all 
possible sequences between different basic blocks. In the 
general, the flow analysis is not a solvable problem [10]. 
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Under certain conditions with additional information 
[11],[12],[13],[14],[15], we can bound the number of 
possible execution paths and find or improve the WCET. 

The phase of low-level analysis estimates the maximum 
execution time of each block based on a given hardware 
architecture. This analysis, done from the object code, is 
mainly dependent on the accuracy of hardware models used. 
Hardware systems include mechanisms to accelerate the 
execution time of programs, such as pipelines 
[16],[17],[18],[19], units of branch prediction [20],[21], 
multiple execution units or caches [16],[17],[22],[23],[24]. 

The estimated WCET is computed by using the flow 
analysis and low-level methods that both use the basic block 
graph to calculate the worst way [17],[25],[26]. The most 
common method (Implicit Path Enumeration Technique) 
[27],[28] transforms the control flow graph into a set of 
constraints to be respected. This allows the problem to be 
reduced to a linear optimization of integer variables 
[10],[29]. 

C. Historic method for WCET 

In this approach, the estimated execution time of an 
application is made according to the execution time of that 
application obtained in the past. It is considered that the 
execution time of an application depends on the context in 
which it is launched: two executions with neighbours 
context produce relatively close neighbours execution 
[30],[31],[32][7]. The problem then is to define and quantify 
the notion of proximity. Different approaches exist: 

• The categorical approach is to classify applications 
according to various criteria using a template 
containing information about the type of application 
(batch or interactive, sequential or parallel), the queue 
submission used, the user, the executable, the 
arguments, the number of nodes, etc. Then, an average 
time is computed in each category in order to be used 
for the next prediction. 

• The learning approach [33],[34] selects applications 
with the behaviour closest to those previously executed, 
and uses them to make the next prediction. This is done 
using a distance [35] dependent on the characteristics of 
the application. In our approach we use a Euclidean 
distance. When a similar set of applications was chosen, 
we used their previous execution time to predict the 
time of the new application by different methods: e.g. 
model of nearest neighbors [36], weighted local 
polynomial regression [36],[37], weighted average 
[36],[38],[7] (we will use this one in our approach). 

III. ANALYSIS OF PAST EXECUTION TIME 

A. Principle 

We define the notion of the extended basic block as a set 
of basic instructions executed in a single function and 
initialized the same number of times, regardless of the 
inputs applied to the program [39]. The number of 
executions can vary from one run to another depending on 
the inputs applied to the program. The extended basic 

blocks are a set of basic blocks defined in the state of the art. 
This reduces the complexity without decreasing the 
accuracy. 

The execution time of an extended basic block will be 
considered constant, i.e. independent of the context of the 
program. This assumption excludes consideration of the 
mechanisms present in modern processors, such as caches. 

In addition, the execution time of extended basic blocks 
is independent of the inputs applied to the program, which is 
due to the lack of branch instruction (including conditional) 
within extended basic blocks. 

The following equation can be used to evaluate the 
execution time of an application TApp(E): 

 
•  the set of program functions, 
•  the number of executions of the function f, 

depending on inputs E, 
•  the execution time of the function f, depending on 

inputs E. 
 

The execution time of a function can be expressed: 

 
•  the set of extended basic blocks of the function f, 
•  the number of executions of basic block b 

extended, depending on the inputs, 
• the execution time of the extended basic block b, 

considered as constant. 
The execution time of an application can be easily 

expressed as follows: 

      (1) 
with  the set of the extended basic blocks of the 

program:  

 
The tools gprof (profiler) and gcov (coverage testing) 

provided by GNU allow us to know respectively  and . 
The execution time of extended basic blocks is the solution 
of a system of linear equations. Each execution of the 
program for different input values adds an equation to the 
system of linear equations. For X executions, we have X 
linear equations and  unknowns.  

B. Experiments 

We use a C code to calculate the power p of a matrix of 
dimension d. This program runs on different processor 
architectures and operating systems. 

1)  Reproducibility of execution:  

An important aspect that should be checked for 
consistency of time obtained is the reproducibility of 
experiments. Indeed, it is essential that two distinct runs of 
the program for identical inputs produce similar execution 
times. We chose to run the program 100 times for each set 
of entries tested. In Figure 1(a) we see the regular increase 
of execution time depending on the power and dimension of 
the matrix. 
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(a) Execution time depending on parameters 
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(b) Variation of standard deviation 

Fig. 1 Reproducibility of experiments 
 

It is thus possible to observe on curve 1(b) that the 
standard deviation of the execution time varies between 0 
and 10%, the average of the relative standard deviation 
being 3.45%. Moreover this standard deviation tends to be 
higher for short executions of the program. The low value of 
standard deviation obtained for long programs gives 
confidence in the reproducibility of the experiments. 

2)  Impact of gcov and gprof 
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Fig. 2 Relative difference between the execution time with and without 

profiling for Intel Xeon 

These tools have a slight impact on the execution time of 
an application. Figure 2 shows that, regardless of the 
duration of the application (on the scale of seconds or 
several minutes), the relative difference between the 
execution time with or without profiling is the same order of 
magnitude. On average, the difference is 4.09%. It may be 

noted, however, that the variation is dependent on the 
processor architecture. 

3)  Solving system 

We assume that the system has enough equations to be 
solved ( ). The system is potentially over-
determined. Let  be the set of input vectors eligible for 
program. For each execution, there is , with , the 
inputs used in the executions. A system of equations is 
obtained: 

   (2) 
It is expressed thus: 

                (3) 
The relations 2 and 3 show the following relations: 

, 

,  
The resolution of the system leads directly to results of 

poor quality due to the ill-conditioned nature of the system 
to be solved, so we reformulate the problem by introducing 
an error and moving to an iterative solution. This was 
validated on pilot matrix multiplication program by running 
the program and really testing the prediction based on 
previous executions (Figure 3). 
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Fig. 3 Comparison of execution time and estimated time of actual 

execution of the program 

IV. CORRELATION BETWEEN EXECUTION TIME AND INPUTS 

A. Estimation of the number of execution of the extended 
basic blocks 

Now, the next step is to estimate the number of 
executions  of each extended basic block based on 
the input of the program contained in a database of previous 
versions (also called experiments) and the instance of the 
application, which is needed in order to predict the 
execution time. The model defined below is used to select, 
from the knowledge base, a set of experiments similar to the 
query, and then combine them in order to estimate the 
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number of executions of basic blocks of a program for a 
given input vector. 

Each experiment is associated with a vector input , 
with : 

 
where NV is the number of values that form the inputs of 

the program. To measure the distance of two execution 
contexts, the Euclidean distance is used [35]. Let two input 
vectors E(1) and E(2) of the program, be expressed as follows: 

 
where d(Ev

(1),Ev
(2)) is the distance between two input 

values defined using a heterogeneous distance d(Ev
(1),Ev

(2)): 

 
The estimated number of occurrences of extended basic 

blocks lying in the path of execution for a vector input is 
achieved through a weighted average of the values 
contained in the knowledge base. The weighting will be 
based on the distance between the experiences of the 
application, in order to promote the influence of the closest 
experience of the application [7],[33]. If E* are the vector 
entries for the query, the number of executions of each 
extended basic blocks b in the program can be estimated as 
follows:  

 
Where  is a set of input vectors corresponding to the 

selected experiences in the knowledge base. The weighting 
function chosen is the Gaussian function: 

 
k is a constant for varying the width of the Gaussian. 

This constant can be adapted to the density of experience in 
the region containing the query. 

To validate the approach, a particle-filtering program 
parallelized with MPI was used [40]. It is built on a master / 
slave model. Figure 4 shows a comparison between the 
actual number of executions of extended basic blocks of the 
program for a set of inputs and that estimated by the 
prediction model defined. The two curves have the same 
shape. Thus, the prediction model is able to identify blocks 
in which the number of executions is varying, depending on 
the inputs, as well as to estimate the effects of input values 
of these variations. The mean relative error, found on the 
prediction of all blocks, amounted to 8.8% for the set of 
inputs considered. 

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 x 108

Extended basic Blocs of the program

N
um

be
r o

f e
xe

cu
tio

ns
 o

f e
ac

h 
ex

te
nd

ed
 b

as
ic

 b
lo

c

 

 

Real Number of execution of blocs
Estimated number of execution

 
Fig. 4 comparing the real and predicted number of executions of 

extended basic blocks 

B. Influence of the base of knowledge 

Next, we want to determine the influence that the 
knowledge base can have on the estimation accuracy, 
focusing more precisely on the influence of the number 
experimentations it contains. The experiments described 
also allow us to study the relationship between the 
coefficient k and the degree of filling of the knowledge base. 
For this, the above experiment is repeated. Several sets of 
estimates will be made, using for each 500 requests. Each 
set of estimates is performed several times, varying the 
number of experiments in the database of knowledge on the 
one hand, and the coefficient k to adjust the width of the 
Gaussian function weighting of other part.  

Figure 5 represents the overall relative error found for 
each set of queries based on the number of experiments in 
the present knowledge base and the coefficient k. This curve 
highlights a steady increase in the observed error, which 
may be 0 if the parameters tested are well adjusted, but can 
also exceed 200% if this is not the case. It thus appears that 
the accuracy of the model depends strongly on the choice 
set of these parameters. 
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Fig. 5 Relative error in each set of 500 queries with the number of 

experiments in the database and the coefficient k 

To investigate more thoroughly the influence of the 
degree of filling of the knowledge base and that of the 
coefficient k, we make two cuts (Figure 6) of the three-
dimensional view of Figure 5. 
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(a) Error predictions based on the coefficient k (500 experiments 

found in the knowledge base) 

50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of experiments in the database

R
el

at
iv

e 
er

ro
r o

n 
pr

ed
ic

tio
ns

 

(b) Error predictions based on the number of experiments in the 
database of knowledge (k=0.02) 

Fig. 6 Cuts of 3D view 

For a knowledge base with enough experience, a too 
high value of the coefficient k implies a significant error in 
predictions (Figure 6(a)), due to the disruption of the 
prediction by experimental noise. In practice values of k 
between 0.01 and 0.1 offer good results (cf. Figure 7). 

In addition, the curve 6(b) shows that the accuracy of the 
prediction of behaviour is essentially dependent on the 
knowledge base. A large number of experiments provide 
increased accuracy, while the probability of finding one or 
more experiments similar to the query is higher. 
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Fig. 7 Field values of k with an accuracy of each set of 
correct queries 

However, the lack of experience can be compensated, to 
some extent, by increasing the coefficient k, in order to 
expand the number of experiments included in the 
prediction process. Indeed, Figure 8 shows that for low 
values of k, the curve has a shape of a hollow: the error 
decreases first, before increasing when the value k increases. 
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(a) Error predictions based on the coefficient k and the number of 

experiments in the database  
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(b) Error predictions based on the coefficient k (75 experiments in 
the knowledge base) 

Fig. 8 Representation of low error obtained 

 

V. ANNOTATION OF CODE SOURCE 

The previous formulation assumes that all input values 
of the program have a similar influence on the number of 
executions of each extended basic block of the program. 
This hypothesis is strong. One way to better take into 
account the impact of each entry is to add a factor 
accounting for this:  wv,b, in calculating the distance to the 
input v and the block b: 

 

 
The choice of values :  wv,b depends entirely on the 

program structure. Thus, the person most able to make such 
a choice is undoubtedly the application developer. 

The annotations are a flexible and easy way to allow the 
programmer to learn these values. They must meet the 
following characteristics: 



Full Journal Name                                                                                                Month (abbreviated) Year, Vol. * Iss. *, PP. *-* 

6 

• They allow the user to give the dependence of the 
number of execution blocks depending on the inputs of 
the program, 

• They require no knowledge of the mathematical model 
for predicting the behaviour of applications, 

• They can be inserted directly into the source code of the 
program, 

• They do not block compilation or execution in the 
proper functioning of the application. 

We have chosen as part of C, the use of directives 
#pragma that are ignored by the compiler. Similar 
concepts exist in most of programming language.  The 
following syntax is used: 

#pragma etp annotation (parameters) 

where: 

• etp means execution time prediction. This keyword 
characterizes the set of annotations that we create, so 
they are immediately identifiable by the tool in place to 
interpret them. 

• annotation designates the type of annotations. 
There are four different types of annotations, described 
below. 

• (parameters) is a list of optional parameters, 
separated by commas and enclosed in parentheses. 

Four types of annotations are defined: 

• Annotations type “inputs”: This type of annotation 
defines the inputs considered in the prediction of 
execution time. Such annotations can be inserted at the 
beginning of the source code alongside the traditional 
guidelines #define. 

• Annotations type “begin dependency”: This type of 
annotation starts a sequence of instructions whose 
execution depends on number of entries in the program. 
The list of these entries, as defined by Directive “input”, 
is specified parameters. 

• Annotations type “begin independency”: This type of 
annotation starts a sequence of instructions on which 
the number of executions depend in any input of the 
program. 

• Annotations type “end”: This type of annotations 
closes any sequence of instructions, thus following the 
annotation types “begin dependency” or “begin 
independency”. 

The annotation allows also to improve the sensibility of 
communication part. Communication block can be enclosed 
with the specific parameters that characterises the amount of 
data exchanged. In MPI communication most of the time, 
arrays are exchanged. So the time of communication could 
be connected to the amount of data send or received. 

For example, the following can be added to the program 
of particle filtering, in order to define the three inputs 
considered: 

#pragma etp inputs (particles, 
time_intervals, slave_tasks) 
#pragma etp begin dependency (particles) 
for (int i=0 ; i<particles ; i++) { 

 instructions_1; 
#pragma etp begin dependency 
(time_intervals) 

for (int j = 0 ; j < time_intervals ; j++) {  
instructions_2; 

 }  
#pragma etp end 

instructions_3; 
} 
#pragma etp end 

 

Thus, the instruction blocks 1 and 3 depend only on the 
number of particles, while the statement block 2 depends on 
both the number of particles and the number of time 
intervals. 

The same experiments as above were performed and the 
prediction error with or without annotation is compared in 
Figure 9, which shows the significant improvement in 
prediction using annotations. 
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Fig. 9 Comparison of errors obtained with and without annotations 

 

VI. FULL MODEL OF PREDICTION 

With profiled applications, the execution time of each 
basic block of the program is determined based on the 
iterative resolution of the equations system formed by the 
data from experiments in the present knowledge base. This 
phase of learning and estimation can be done in the 
background and stop when the times of extended basic 
blocks are stable (Figure 10). Then, when the execution of 
an application is submitted to a scheduler a pre-processing 
task are carried out: 

• Query the database and get the time of basic blocks  

• Estimate the characteristics of a selected set of 
applications according to their proximity to the 
application in the database 

• Deduce the prediction of execution time that can be 
used by the scheduler to refine the mapping. 

The pre-processing time needed to predict execution 
time depends mainly on the size of the database, the number 
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of inputs and the number of extended basic blocks. In our 
experiments, this time (a few seconds) is neglected 
compared to a submission time of the grid scheduler.  
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Fig. 10 Implementation of the hybrid approach for predicting 

execution time 

VII. FULL MODEL OF PREDICTION 

This paper proposes a method to predict performance of 
regular applications running in parallel. The difficult 
problem of communication time is hidden within the 
extended basic block and annotations principle. This is 
possible only if the network is not overloaded and the 
synchronisation between the different tasks of the parallel 
application stays similar. 

The hybrid approach for predicting execution time is 
based on two prediction methods: 

• A method using a history of past performances and 
based on a learning-based capabilities, 

• A method based on the profile of applications, as it can 
be applied in determining the WCET of real-time 
applications. 

This approach requires two types of program 
information: 

• Temporal information, that is to say, the execution time 
of each extended basic block. This information can be 
obtained from solving a system of linear equations 
obtained from a set of executions of the program. This 
system is poorly conditioned, so we have adapted a 
classical numerical method to solve this system of 
equations by successive iterations. 

• Behavioural information, that is to say the number of 
executions of each basic block. We have shown how 
the estimate can be done from a history of past 
executions, by implementing a learning approach based 
on the proceedings. In addition, we also defined a 
system of annotations of the program source code to 
improve this estimate. 

 The complete model for prediction using the hybrid 
approach has been tested and shows satisfactory results for 
the different set of parallel applications. Indeed, the hybrid 
approach allows us to take into account the structure of the 

program. The result is a more detailed prediction as shown 
on Figure 9 since it is possible to identify portions of the 
program that have a large execution time and link them 
directly to a set of inputs of the program. This method has 
been also used to predict the execution time of 
electromagnetic simulation [41] to improve the utilisation of 
data center with autonomous policies [42]. In this case, the 
MPI application follows another scheme of communication 
based on Simple Program Multiple Data architecture and 
communication with its neighbours only. 

Further improvements of this method are possible: 

• Instrumentation of object code would no longer be 
estimated by calculating the execution time of basic 
blocks, but by measuring them directly. The method 
would then gain accuracy. 

• An analysis of the data flow of the program could be 
used to infer some annotations automatically. So even if 
all the dependencies of basic blocks with the entries 
could not be deducted automatically, the task of the 
programmer would still be simplified. 

• It may also be worth considering creating analytical 
models of parallel applications to improve the 
prediction. These models describe the structure of 
applications. A model corresponding to a family of 
applications, such as master / slave applications will 
allow the consideration of common features with 
known effects on the execution time. 

• The comparison with other methods coming from the 
real-time domain is difficult because they are more 
interested to have very good WCET in sequential 
program than estimation in parallel application. 
Nevertheless, benchmark of high number of parallel 
applications will allow improving the method. 
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