
HAL Id: hal-01228236
https://hal.science/hal-01228236

Submitted on 12 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coupling profile and historical methods to predict
execution time of parallel applications

Thierry Monteil

To cite this version:
Thierry Monteil. Coupling profile and historical methods to predict execution time of parallel appli-
cations . Parallel and Cloud Computing, 2013, 2 (3), pp.81-89. �hal-01228236�

https://hal.science/hal-01228236
https://hal.archives-ouvertes.fr

Full Journal Name Month (abbreviated) Year, Vol. * Iss. *, PP. *-*

1

Coupling profile and historical methods to predict
execution time of parallel applications

Thierry Monteil

CNRS, LAAS, 7, avenue du Colonel Roche, F-31400 Toulouse, France
Univ. de Toulouse, INSA, LAAS, F-31400 Toulouse, France

monteil@laas.fr

Abstract- This article describes some work in the domain of
application execution time prediction, which is always
necessary for schedulers. We define a hybrid method of time
prediction that is both profile-based and historic-based. This
prediction is achieved by combining a program structure
analysis with an instance-based learning method. We
demonstrate that taking account of an application's profile
improves predictions compared with classical historic-based
prediction methods.

Keywords- Performance prediction; Execution time;
Program analysis; Historic model; Parallel application

I. INTRODUCTION

Much research has been conducted into the prediction of
application execution times to determine how to connect
this execution time them with it their launching contexts
(application input, platform performance, etc.). The ultimate
aim, therefore, is to estimate the execution time of an
application before it starts. In the field of real-time
computing, the usefulness of such data is crucial for the
proper functioning of the systems, whether critical or not [1].
Indeed, real-time applications are subject to time constraints
and should be strictly observed deadlines for hard real-time
systems, or at best for soft real-time systems. In all cases,
knowledge of the execution time of applications is
necessary for real-time schedulers to manage the execution
order of applications submitted to them using the WCET
(Worst-Case Execution Time) [2],[3],[4]. Scheduling
mechanisms applied to the fields of clusters and grids also
require an estimation of the duration of applications to map
[5],[6],[7].

In this article, we focus on regular parallel programs. We
propose a hybrid method not to estimate the WCET but to
predict execution time depends on specific inputs. This
method combines several approaches:

• Analysis of history of past executions

• Statistical analysis of the parameters and input files of
the program

• An annotation of source code

II. RELATED WORK

WCET estimation can be done with two main techniques
[8]:

• The prediction based on a history of past executions

(historic-based prediction): this technique is used to
predict the time of sequential or parallel applications, in
order to schedule them in a cluster or grid computing.

• The prediction based on the profile of applications
(profile-based prediction): this type of analysis is
commonly used in real time to determine the execution
time of an application in the worst case.

A. Dynamic method for WCET

In this method, the program execution time is measured
either on a real system or using a simulator. The application
is well executed on the target hardware, and a measure of its
execution time is performed [9]. Where such execution is
impossible, a software simulator can be used to simulate the
system hardware.

All methods used to measure the WCET need a set of
inputs to run the program and the main difficulty on
dynamic methods is to choose a set of inputs in accordance
with the execution time duration. To do this, it is possible to
use explicit test sets or symbolic test sets.

B. Static method for WCET

Static analysis analyse the structure of the program from
its source code or object code, in order to deduce its WCET
[1]. It involves three steps:

1. Flow analysis: this phase determines all possible
execution paths in the program.

2. The low-level analysis: this allows assessment of the
impact of the hardware architecture on the WCET.

3. The calculation of the WCET: this value is
determined from the results of the two previous phases.

The flow analysis determines all possible execution
paths of a program. For this, the first step is to cut the code
of this program into basic blocks.

A basic block is a maximum sequence of instructions
with a single entry point and one, and only one exit point in
the flood control program. A basic block contains simple
instruction which exclude the branch instruction (control
structures, function calls, etc) [10].

A control flow graph can then be used to display all
possible sequences between different basic blocks. In the
general, the flow analysis is not a solvable problem [10].

Full Journal Name Month (abbreviated) Year, Vol. * Iss. *, PP. *-*

2

Under certain conditions with additional information
[11],[12],[13],[14],[15], we can bound the number of
possible execution paths and find or improve the WCET.

The phase of low-level analysis estimates the maximum
execution time of each block based on a given hardware
architecture. This analysis, done from the object code, is
mainly dependent on the accuracy of hardware models used.
Hardware systems include mechanisms to accelerate the
execution time of programs, such as pipelines
[16],[17],[18],[19], units of branch prediction [20],[21],
multiple execution units or caches [16],[17],[22],[23],[24].

The estimated WCET is computed by using the flow
analysis and low-level methods that both use the basic block
graph to calculate the worst way [17],[25],[26]. The most
common method (Implicit Path Enumeration Technique)
[27],[28] transforms the control flow graph into a set of
constraints to be respected. This allows the problem to be
reduced to a linear optimization of integer variables
[10],[29].

C. Historic method for WCET

In this approach, the estimated execution time of an
application is made according to the execution time of that
application obtained in the past. It is considered that the
execution time of an application depends on the context in
which it is launched: two executions with neighbours
context produce relatively close neighbours execution
[30],[31],[32][7]. The problem then is to define and quantify
the notion of proximity. Different approaches exist:

• The categorical approach is to classify applications
according to various criteria using a template
containing information about the type of application
(batch or interactive, sequential or parallel), the queue
submission used, the user, the executable, the
arguments, the number of nodes, etc. Then, an average
time is computed in each category in order to be used
for the next prediction.

• The learning approach [33],[34] selects applications
with the behaviour closest to those previously executed,
and uses them to make the next prediction. This is done
using a distance [35] dependent on the characteristics of
the application. In our approach we use a Euclidean
distance. When a similar set of applications was chosen,
we used their previous execution time to predict the
time of the new application by different methods: e.g.
model of nearest neighbors [36], weighted local
polynomial regression [36],[37], weighted average
[36],[38],[7] (we will use this one in our approach).

III. ANALYSIS OF PAST EXECUTION TIME

A. Principle

We define the notion of the extended basic block as a set
of basic instructions executed in a single function and
initialized the same number of times, regardless of the
inputs applied to the program [39]. The number of
executions can vary from one run to another depending on
the inputs applied to the program. The extended basic

blocks are a set of basic blocks defined in the state of the art.
This reduces the complexity without decreasing the
accuracy.

The execution time of an extended basic block will be
considered constant, i.e. independent of the context of the
program. This assumption excludes consideration of the
mechanisms present in modern processors, such as caches.

In addition, the execution time of extended basic blocks
is independent of the inputs applied to the program, which is
due to the lack of branch instruction (including conditional)
within extended basic blocks.

The following equation can be used to evaluate the
execution time of an application TApp(E):

• the set of program functions,
• the number of executions of the function f,

depending on inputs E,
• the execution time of the function f, depending on

inputs E.

The execution time of a function can be expressed:

• the set of extended basic blocks of the function f,
• the number of executions of basic block b

extended, depending on the inputs,
• the execution time of the extended basic block b,

considered as constant.
The execution time of an application can be easily

expressed as follows:

 (1)
with the set of the extended basic blocks of the

program:

The tools gprof (profiler) and gcov (coverage testing)

provided by GNU allow us to know respectively and .
The execution time of extended basic blocks is the solution
of a system of linear equations. Each execution of the
program for different input values adds an equation to the
system of linear equations. For X executions, we have X
linear equations and unknowns.

B. Experiments

We use a C code to calculate the power p of a matrix of
dimension d. This program runs on different processor
architectures and operating systems.

1) Reproducibility of execution:

An important aspect that should be checked for
consistency of time obtained is the reproducibility of
experiments. Indeed, it is essential that two distinct runs of
the program for identical inputs produce similar execution
times. We chose to run the program 100 times for each set
of entries tested. In Figure 1(a) we see the regular increase
of execution time depending on the power and dimension of
the matrix.

Full Journal Name Month (abbreviated) Year, Vol. * Iss. *, PP. *-*

3

100
150

200
250

300
350

400
450

500

0
200

400
600

800
1000

0

500

1000

1500

input 1 :
Dimension of the matrix

Input 2 :
Power

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

)

(a) Execution time depending on parameters

100
150

200
250

300
350

400
450

500

0
200

400
600

800
1000

0

0.02

0.04

0.06

0.08

0.1

0.12

Input 1 :
Dimension of the matrix

Input 2 :
Power

St
an

da
rd

 d
ev

ia
tio

n
of

th
e

av
er

ag
e

of
 e

xe
cu

tio
n

tim
e

(b) Variation of standard deviation

Fig. 1 Reproducibility of experiments

It is thus possible to observe on curve 1(b) that the
standard deviation of the execution time varies between 0
and 10%, the average of the relative standard deviation
being 3.45%. Moreover this standard deviation tends to be
higher for short executions of the program. The low value of
standard deviation obtained for long programs gives
confidence in the reproducibility of the experiments.

2) Impact of gcov and gprof

100
150

200
250

300
350

400
450

500

0
200

400
600

800
1000
0.01

0.02

0.03

0.04

0.05

0.06

0.07

Input 1 :
Dimension of the matrix

Input 2 :
Power

Re
la

tiv
e

di
ffe

re
nc

e

Fig. 2 Relative difference between the execution time with and without

profiling for Intel Xeon

These tools have a slight impact on the execution time of
an application. Figure 2 shows that, regardless of the
duration of the application (on the scale of seconds or
several minutes), the relative difference between the
execution time with or without profiling is the same order of
magnitude. On average, the difference is 4.09%. It may be

noted, however, that the variation is dependent on the
processor architecture.

3) Solving system

We assume that the system has enough equations to be
solved (). The system is potentially over-
determined. Let be the set of input vectors eligible for
program. For each execution, there is , with , the
inputs used in the executions. A system of equations is
obtained:

 (2)
It is expressed thus:

 (3)
The relations 2 and 3 show the following relations:

,

,
The resolution of the system leads directly to results of

poor quality due to the ill-conditioned nature of the system
to be solved, so we reformulate the problem by introducing
an error and moving to an iterative solution. This was
validated on pilot matrix multiplication program by running
the program and really testing the prediction based on
previous executions (Figure 3).

0 20 40 60 80 100 120 140 160
0

500

1000

1500

Executions of the program with different inputs

Ex
ec

ut
io

n
tim

e
of

 th
e

pr
og

ra
m

 (s
)

Real execution time of the program
execution time estimated by
the iterative method

Fig. 3 Comparison of execution time and estimated time of actual

execution of the program

IV. CORRELATION BETWEEN EXECUTION TIME AND INPUTS

A. Estimation of the number of execution of the extended
basic blocks

Now, the next step is to estimate the number of
executions of each extended basic block based on
the input of the program contained in a database of previous
versions (also called experiments) and the instance of the
application, which is needed in order to predict the
execution time. The model defined below is used to select,
from the knowledge base, a set of experiments similar to the
query, and then combine them in order to estimate the

Full Journal Name Month (abbreviated) Year, Vol. * Iss. *, PP. *-*

4

number of executions of basic blocks of a program for a
given input vector.

Each experiment is associated with a vector input ,
with :

where NV is the number of values that form the inputs of

the program. To measure the distance of two execution
contexts, the Euclidean distance is used [35]. Let two input
vectors E(1) and E(2) of the program, be expressed as follows:

where d(Ev

(1),Ev
(2)) is the distance between two input

values defined using a heterogeneous distance d(Ev
(1),Ev

(2)):

The estimated number of occurrences of extended basic

blocks lying in the path of execution for a vector input is
achieved through a weighted average of the values
contained in the knowledge base. The weighting will be
based on the distance between the experiences of the
application, in order to promote the influence of the closest
experience of the application [7],[33]. If E* are the vector
entries for the query, the number of executions of each
extended basic blocks b in the program can be estimated as
follows:

Where is a set of input vectors corresponding to the

selected experiences in the knowledge base. The weighting
function chosen is the Gaussian function:

k is a constant for varying the width of the Gaussian.

This constant can be adapted to the density of experience in
the region containing the query.

To validate the approach, a particle-filtering program
parallelized with MPI was used [40]. It is built on a master /
slave model. Figure 4 shows a comparison between the
actual number of executions of extended basic blocks of the
program for a set of inputs and that estimated by the
prediction model defined. The two curves have the same
shape. Thus, the prediction model is able to identify blocks
in which the number of executions is varying, depending on
the inputs, as well as to estimate the effects of input values
of these variations. The mean relative error, found on the
prediction of all blocks, amounted to 8.8% for the set of
inputs considered.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 x 108

Extended basic Blocs of the program

N
um

be
r o

f e
xe

cu
tio

ns
 o

f e
ac

h
ex

te
nd

ed
 b

as
ic

 b
lo

c

Real Number of execution of blocs
Estimated number of execution

Fig. 4 comparing the real and predicted number of executions of

extended basic blocks

B. Influence of the base of knowledge

Next, we want to determine the influence that the
knowledge base can have on the estimation accuracy,
focusing more precisely on the influence of the number
experimentations it contains. The experiments described
also allow us to study the relationship between the
coefficient k and the degree of filling of the knowledge base.
For this, the above experiment is repeated. Several sets of
estimates will be made, using for each 500 requests. Each
set of estimates is performed several times, varying the
number of experiments in the database of knowledge on the
one hand, and the coefficient k to adjust the width of the
Gaussian function weighting of other part.

Figure 5 represents the overall relative error found for
each set of queries based on the number of experiments in
the present knowledge base and the coefficient k. This curve
highlights a steady increase in the observed error, which
may be 0 if the parameters tested are well adjusted, but can
also exceed 200% if this is not the case. It thus appears that
the accuracy of the model depends strongly on the choice
set of these parameters.

0
1

2
3

4
5

0
100

200
300

400
500
0

0.5

1

1.5

2

2.5

Coefficient kNumber of experiments in
the database

R
el

at
iv

e
er

ro
r o

n
th

e
pr

ed
ic

tio
ns

Fig. 5 Relative error in each set of 500 queries with the number of

experiments in the database and the coefficient k

To investigate more thoroughly the influence of the
degree of filling of the knowledge base and that of the
coefficient k, we make two cuts (Figure 6) of the three-
dimensional view of Figure 5.

Full Journal Name Month (abbreviated) Year, Vol. * Iss. *, PP. *-*

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Coefficient k

R
el

at
iv

e
er

ro
r o

n
pr

ed
ic

tio
ns

(a) Error predictions based on the coefficient k (500 experiments

found in the knowledge base)

50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of experiments in the database

R
el

at
iv

e
er

ro
r o

n
pr

ed
ic

tio
ns

(b) Error predictions based on the number of experiments in the
database of knowledge (k=0.02)

Fig. 6 Cuts of 3D view

For a knowledge base with enough experience, a too
high value of the coefficient k implies a significant error in
predictions (Figure 6(a)), due to the disruption of the
prediction by experimental noise. In practice values of k
between 0.01 and 0.1 offer good results (cf. Figure 7).

In addition, the curve 6(b) shows that the accuracy of the
prediction of behaviour is essentially dependent on the
knowledge base. A large number of experiments provide
increased accuracy, while the probability of finding one or
more experiments similar to the query is higher.

0
0.02

0.04
0.06

0.08
0.1 0

100
200

300
400

500

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of experiments
in the databaseCoefficient k

R
el

at
iv

e
Er

ro
r o

n
th

e
pr

ed
ic

tio
ns

Fig. 7 Field values of k with an accuracy of each set of
correct queries

However, the lack of experience can be compensated, to
some extent, by increasing the coefficient k, in order to
expand the number of experiments included in the
prediction process. Indeed, Figure 8 shows that for low
values of k, the curve has a shape of a hollow: the error
decreases first, before increasing when the value k increases.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0

100

200

300

400

500
0

0.2

0.4

0.6

0.8

Coefficient k
Number of experiments
in the database

R
el

at
iv

e
Er

ro
r o

n
th

e
pr

ed
ic

tio
ns

(a) Error predictions based on the coefficient k and the number of

experiments in the database

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Coefficient k

R
el

at
iv

e
Er

ro
r o

n
th

e
pr

ed
ic

tio
ns

(b) Error predictions based on the coefficient k (75 experiments in
the knowledge base)

Fig. 8 Representation of low error obtained

V. ANNOTATION OF CODE SOURCE

The previous formulation assumes that all input values
of the program have a similar influence on the number of
executions of each extended basic block of the program.
This hypothesis is strong. One way to better take into
account the impact of each entry is to add a factor
accounting for this: wv,b, in calculating the distance to the
input v and the block b:

The choice of values : wv,b depends entirely on the

program structure. Thus, the person most able to make such
a choice is undoubtedly the application developer.

The annotations are a flexible and easy way to allow the
programmer to learn these values. They must meet the
following characteristics:

Full Journal Name Month (abbreviated) Year, Vol. * Iss. *, PP. *-*

6

• They allow the user to give the dependence of the
number of execution blocks depending on the inputs of
the program,

• They require no knowledge of the mathematical model
for predicting the behaviour of applications,

• They can be inserted directly into the source code of the
program,

• They do not block compilation or execution in the
proper functioning of the application.

We have chosen as part of C, the use of directives
#pragma that are ignored by the compiler. Similar
concepts exist in most of programming language. The
following syntax is used:

#pragma etp annotation (parameters)

where:

• etp means execution time prediction. This keyword
characterizes the set of annotations that we create, so
they are immediately identifiable by the tool in place to
interpret them.

• annotation designates the type of annotations.
There are four different types of annotations, described
below.

• (parameters) is a list of optional parameters,
separated by commas and enclosed in parentheses.

Four types of annotations are defined:

• Annotations type “inputs”: This type of annotation
defines the inputs considered in the prediction of
execution time. Such annotations can be inserted at the
beginning of the source code alongside the traditional
guidelines #define.

• Annotations type “begin dependency”: This type of
annotation starts a sequence of instructions whose
execution depends on number of entries in the program.
The list of these entries, as defined by Directive “input”,
is specified parameters.

• Annotations type “begin independency”: This type of
annotation starts a sequence of instructions on which
the number of executions depend in any input of the
program.

• Annotations type “end”: This type of annotations
closes any sequence of instructions, thus following the
annotation types “begin dependency” or “begin
independency”.

The annotation allows also to improve the sensibility of
communication part. Communication block can be enclosed
with the specific parameters that characterises the amount of
data exchanged. In MPI communication most of the time,
arrays are exchanged. So the time of communication could
be connected to the amount of data send or received.

For example, the following can be added to the program
of particle filtering, in order to define the three inputs
considered:

#pragma etp inputs (particles,
time_intervals, slave_tasks)
#pragma etp begin dependency (particles)
for (int i=0 ; i<particles ; i++) {

 instructions_1;
#pragma etp begin dependency
(time_intervals)

for (int j = 0 ; j < time_intervals ; j++) {
instructions_2;

 }
#pragma etp end

instructions_3;
}
#pragma etp end

Thus, the instruction blocks 1 and 3 depend only on the
number of particles, while the statement block 2 depends on
both the number of particles and the number of time
intervals.

The same experiments as above were performed and the
prediction error with or without annotation is compared in
Figure 9, which shows the significant improvement in
prediction using annotations.

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Executions of the program with differents inputs

R
el

at
iv

e
er

ro
r o

n
th

e
pr

ed
ic

tio
n

of
 th

e
ex

te
nd

ed
 b

as
ic

 b
lo

cs

Relative error on the basic prediction
Relative error with annotations method

Fig. 9 Comparison of errors obtained with and without annotations

VI. FULL MODEL OF PREDICTION

With profiled applications, the execution time of each
basic block of the program is determined based on the
iterative resolution of the equations system formed by the
data from experiments in the present knowledge base. This
phase of learning and estimation can be done in the
background and stop when the times of extended basic
blocks are stable (Figure 10). Then, when the execution of
an application is submitted to a scheduler a pre-processing
task are carried out:

• Query the database and get the time of basic blocks

• Estimate the characteristics of a selected set of
applications according to their proximity to the
application in the database

• Deduce the prediction of execution time that can be
used by the scheduler to refine the mapping.

The pre-processing time needed to predict execution
time depends mainly on the size of the database, the number

Full Journal Name Month (abbreviated) Year, Vol. * Iss. *, PP. *-*

7

of inputs and the number of extended basic blocks. In our
experiments, this time (a few seconds) is neglected
compared to a submission time of the grid scheduler.

source

 data-
 base

 Run
(X experiments)

E *

Request

 (E)N BB
b

*

Profiling with
gprof and gcov

 (E)N BB
b

(1, ..., X)

 (E)N BB
b

(1, ..., X) T BB
b

 (E)N BB
b

(1, ..., X)

T BB
b

source

 (E)T
App

(1, ..., X)

 (E T
App

*

Annotations

 iterative solution
 of equations

hybrid prediction

Prediction based
on instances

Off Line On Line

Fig. 10 Implementation of the hybrid approach for predicting

execution time

VII. FULL MODEL OF PREDICTION

This paper proposes a method to predict performance of
regular applications running in parallel. The difficult
problem of communication time is hidden within the
extended basic block and annotations principle. This is
possible only if the network is not overloaded and the
synchronisation between the different tasks of the parallel
application stays similar.

The hybrid approach for predicting execution time is
based on two prediction methods:

• A method using a history of past performances and
based on a learning-based capabilities,

• A method based on the profile of applications, as it can
be applied in determining the WCET of real-time
applications.

This approach requires two types of program
information:

• Temporal information, that is to say, the execution time
of each extended basic block. This information can be
obtained from solving a system of linear equations
obtained from a set of executions of the program. This
system is poorly conditioned, so we have adapted a
classical numerical method to solve this system of
equations by successive iterations.

• Behavioural information, that is to say the number of
executions of each basic block. We have shown how
the estimate can be done from a history of past
executions, by implementing a learning approach based
on the proceedings. In addition, we also defined a
system of annotations of the program source code to
improve this estimate.

 The complete model for prediction using the hybrid
approach has been tested and shows satisfactory results for
the different set of parallel applications. Indeed, the hybrid
approach allows us to take into account the structure of the

program. The result is a more detailed prediction as shown
on Figure 9 since it is possible to identify portions of the
program that have a large execution time and link them
directly to a set of inputs of the program. This method has
been also used to predict the execution time of
electromagnetic simulation [41] to improve the utilisation of
data center with autonomous policies [42]. In this case, the
MPI application follows another scheme of communication
based on Simple Program Multiple Data architecture and
communication with its neighbours only.

Further improvements of this method are possible:

• Instrumentation of object code would no longer be
estimated by calculating the execution time of basic
blocks, but by measuring them directly. The method
would then gain accuracy.

• An analysis of the data flow of the program could be
used to infer some annotations automatically. So even if
all the dependencies of basic blocks with the entries
could not be deducted automatically, the task of the
programmer would still be simplified.

• It may also be worth considering creating analytical
models of parallel applications to improve the
prediction. These models describe the structure of
applications. A model corresponding to a family of
applications, such as master / slave applications will
allow the consideration of common features with
known effects on the execution time.

• The comparison with other methods coming from the
real-time domain is difficult because they are more
interested to have very good WCET in sequential
program than estimation in parallel application.
Nevertheless, benchmark of high number of parallel
applications will allow improving the method.

REFERENCES

[1] A. Ermedahl, F. Stappert, and J. Engblom, “Clustered worst-
case execution-time calculation,” IEEE Transactions on
Computers, Vol. 54, September 2005.

[2] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings,
“Fixed priority pre-emptive scheduling: An historical
perspective,” Real-Time Systems, Vol. 8, 1995.

[3] J. Ganssle, “Really real-time systems,” Embedded Systems
Conference (ESC SF), April 2001.

[4] G. C. Buttazzo, Hard-Real Time Computing Systems:
Predictable Scheduling Algorithms and Applications. Springer,
Second Edition, October 2004.

[5] A. W. Mu’alem and D. Feitelson, “Utilization, predictability,
workloads, and user runtime estimates in scheduling the ibm
sp2 with backfilling,” IEEE Transactions on Parallel and
Distributed Systems, June 2001.

[6] W. Smith, V. Taylor, and I. Foster, “Using run-time predictions
to estimate queue wait times and improve scheduler
performance,” Job Scheduling Strategies for Parallel
Processing, Springer Verlag, 1999.

[7] L. J. Senger, M. J. Santana, and R. H. C. Santana, “An
instance-based learning approach for predicting execution
times of parallel applications,” Third International Information
and Telecommunication Technologies Symposium, 2004.

[8] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D.

Full Journal Name Month (abbreviated) Year, Vol. * Iss. *, PP. *-*

8

Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F.
Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenstrom,
“The worst-case execution time problem overview of methods
and survey of tools,” Journal ACM Transactions on Embedded
Computing Systems (TECS), Volume 7 Issue 3, April 2008.

[9] N. Williams, “Wcet measurement using modified path testing,”
5th International Workshop on Worst-Case Execution Time
Analysis (WCET05), Espagne, July 2005

[10] Y.-T. S. Li and S. Malik, “Performance analysis of
embedded software using implicit path enumeration,”
Workshop on Languages, Compilers and Tools for Real-Time
Systems, Californie (USA), June 1995.

[11] R. Kirner and P. Puschner, “Classification of code
annotations and discussion of compiler support for worst- case
execution time analysis,” 5th International Workshop on
Worst-Case Execution Time Analysis (WCET05), Espagne,
July 2005.

[12] R. Kirner, “The programming language wcetc,” tech. rep.,
Research Report n. 2/2002, 2002.

[13] C. Ferdinand, R. Heckmann, H. Theiling, and R. Wilhelm,
“Convenient user annotations for a wcet tool,” 3rd
International Workshop on Worst-Case Execution Time
Analysis (WCET03), Porto (Portugal), 2003.

[14] A. Mok, P. Amerasinghe, M. Chen, and K. Tantisirivat,
“Evaluating tight execution time bounds of programs by
annotations,” IEEE Real-Time Systems Newsletter, Vol. 5, May
1989.

[15] P. Puschner and C. Koza, “Calculating the maximum
execution time of real-time programs,” Real-Time Systems, Vol.
1, September 1989.

[16] C. A. Healy, D. B. Whalley, and M. G. Harmon, “Integrating
the timing analysis of pipelining and instruction caching,” 16th
IEEE Real-Time Systems Symposium (RTSS ’95), 5-7
December 1995.

[17] C. Healy, F. M. R. Arnold, D. Whalley, and M. Harmon,
“Bounding pipeline and instruction cache performance,” IEEE
Transactions on Computers, Vol. 48, Januar 1999.

[18] J. Engblom, Processor Pipelines and Static Worst-Case
Execution Time Analysis. PhD thesis, PhD thesis, Department
of Information Technology, Uppsala University, Uppsala
(Sweden), April 2002.

[19] J. Engblom and A. Ermedahl, “Pipeline timing analysis using
a trace-driven simulator,” Proceedings of the 6th International
Conference on Real-Time Computing Systems and
Applications, 13-15 December 1999.

[20] A. Colin and I. Puaut, “Worst case execution time analysis
for a processor with branch prediction,” Real-Time Systems,
Vol. 18, May 2000.

[21] T. Mitra and A. Roychoudhury, “Effects of branch prediction
on worst case execution time of programs,” tech. rep.,
Technical Report 11-01, National University of Singapore
(NUS), November 2001.

[22] S.-S. Lim, Y. Bae, C. Jang, B.-D. Rhee, S. Min, C. Park, H.
Shin, K. Park, and C. Ki, “An accurate worst-case timing
analysis for risc processors,” IEEE Transactions on Software
Engineering, Vol. 21, July 1995.

[23] S.-K. Kim, S. Min, and R. Ha, “Efficient worst case timing
analysis of data caching,” Proceedings of the 2nd IEEE Real-
Time Technology and Applications Symposium (RTAS ’96), 10-
12 June 1996.

[24] R. White, F. Mueller, C. Healy, D. Whalley, and M. Harmon,
“Timing analysis for data caches and set-associative caches,”
Proceedings of the 3rd IEEE Real-Time Technology and
Applications Symposium (RTAS ’97), 9-11 June 1997.

[25] F. Stappert and P. Altenbernd, “Complete worst-case
execution time analysis of straight-line hard real- time
programs,” Journal of Systems Architecture: the EUROMICRO

Journal, Vol. 46, Februar 2000.
[26] F. Stappert, A. Ermedahl, and J. Engblom, “Efficient longest

executable path search for programs with complex flows and
pipeline effects,” Proceedings of the 2001 International
Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, Atlanta (USA), 16-17 November 2001.

[27] C. Burguire and C. Rochange, “History-based schemes and
implicit path enumeration,” 6th International Workshop on
Worst-Case Execution Time Analysis (WCET06), July 2006.

[28] G. Ottosson and M. Sjdin, “Worst-case execution time
analysis for modern hardware architectures,” 1997 Workshop
on Languages, Compilers, and Tools for Real-Time Systems
(LCT-RTS’97), 1997.

[29] S. Li, S. Malik, and A. Wolfe, “Efficient microarchitecture
modeling and path analysis for real-time software,” 16th IEEE
Real-Time Systems Symposium (RTSS ’95), 1995.

[30] R. Gibbons, “A historical application profiler for use by
parallel schedulers,” Job Scheduling Strategies for Parallel
Processing, Springer Verlag, 1997.

[31] Downey, “Predicting queue times on space-sharing parallel
computers,” 11th International Parallel Processing
 Symposium (IPPS ’97), 1997.

[32] W. Smith, I. Foster, and V. Taylor, “Predicting application
 run times using historical information,” Lecture Notes in
 Computer Science, 1998.

[33] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally
 weighted learning,” Artificial Intelligence Review, Vol. 11,
 Februar 1997.

[34] J. Schneider and A. Moore, “A locally weighted learning
 tutorial using vizier 1.0,” tech. rep., Technical Report CMU-
RI-TR-00-18, Robotics Institute, Carnegie Mellon University,
Februar 2000.

[35] D. R. Wilson and T. R. Martinez, “Improved heterogeneous
distance functions,” Journal of Artificial Intelligence Research,
Vol. 6, 1997.

[36] N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley,
“Predictive application-performance modeling in a
computational grid environment”, 8th International
Symposium on High Performance Distributed Computing,
Redondo Beach (USA), 1999.

[37] M. A. Iverson, F. Ozgugner, and L. Potter, “Statistical
prediction of task execution times through analytic
benchmarking for scheduling in a heterogeneous
environment,” IEEE Transactions on Computers, Vol. 48,
December 1999.

[38] W. Smith and P. Wong, “Resource selection using execution
and queue wait time predictions,” tech. rep., Technical Report,
NASA Advanced Supercomputing Division (NAS), Moffet Field
(USA), July 2002.

[39] B. Miegemolle and T. Monteil, “Hybrid method to predict
execution time of parallel applications,” The 2008
International Conference on Scientific Computing (CSC’08),
Las Vegas (USA), 7p, July 2008.

[40] V. Teuliere and O. Brun, “Parallelisation of the particle
filtering technique and application to doppler-bearing tracking
of maneuvering sources,” Parallel Computing, Vol.29, 8, pp
1069-1090, august 2003.

[41] F. Khalil, E. B. Tchikaya, R. Sharrock, T. Monteil, F.
Cocceti, and H. Aubert, “Grid-based sct approach for the
global electromagnetic simulation and design of finite- size
and thick dichroic plat,” ACES Journal (Applied
Computational Electromagnetics Society, Vol. 25, N. 11, 2010.

[42] R. Sharrock, T. Monteil, P. Stolf, D. Hagimont, and L.Broto,
“Non-intrusive autonomic approach with self-management
policies applied to legacy infrastructures for performance
improvements,” International Journal of Adaptive, Resilient
and Autonomic Systems (IJARAS) vol.2 no.2, 2010.

Full Journal Name Month (abbreviated) Year, Vol. * Iss. *, PP. *-*

9

Thierry Monteil is associate professor in computer science since
1998 at INSA Toulouse and researcher at LAAS-CNRS. He
received the Engineering degrees in Computer Science and applied
mathematics from ENSEEIHT in 1992. He had a Doctorate in
parallel computing in 1996 and a HDR degree in 2010.
He works on parallel computing middleware (LANDA parallel
environment), Grid resources management (AROMA project),
computer and network modeling, load balancing with prediction
models, autonomous policies to improve performance on
distributed applications, parallelization of large electromagnetic
simulation, autonomic middleware (FrameSelf project) and
machine-2-machine system. He has managed a SUN microsystems
center of excellence in the field of grid and cluster for network
applications and a Cisco academy. Since 2011, he coordinates the
industrial SOP project funded by ANR that creates hybrid cloud
for personal service over ADSL network under energy and quality
of service constraints. He is author of more than 50 regular and
invited papers in conferences and journals.

