de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction to Dynamic Code Generation an Experiment with Matrix Multiplication for the STHORM Platform

Chapter 1

Introduction to Dynamic Code Generation an Experiment with Matrix Multiplication for the STHORM Platform hmien gourousséD itor vomüllerD nd renriEierre ghrles Abstract he proessing pplitions tht re now eing used in moile nd emedded pltforms require t the sme time fir mount of proessE ing power nd high level of)exiilityD due to the nture of the dt to proessF sn this ontextD we propose lightweight ode genertion proess tht enles the pility to perform dtEdependent optimiztionsD t runE timeD for proessing kernelsF sn this pperD we present the motivtions nd the use of deqolD tool designed to uild fst nd portle inry ode genertorsD lled compilettesF e illustrte the use of ompilettes on typiE l gEounded proessing kernelX mtrix multiplitionF e were le to outperform the ompiler of our trget pltform @the xUH proessor of the ryw pltformAX we otined redution of the exeution time of PI 7 nd IU 7D respetively for integer nd)otingEpoint multiplition with PST × PST mtriesF purthermoreD ode speiliztion on the dt to proess llows us to further inrese the performne of the multiplition kernel y ftor of more thn IH× in fvorle onditionsF

F Q IFP yverview of deqol F T IFPFI uernels nd ompilettes F T IFPFP ork)ow of ode genertion F V IFPFQ e utoril ixmple F W IFQ en experiment on mtrix multiplition F F F F F F F F F F F F F F F F F F IQ IFQFI smplementtion of mtrix multiplition F F F F F F F F F F IQ IFQFP ixperimentl results F IT IFR elted work F IW IFS gonlusion F PQ eferenes F PQ 1.1 Introduction
ine the erly eginning of omputer historyD one hs needed progrmming lnguges s n intermedite representtion etween lgorithms desription nd mhineEredle instrutionsF sn rod outlineD running n lgorithm on omputer requires the following stepsX @I! softwre developmentD implemenE ttionA the developer trnsries the lgorithm into soure (le ontining progrmming lnguge instrutionsD @P! ompiltionA ompiler trnsltes these progrmming lnguge instrutions into mhine ode nd performs dpttions to the originl ode for optimized (t to the trget exeution supportD @Q! exeutionA the proessor reds nd exeutes the mhine inE strutionsD lods the input dt nd produes the dt resultsF Q R gontents feuse ompiltion is performed before the progrm is runD the exeution ontext nd runEtime dt re not known t the time of ode genertion @pigure IFIAF his mens thtD in order to leverge suh informtion in ode optimiztionsD one hs either to ssume out the hrteristis of the exeution ontext @nd to provide veri(tion mehnismsAD to dd extr instrutions to dpt the progrm ehviour depending on runtime dtD whih is known s ode speiliztionD or to generte the progrm9s mhine ode t runEtimeD fter the exeution ontext is knownF hynmi ode genertion n e hieved y interprettion or ompiE ltion t runtime eyok@PHHQAF sn lssil frmeworksD the im is to provide generi infrstruture for ode genertionD ounded y the synE tti nd semnti de(nition of progrmming lngugeF he generlity of suh solutions omes t the expense of n importnt overhed in ode genertionD oth in terms of memory footprint nd omputing powerF e wellEknown exmple is the tv progrmming lngugeD designed to enE hne pplition portilityX tv soure ode is written without priE ori knowledge of the pltform tht will exeute the (nl mhine odeD thnks to virtul mhine tht relies on n intermedite representE tionD the tv yteode @pigure IFIAF et runtimeD the yteode is eiE ther interpreted or ompiled into mhine ode s soon s the overhed of ode genertion n e mortized y repeted lls of the generted ode uotzmnn et l@PHHVAuotzmnnD immerD wössenökD odriguezD ussellD nd goxF hespite the ft tht virtul mhine hs ll required informtion to perE form dtEdependent optimiztionsD interesting vlues re di0ult to use for suh systems owing to n lredy high ode genertion ost eyok@PHHQAF gode optimiztion from runEtime informtion is lso useful for lrgeEsle prllel omputing systemsD where n pplition omponent n e popuE lted on lot of proessing elementsF his pplition omponent hs to e prmetrisle so tht its ehviour n e dpted to the proessing eleE ment where it is instntitedF o do soD one would need either @IA generi implementtion tht one n prmeterise t instntition ut tht will su'er from the performne overhed rought y generi implementtionD or @PA to modify nd reEompile the omponent dynmilly t runEtime fter one knows where it will e (nlly exeutedF feing le to speilize the exeuted ode for eh of the omputing elements is likely to provide performne imE provementsD s long s the ost for suh optimiztion remins modestF his issue is pplile to ll lrgeEsle multiEproessor pltformsX from righ erformne gomputers in dt enters to multiproessor ystemsEonEghip @wogsA in future emedded deviesF hue to the distriuted nture of omE puting nd memory resoures in mnyEore pltformsD it eomes hllenging to ring dynmi ompiltion pilities to suh pltformsF woreoverD eE use of the nonEnegligile memory footprint of the frmeworks for tustEsnE ime ompiltion @tssAD the limited size of the lol memory in emedded mnyEore pltforms eomes nother importnt ottlenek in this ontextF deqol ws designed to provide pplition developers the ility to impleE ment pplition kernels dptle t runEtime depending on the exeution ontextD on the hrteristis on the trget proessorD nd furthermore on the data to process X their hrteristis nd their vlues ghrles@PHIPAF suE lly in proessing pplitionsD most of the exeution time is spent in very smll portion of the whole pplition soure odeD whih is most of the time omputtionEintensive tsk lso lled kernelF e ssume tht improving the performne of kernels n leverge the overll pplition performneF hereforeD the ide using deqol is to emed ad hoc runEtime ode genertorsD lled compilettesD in softwre pplitionF ih ompilette is speilized to produe the mhine ode of one pplition kernelF yn the ontrry to dynmi ompiltionD in our solution we emed t runtime only the neesE sry proessing intelligene to perform ode optimiztions tht n exploit the properties of the dt to proessD ut no nlysis of the intermedite representtion or suset suh s yteode @pigure IFIAF es onsequeneD this enles the prodution of very fst ode genertors @IH to IHH times fster thn typil frmeworks for runtime ode interprettion or dynmi ompiltionAF es suhD deqol provides lightweight solution for dynmi ode genertion pplile to mssively prllel systemsF he ompilettes o'er low memory footprint nd very fst ode genertionF purthermoreD deqol ws designed to provide very lrge portilityD whih mkes it esily pplile to heterogeneous pltformsX he ompilettes re ompiled from exsEg soure ode fter soureEtoEsoure ode trnsformtionsF his ode genertion proess tht we propose here n trget lrge numer of pltE form rhiteturesD whih is only limited y the vilility of g ompiler for the proessor tht will perform the ode genertion t runtimeF sn this pperD we present n pproh to desrie speilized ode genE ertorF he im is to uild system thtX • winimizes the genertion overhed ompred to lssil ts systemsF • ellows more)exiility over the generted funtion pplition dominF pei(llyD we wnt to e le to selet the dtEtype t runEtimeF • frings gin in performneD or t lest similr performnesD y removing ded odeD unused lods or y onstnt propgtionF F F yur min ontriution in this pper isX

• he presenttion of wy to desrie how ode genertor should ehve for key prt of n lgorithmF • o illustrte tht tking into ount runEtime environment for utoE tuning is possileD nd how it o'ers performne improvementF • he illustrte the use of speilized ode genertion for the ryw pltformF he rest of this pper is orgnized s followsX setion IFP introdues the ore ides of deqol nd dtEdependent ode optimiztionD setion IFQ detils the use of our tool on mtrix multiplition for the proessors of wogD nd the results hievedF e end this hpter y providing n overview of the relted works in setion IFRF 1.2 Overview of deGoal 1.2.1 Kernels and compilettes he two tegories of softwre omponents round whih our ode genertion tehnique is orgnised re lled kernels nd compilettesF uernel e kernel is smll portion of odeD whih is prt of lrger ppliE tionD nd whih is the trget of our runtime ode genertion setupF yur tehnique fouses on the optimistion t runtime of these smll prts of lrger pplition in order to improve the kernel9s performneF sn the ontext of the typil use of deqolD good performne is understood s one or severl riteri mong low exeution timeD low memory footprint nd low energy onsumptionF gompilette e ompilette is designed to generte the ode of one kernel t runtimeF e ompilette n e understood s n an hoc smll ode generE tor tht is exeuted t pplition runtimeF e use the term compilette to underline the ft thtD in order to hieve very fst ode genertionD this smll runtime genertor does not emed ll the optimistion tehE niques usully rried out y stti ompilerD ut only the required ones onsidering the trget kernel to optimizeF sn order to trget omputing rhitetures tht inlude dominEspei(E elertors nd to rise the level of strtion of the soure odeD ompilettes re desried using mix of stndrd g nd of dedited highElevel ew lngugeX Cdg ghrles@PHIPAF his lnguge hs demonstrted its ility to hieve performne improvements in omprison with highly optimised stti ode gouroussé nd ghrles@PHIPAF e hve hosen to sty with n ssemlerElike lnguge in order to sty s lose s possile to the (nl runE time modelX n instrutionEset proessorF yur im is furthermore to llow the diret use of multimedi rithmetis nd to provide)exile nd esy support to vetors nd omplex dt setsF he min prdigm shift relies in the ft tht Cdg instrutions desrie ode to e generted insted of ode to e exeutedF yn the ontrry to ommon ew lngugesD it is possile here to prmetrise these instrutions with vlues known t runtimeD nd to use vetor vrilesF he vriles mnipulted re vetor registersD whose size will e determined t the time of ode genertionD when the use of the physil registers in the progrmming ontext is knownF st is lso possile to mp the ssemly instrutions to vetor instrutions when they re ville on the trget proessorD nd to mp the ssemly instrutions to di'erent rithmeti opertors depending on the dt vlues to proessF es we will illustrte in setion IFPFQFPD it is possile to mix C instrutions nd Cdg instrutionsF sn this seD the g soure ode will ontrol the ode genertion done in the Cdg instrutionsF he instrution set inludesX e vrile length register set he instrution set uses vetoril registers with vrile width nd vrile numer of elementsF iFeF the progrmE mer ould de(ne VectorType f float 64 8D to use ny register of type f s vetor of V elements of TR it)oting point vluesF glssil rithmeti instrutions addD subD mulD divD ut lso instrutions spei(to the multimedi domin suh s sad @sum of solute di'erE enesAD mma @mtrix multiply nd ddA nd pp utter)yF hese instruE tions n work on registers of vrile length nd typeF vod nd store his fmily of instrutions supports stride desriptionF his permits the desription of omplex memory ess ptternsF sing this highElevel instrution setD deqol n generte the orrespondE ing instrutions for proessors whih hve ntive supportD or generte optiE mised ode for proessors without supportF sn oth ses the ode genertion is fst nd produes e0ient odeF Static compilation time: compilation of the application he soure ode of the pplition now onsists in set of stndrd g soure (lesD inluding the soure ode of the ompilettesF he inry ode of the pE plition is produed y stndrd g ompilerF his step is the sme s in the development of stndrd g pplitionF Runtime: generation of kernel's binary code et runtimeD the omE pilette genertes optimized inry ode for the kernel@sA to optimizeF his tsk n e exeuted on proessor tht is di'erent of the proessor tht will lter run the kernelF purthermoreD the ompilette9s proessor nd the kernel9s one do not neessrily need to hve the sme rhitetureF e omE pilette n e run severl timesD for exmple s soon s the kernel needs to e regenerted for new dt to proessF e hve detiled on (gure

IFP gontents W I int genericMul (int param , int val) P { Q return (param * val) ; R } @A qeneri ode in C I void mulCompile (cdgInsnT * code , int val) P { Q #[R Begin code Prelude in S mul out , in , #(val) T rtn U End V
]#; W } @A gompilette ode @in CdgA I PUSHRL 0 x4000 ;; P G7 ? MAKE32 R12 , 3 ;; Q G7 ? MP R0 , R0 , R12 ;; R POPRL 0 x4000 ;; S G7 ? RTS ;; @A ssemly ode @vlaIHA I PUSHRL 0 x4000 ;; P G7 ? SHL R0 , 1;; Q POPRL 0 x4000 ;; R G7 ? RTS ;; @dA ssemly ode @vlaPA I G7 ? MAKE32 R12 , 10 ;; P G7 ? MP R0 , R0 , R12 ;; Q G7 ? RTS ;; @eA ssemly ode @vlaIHA for lef kernel pigF IFQX e tutoril exmpleX dynmi speilistion of multiplitionF two prtiulr inputs of the ompiletteX dt nd hrdwre desriptionF he originlity of our pproh indeed relies in the genertion of inry ode optimized for prtiulr set of pplition dtF et the sme timeD the ode genertion is le to introdue hrdwreEspei(feturesF Runtime: kernel execution he progrm memory u'er (lled y the ompilette is run on the trget proessor @not shown in (gure IFPAF

A Tutorial Example

yur tutoril exmple illustrtes how to hndle simple kernels for slr mulE tiplition using deqol @pigure IFQAF e introdue the min onepts of deE qol with the trivil exmple of the multiplition of two integer vrilesF e then elorte on vetor multiplitionF por the purpose of illustrting how ode genertion is performedD our exmples re sed on the xUH proessorD desried in setion IFQFPFIF roweverD the soure ode of the omE pilettes illustrted here ould e pplied strightforwrd to other proessor rhiteturesF 1.2.3.1 Simple multiplication e wnt to perform the runtime speiliztion of the generi funtion genericMul tht multiplies two integers @pigure IFQAF efter speiliztionD the funtion will e repled y funtion tht multiplies y onstnt known t runtimeD iFeF tht speilizes the val prmeter of genericMulF roweverD this prmeter n only e known t runtimeX t the initiliztion time of the proess or during the progrm exeutionF purthermoreD it is likely to hnge multiple timesF he ompilette mulCompile is stndrd g funtion tht inludes eleE ments of the Cdg lnguge t lines Q to V etween #[nd]# @pigure IFQAF vine R mrks the moment where the ode genertion tully eginsF Prelude sttes tht this lok needs stk nd register mngementX in the generted odeD we only sve nd restore the IR register @link registerA euse H nd I re de(ned s srth registers in the efs @epplition finry snterfeA of the xUHF code is the pointer to the ode heD nd (nlly Prelude omes with one prmeterX inD whih mens tht the generted kernel will tke one prmeter nmed inF eording to the efs of our trget proessorD in will e lloted y defult on R0F pinllyD the rtn instrution is the return instrution tht ends the kerE nel routine nd inserts the return instrutionF End ends the ode genertionX during ode genertionD the evlution of this instrution triggers the omE puttion of rnh lotions nd the)ushing of internl dtF vine S performs the multiplition etween register in nd g rEvlue @written inside #()A nd stores the result in outF sn this seD the rEvlue is simply valF he ompiletteD when lled t runtimeD produes inry kernel for the rhiteture seleted t ompiltion time @pigures IFQ nd IFQdD respetively when val equls to IH nd PAF he two dotted rrows highlight the lotions where the runtime vlue val is evluted nd integrted into the produed ode s onstntF sn this tutoril exmple we illustrte simple dtEdependent optimiztionX the ompilette genertes either kernel tht uses the stndrd multiplition instrution @pigure IFQAD or the shift left instrution @pigure IFQdA depending on the vlue tken y val t runtimeF he soure ode of the ompilette @pigure IFQA is sttilly proessed y deqolF he speilized ode genertor is then generted nd dumped into g (leD whih is sttilly ompiled y the ompiler of the trget pltformF his pproh removes ny diret intermedite representtion mnipultion whih needs omplex ode genertionF his wyD we redue the required omE puttion time to the minimumF 1.2.3.2 Scalar multiplication for vectors xow tht we hve introdued the min elements of deqol for the uilding of ode genertorsD we n sfely introdue n importnt feture of our toolX gontents II I void dot_product (int * A , int A_len , int alpha , int * B) { P for (int i =0; i < A_len

; i ++) { Q B[i] = alpha * A [i]; R } S }
pigF IFRX e trivil implementtion of the slr multiplition in g vetoril registersF o do soD we will extend our previous exmple to the slr multiplitionF yur im is to ompute

[B] = α × [A]D where [A]
is the input vetorD α slr known t the time of ode genertionD nd [B] is the result vetorF sing stndrd gD we ould write the slr multiplition s in (gure IFRF ith dynmi ode genertionD we will speilise the kernel ording to the memory lotion of AD its lengthD nd the vlue of αF es onsequeneD the kernel generted y the ompilette will need only one invotion prmeterX the ddress of vetor B @ssuming tht it hs the sme length thn AAF here re severl possiilities to implement suh ode genertorD nd we will illustrte two of them hereX @IA with the vetor support of deqol instrutions @(gure IFSAD nd @PA y mixing cdg instrutions with plin g to ontrol the ode genertion nd loop over the vetor elements @(gure IFTAF he disssemled inry ode tht will e produed for these two generted kernel re illustrted in (gures IFU nd IFUD respetivelyF o use)ot rithmeti insted of integerD one would simply need to reple int y float t lines S nd T in (gure IFS nd t line R in (gure IFTD when delring the types used for slr rithmetisF sn the ompilette illustrted in (gure IFSD eh of the elements of the vetor register v will e mpped to physil registerD s long s there re enough registers ville on our trget proessorF sn (gure IFSD one n see in the generted ode tht v hs een mpped on registers R2 to R9F v eing veE tor register of V elementsD the instrution lw v, tmp will tully generte V suessive memory lods with stride of I word from the ddress ontined in the register vrile tmpD mpped to R1F he ode genertor proeeds similrly for the mul nd sw instrutionsF he multiplition @MPA instruE tion of the xUH proessor only works with two register rguments nd not with n indiret memory ddress s n rgumentF husD the instrution make32 R12, 42 instrution t line P of (gure IFU is utomtilly generE ted y mul to store the ontents of vrile alpha in the srth register R12F

pigure IFU lso demonstrtes the pility of our instrution sheduler to del with instrution lteny nd register dependeniesF e will illustrte this point on one exmpleX on the xUH proessorD the v instrutions hve lteny of Q ylesF his mens thtD to void yle stllsD the w pigF IFSX smplementtion of ompilette for the slr multiplition with vetor registersF por the ske of simpliityD we ssume tht we hve enough registers ville to llote vetors A nd B t oneF instrution on P @line TA must ome Q yles fter the instrution LW R2 @line QAF he min di'erene of the gEontrolled kernel @(gure IFTA with the veE torized kernel @(gure IFSA omes from the use of the sme register vrile tmpD mpped on the physil register R5F tmp suessively stores eh of the memory lods from vetor A @A_addrA nd is then used to store the result of the multiplition y α @alpha_rAF feuse the sme physil register R5 is used to perform ll of the store nd multiplition opertions for eh of the vetor elementsD our instrution sheduler is not le to undle the instrutions generted in this kernel euse of register dependeniesF es onsequeneD the inry ode generted from this kernel @(gure IFUA is fr less ompt thn the ode in (gure IFUF o give n ide of the level of optimistion enled in this exmpleD we ompre the exeution times of the kernels in (gures IFU nd IFU nd of the g version illustrted in (gure IFRF he ompiltion is performed with the -O3 optimiztion)gD nd the exeution times re mesured using the simultor of the xUH proessor in ge modeD presented lter in setion IFQFPFIF he kernels exeute respetively in SID UI nd VH yles for two vetors ontining V elementsF he inry ode of the g version ounts IV instrution undlesF his ode is even smller thn our kernel in (gure IFU euse the g kernel uses the hrdwre loop instrutions of the xUHF e ould help the g ompiler with hints out vetoristion @eFgF #pragma unrollAD ut unrolling pigF IFTX e ompilette for the slr multiplitionF he unrolling of the produt is ontrolled y g sttements the multiplition t the time of stti ompiltion is di0ult euse the vetor lengths re not knownF yn the ontrryD t runtimeD it eomes esy to perform loop unrolling knowing the lengths of the vetor tht our kernel will proessF por lrger loops where unrolling would inur loss in performneD we ould s well use rnh instrutions nd loop struturesF his is not shown in this pper for the ske of revityF 1.3 An experiment on matrix multiplication 1.3.1 Implementation of matrix multiplication his setion desries the implementtion of proessing kernel for mtrix multiplition in order to illustrte the use of deqolF e desrie (rst referene implementtionD whih is sttilly ompiled with the pltform9s ompilerF e then desrie two improved implementtions using deqolX the 1 PUSHRL 0 x43F8 ;; 2 MAKE32 R12 , 42; MAKE32 R1 , 16176;; 3 LW R2 , @(R1 +0 x0);; 4 LW R3 , @(R1 +0 x4);; 5 LW R4 , @(R1 +0 x8);; 6 LW R5 , @(R1 +0 xC); MP R2 , R2 , R12 ;; 7 LW R6 , @(R1 +0 x10); MP R3 , R3 , R12 ;; 8 LW R7 , @(R1 +0 x14); MP R4 , R4 , R12 ;; 9 LW R8 , @(R1 +0 x18); MP R5 , R5 , R12 ;; 10 LW R9 , @(R1 +0 x1C); MP R6 , R6 , R12 ;; 11 SW @(R0 +0 x0), R2 ; MP R7 , R7 , R12 ;; 12 SW @(R0 +0 x4), R3 ; MP R8 , R8 , R12 ;; 13 SW @(R0 +0 x8), R4 ; MP R9 , R9 , R12 ;; 14 SW @(R0 +0 xC), R5 ;; 15 SW @(R0 +0 x10) , R6 ;; 16 SW @(R0 +0 x14) , R7 ;; 17 SW @(R0 +0 x18) , R8 ;; 18 SW @(R0 +0 x1C) , R9 ;; 19 POPRL 0 x43F8 ;; 20 RTS ;; @A kernel generted from (gure IFS pigF IFVX eferene implementtion of the mtrix multiplition @in pseudo g odeA 1.3.1.2 First implementation in a compilette e simpli(ed overview of our implementtion of the mtrix multiplition using deqol is illustrted in pigure IFWF compilette is the ode genertor tht produes n optimized kernel funtion kernelD whih enompsses the innerEmost loop from pigure IFVF he ode generted for kernel depends on the properties of mtries AD B nd C X row nd olumn sizesD memory lignment nd ddress of the dt in memoryF hese vlues re preomputed nd propgted into the instrutions of kernel t ode genertion timeF sn onsequeneD kernel does not need invotion prmetersF his implementtion of kernel is very similr to the referene implemenE ttion introdued oveD t the exeption tht ll the onstnts desriing mtrix propertiesD whih re known t ode genertion timeD hve een propE gted into the generted odeF es we will show in the results setionD these improvements lone lredy ontriute to good performne improvementF /* generation of the kernel 's code */ (kernel , v) = compilette (A , B , C) /* compute matrix multiplication */ clear (C) kernel () ; pigF IFWX yptimized implementtion of the mtrix multiplition using deqol @in pseudoEodeA 1.3.1.3 Kernel specialization on matrix values sf the mtries to proess re sprse or ontin remrkle dt vluesD it is possile to further inrese performne y speilizing the generted ode depending on the element values of the mtrix to proessF e illustrte the dtEdependent speiliztion of our proessing kernel with nive lgorithm for sprse mtriesF sullyD pplitions tht involve the proessing of sprse mtries will move to di'erent proessing lgorithms nd to dedited repE resenttion of dtF roweverD our im is to illustrte here howD thnks to the use of dtEdependent optimiztions with runtime ode genertionD it is possile to drstilly improve the performne of our se lgorithmF he ode genertion is split in two phses @pigure IFIHAX template_gen genertes the glol struture of the proessing kernel tht is independent of dt vlues in AF et eh proessing loopD data_gen (lls the kernel9s ode upon dt vlues in the row vetor to proess in AF hen there is nothing to exeute @for exmpleD ll mtrix vlues in the urrent row in A re nullAD data_gen returns NULL nd we immeditely move to the next loop stepF his tehnique involves n extr overhed euse the kernel9s ode is regenerted t eh step in the innermost loopF roweverD s we will show elowD this overhed n e ompensted very quikly for sprse mtriesF he xUHER proessor is QPEit sg oreF st omes with vrileE length instrution enoding nd dul issue vs rhitetureF wo sets of hrdwre loop ounters re provided to enle loop exeution t mximum speed without yle overheds due to softwre ontrolF he ore proessor ontins n internl extension for integer multiplitionD nd n optionl singleEpreision)oting point extension used in this experimentF he ryw hu is delivered with full toolhin for ompilingD deE uggingD pro(ling nd simultion in funtionl nd yleEurte modesF yur experiments re sed on the pltform9s toolhin nd on the s simE ultor of the xUH ore in ge @yleEurteA modeF sn this modeD the simultor models ll the ltenies tht n our in the proessor pipeline X instrution ltenyD g stlls nd register dependeniesF he ltenies of memory esses re not tken into ount y this modeF ell our experiE ments re however using the srthpd memories @ghw nd gwA of the proessorD whih lowers the e'et of this limittion of the simultor in our experimentsF 1.3.2.2 Port of deGoal for the STxP70 processor deqol hndles y defult register llotion nd simple mehnism for instrution shedulingF e simple sheduler llows for the optimiztion of inE strution sheduling with regrds to instrution ltenies nd register depenE deniesF roweverD s ompred to stndrd sg proessorsD ode genertion for the xUH proessor is it more hllengingD espeilly when moving to runtime ode genertionF heneforthD we extended the port of deqol for this rhiteture with vs supportX optimizing the dul issue nd the onE strution of instrution undlesF elso the)otingEpoint support omes s n extension nd uses seprte register (le of IT QPEit registersF yur port of deqol supports ll of these fetures of the xUHF 1.3.2.3 Experimental setup e hve evluted our optimized version of the mtrix multiplition ginst the referene implementtion desried in setion IFQFIFIF he referene implementtion is ompiled in -O3F voop unrollingD supE port of hrdwre loop ounters nd of the)otingEpoint extension re lso enledF he est performne for the referene implementtion ws eventuE lly otined with n implementtion lose to the pseudo ode desried in pigure IFVD with the ddition of #pragma unroll 8 on top of the innermost loopF he ode generted y deqol9s ompilette does not depend on ompiler optimiztionsD euse it is generted t runEtime y the ompiletteF rene whtever the ompiler optimiztions seletedD the exeution time of the generE ted kernel remins onstntF gompiler optimiztions hve however n e'et on the performne of the ompiletteD euse it is sttilly ompiled s stndrd pplition omponentF sn our performne mesurementsD we hve used the sme ompiler options to ompre the referene implementtion nd our implementtion using deqolF e hve lso exploited the vs extension of the xUHEvR oreD using the pproprite ompiltion)gsF yn the ompilette9s sideD vs support is integrted in the cdg pseudoEew lnguge of deqolF es onsequeneD it is not exposed to the developer nd the ompilette is tilored to utomtilly exploit this feture s soon s the proessor supports itF 1.3.2.4 Measure of the code generation time e hve instrumented the ompilette to mesure the time spent in ode genertion t runEtimeX ode genertion tkes from ISH to QHH yles per instrution undle genertedF he vrition of the verge speed of ode genertion per instrution undles is due to the omputtion of instrution undlingD the sheduling of instrutions ording to register dependenies nd the extr omputtions done t the end of ode genertionD for exmple omputing the jump ddressesF he est ode genertion speed is hieved for unrolled ode without instrution undlingF he ode genertion time is not tken into ount in the speedup results presented elowD euse it is not neessry to regenerte the ode for eh mtrix multiplitionF es n inditorD ode genertion represents IHH 7 of the exeution time for multiplition of 16 × 16 mtriesD nd less thn HDI 7 for 256 × 256 mtriesF 1.3.2.5 Performance of the processing kernels pigure IFII illustrtes the performne improvements hieved using deqol s ompred to the referene implementtion ompiled with full optimiztionD for two ses of ode genertionX using the hrdwre loop ounters provided y the xUH ore @HW loopAD nd fully unrolling the kernel9s ode @unrolledAF he speedup ftor s represents the redution ftor of the exeution duE rtion of our implementtion s ompred to the referene implementtionF e lulte it s followsX s = t (ref) t(degoal) D where t(ref) mesures the time exeE ution of the referene implementtionD t(degol) the time exeution of the generted kernelF yur implementtion using ompilette rings good overll performne improvementX when the mtrix size is 256 × 256 elementsD we hieve redution of the exeution time of PI 7 for integer multiplitionD nd of IU 7 for)otingEpoint multiplitionF int, HW loop int, unrolled fpx, HW loop fpx, unrolled pigF IFIIX peedup ftor mesuredD for integer multiplition @plin lineA nd)otingEpoint multiplition @dshed lineAD ording to the implementtion desried in setion IFQFIFPF pigure IFIP illustrtes the speedup ftor mesured when using ode speE iliztion on the dt of mtrix eD s presented in setion IFQFIFQF e illusE trte here the most fvourle se where mtrix e is the identity mtrixF sn this seD the looped implementtion shows huge speedup euse of the instrutions removed from the kernel when null vlues re met in mtrix eF he unrolled version is not e0ientD onsidering the fvourle experiE mentl onditionsD euse prt of the ode genertion is performed during kernel9s exeutionD nd ode unrolling requires lot more instrutions to e genertedF 1.4 Related work here is n extensive mount of literture out pprohes relted to our work with deqolF hynmi ompiltion nd interprettion re most of the time used together in tustEsnEime ompilers @tssA eyok@PHHQAF tss use interprettion for int, HW loop int, unrolled fpx, HW loop fpx, unrolled pigF IFIPX peedup ftor mesuredD for integer multiplition @plin lineA nd)otingEpoint multiplition @dshed lineAD ording to the implementtion desried in setion IFQFIFQF the prts of the progrm tht re run seldomD nd dynmi ompiltion is reserved for hostpotsD whih re identi(ed y tring the pplition tivity t runtimeF uh tehniques usully require emedding lrge mount of intelligene in the ts frmeworkD whih mens lrge footprint nd sigE ni(nt performne overhedF sn order to trget emedded systemsD some reserh works hve tried to tkle these limittionsX memory footprint n e redued to few hundreds of uf ql et l@PHHTAqlD rostD nd prnzD ut the inry ode produed often presents lower performne euse of the smller mount of optimizing intelligene emedded in the ts omE piler hylor@PHHPAF sn deqolD the ojetive is to redue the ost inurred y runtime ode genertionF yur pproh llows generting ode t lest IH times fster thn trditionl tssX tss hrdly go elow IHHH yles per instrution generted while we otin PS to VH yles per instrution generted on the xUH proessorF yur pproh is similr to prtil evlution tehE niques gonsel nd xoël@IWWTAD tones@IWWTAD whih onsists in preEomputing during the stti ompiltion psses the mximum of the generted ode to redue the runEtime overhedF et runEtimeD the (nliztion of the mhine gontents PI ode onsists inX seleting ode templtesD (lling preEompiled inry ode with dt vlues nd jump ddressesF sing deqol we ompile sttilly n ad hoc ode genertor @the ompiletteA for eh kernel to speilizeF he origiE nlity of our pproh relies in the possiility to perform runEtime instrution seletion depending on the data to proess ghrles@PHIPAF gode speiliztion is tehnique similr to prtil evlutionF peilE iztion n e done sttillyD t ompiltion timeD or dynmillyF gCC templtes might e the most well known stti speilizerF he developer writes funtion tht is prmetrized y list of types or integerEonstnt prmetersF hen the templte is usedD the user indites missing prmeE ters nd the ompiler utomtilly genertes the new funtion ording to those prmetersF his rings more)exiility during the development proE ess t the expense of fst growing inry size @for eh set of prmetersD new funtion is genertedAF roweverD the templte prmeter vlues hve to e known t ompile timeD whih strongly limits the numer of ode optiE miztions pplileF iquivlent systems tht operte t runEtime re less used nd inlude lrger diversity of pprohesD whih n e regrouped into di'erent teE goriesF pullyEmnul pprohes rely on the user to desrie wht should e generted t runEtime frifult nd ghrles@PHHRAD ingler et l@IWWTAinglerD rsiehD nd ushoekF ith this pprohD the user hs (ne ontrol over the generted odeF emiE mnul pprohes rely on the user to nnotte prmeters tht should e speilized qrnt et l@PHHHAqrntD wokD hiliposeD ghmersD nd iggersF pullyEutomti pprohes try to detetD t ompileEtimeD the ode prts tht ould ene(t from runEtime ode genertion veone nd vee@IWWRAD gonsel et l@IWWVAgonselD rornofD wrletD wullerD hiultD olnshiD vwllD nd xoyéD wok et l@PHHHAwokD ghmersD nd iggersF ih pproh voids n exE plosion in ode size while mintining lrger spetrum in whih it n e usedF e mjor dvntge is the pility to over the whole funtion ppliE tion domin without hving to speulte on prmeter vluesF he mjor drwk isD of ourseD tht prt of the ompiltion ost hs to e pid t runEtime nd hs to e mortized in one wy or notherF rious optimiztions n e performed in the vrious times of pplition lifetimeD for instne during stti ompiltion @where most optimiztions re usully performedAD during link time hwrz et l@PHHIAhwrzD heryD endrewsD nd vegendreD he utter et l@PHHPAhe utterD he fusD nd he fosshere or during instlE ltion time like eve hley nd hongrr@IWWVAF ome tools use omE plex shemes like pp prigo nd tohnson@IWWVAD where multiple ode vrints re genertedD ompiled nd then evluted t instlltion timeF henD during progrm initiliztion the odelets re seleted y plnner tht is prmetrized y the size of the hp to e omputedF enother exE mple tht use similr pproh is eve hley nd hongrr@IWWVAF ome other optimiztions re stged ross severl timesF por instneD itE ertive ompiltion umultes informtion through di'erent timesF ith enough informtionD it rolls k to n erlier time to perform new optimizE tionsF ro(leEguided ompiltion @qgA uses exeution tres otined y running the pplition with lerning dtEset to perform new optimizE tionsF fut few tools re le to perform optimiztion sed on the runEtime environmentF vte ode speiliztion is very lose to our pprohF qenerlly spekingD these pprohes preEompile sttilly templte version of the pplition odeD whih is ompleted t runtime y ode speilizerF g ingler et l@IWWTAinglerD rsiehD nd ushoek extends the g syntx y dding syntti elements like or d to desrie prts of ode tht will e generted t runEtimeF he ompiltion phse trnsforms g expressions into n sntermedite epresenttion @sAF et runE time the s is ssemled nd ompiled vi simpli(ed ompiler kEendF hyg qrnt et l@PHHHAqrntD wokD hiliposeD ghmersD nd iggers is tool tht retes ode genertors from n nnotted g odeF vike gD it dds some tokens suh s d to evlute g expressions nd injet the results s n immedite vlue into the mhine odeF glp wok et l@PHHHAwokD ghmersD nd iggers uses pro(leEguided ompiltion to detet funtions tht ould ene(t from runtime ode speiliztion nd generte the ode genertor using hygF empo gonsel et l@IWWVAgonselD rornofD wrletD wullerD hiultD olnshiD vwllD nd xoyé works on n unnnotted suset of gF st nlyses the soure ode to detet prts of the ode tht ould ene(t from onstnt propgtionD nd retes inry templte from itF et runEtimeD the templte is (lled with missing vlE ues nd exeutedF pius veone nd vee@IWWRAD veone nd vee@IWWTA uses similr pproh to empoD pplied to wvF yur pproh di'ers from those tools trgeting lte ode speiliztion y usingX

• lowElevel ode representtion with vetor desriptionD • no mnipultion of yteEode t runtimeD • the pility to ontrol the ode genertionD • the pility to perform rossErhiteture ode genertionF epprohes for multiEore rhitetures mostly use lssil tsF yur pE proh tries to void the use of yteEode mnipultion to fous on speilizE tion using runEtime informtionF vvw vttner@PHHPA @vow vevel irtul whineA is ompiltion frmework tht n trget mny rhiteturesD inluding xVTD ew or F yne of its dvntges is the uni(ed internl representtion @vvw sA tht enode virtul lowElevel instrution with some highElevel informtion emedded on itF rious tools were uilt on top of itD strting with lngD gGgCCGyjetiveEg ompilerF ith the relese of the ghe toolkit RFID the xvidi ompiler is sed on vvwF he driver lods textul representtion of the ssemly lnguge trgeting the qD nd then dynmilly ompiles it to inry representtionF his tehnique is here minly used to hide the implementtion detils of xvidi qsD nd not in the purpose of runtime optimiztionsF gontents PQ 1.5 Conclusion sn this pperD we hve introdued deqol s tool for runtime ode genertion thnks to the integrtion of ompilettes in inry pplitionD nd hve illustrted the ene(ts of using deqol to optimize proessing kernelsF e hve shown tht deqol n esily ompete with highly optimized ode produed y stti ompiler with little e'ortX the ode produed hs etter performne thn ode sttilly ompiled with full optimiztionD nd furthermore the qulity of the ode produed with deqol is onsistent nd does not depend on ompiler9s optionsF deqol lso llows to speilize the ode of proessing kernel for prtiulr set of runEtime dtD whih is not possile using stti ompilerF e hve shown tht for proessing kerE nels with high dependeny on the dt to proess the performne inrese n e hugeF feuse deqol is relted to the genertion of mhine inry instrutionsD its sope of pplition is tully restrited to the proessorF sn order to use these optimiztion tehniques in lrge sle pltformsD eFgF wogs or rg lustersD one must rely on tools of higher level for the prlleliztion of n pplition on multiple proessing elementsF puture work will present how it is possile to integrte kernels optimized with deqol9s ompilettes in lrge sle pplitionsF deqol is urrently under tive developmentF st is le to produe ode for multiple pltformsX xvidi qsD ew proessors @tzelleD swhD humD xiyxAD the xUHD nd other sg proessors under xheF References eyok@PHHQA eyok t @PHHQA e rief history of justEinEtimeF egw gomput urv QSXWU! IIQ frifult nd ghrles@PHHRA frifult uD ghrles r @PHHRA i0ient dt driven runEtime ode genertionF snX roF of eventh orkshop on vngugesD gompilersD nd unE time upport for lle ystemsD roustonD exsD e ghrles@PHIPA ghrles r @PHIPA fsi infrstruture for dynmi ode genertionF snX ghrles rD gluss D étrot p @edsA workshop 4hynmi gompiltion iverywhere4D in onjuntion with the Uth riieg onfereneD risD prne gonsel nd xoël@IWWTA gonsel gD xoël p @IWWTA e generl pproh for runEtime speilE iztion nd its pplition to gF snX roeedings of the PQth ennul ymposium on riniples of rogrmming vngugesD pp IRS!IST gonsel et l@IWWVAgonselD rornofD wrletD wullerD hiultD olnshiD vwllD nd xoyé gonsel gD rornof vD wrlet D wuller qD hiult D olnshi ixD vwll tD xoyé t @IWWVA empoX speilizing systems pplitions nd eyondF egw gomput urv QH@QesAD hys IHFIIRSGPVWIPIFPVWIRHD v httpXGGdoiFmForgGIHFIIRSGPVWIPIFPVWIRH gouroussé nd ghrles@PHIPA gouroussé hD ghrles r @PHIPA hynmi ode generE tionX en experiment on mtrix multiplitionF snX roeedings of the orkEinErogress essionD vgi PHIP PR gontents he utter et l@PHHPAhe utterD he fusD nd he fosshere he utter fD he fus fD he fosshere u @PHHPA ifting out the mudX low level CC ode reuseF sqvex xot QU@IIAXPUS!PWID hys IHFIIRSGSVQVSRFSVPRRSD v httpXGGdoiFmForgGIHFIIRSGSVQVSRFSVPRRS ingler et l@IWWTAinglerD rsiehD nd ushoek ingler hD rsieh gD ushoek wp @IWWTA gX e vnguge for righEvevelD i0ientD nd whineEindependent hynmi gode qenertionF snX sn ymposium on riniples of rogrmming vngugesD pp IQI!IRR prigo nd tohnson@IWWVA prigo wD tohnson q @IWWVA pftwX en dptive softwre rhiE teture for the ppF snX roF siii sntlF gonfF on eoustisD peehD nd ignl roE essingD ettleD eD vol QD pp IQVI!IQVRD v iteseerFistFpsuFeduGfrigoWV'twFhtml ql et l@PHHTAqlD rostD nd prnz ql eD rost gD prnz w @PHHTA rotpthwX n e'etive ts ompiler for resoureEonstrined deviesF snX ii 9HTD egwD xew orkD xD eD pp IRR!ISQ qrnt et l@PHHHAqrntD wokD hiliposeD ghmersD nd iggers qrnt fD wok wD hilipose wD ghmers gD iggers t @PHHHA hygX n expressive nnottionEdireted dynmi ompiler for gF heor gomput i PRV@IEPAXIRU!IWWD hys IHFIHITGHQHRE QWUS@HHAHHHSIEUD v httpXGGdxFdoiForgGIHFIHITGHQHREQWUS@HHAHHHSIEU tones@IWWTA tones xh @IWWTA en introdution to prtil evlutionF egw gomput urv PVXRVH!SHQ uotzmnn et l@PHHVAuotzmnnD immerD wössenökD odriguezD ussellD nd gox uotzmnn D immer gD wössenök rD odriguez D ussell uD gox h @PHHVA hesign of the jv hotspot lient ompiler for jv TF egw rns erhit gode yptim S@IAXUXI!UXQPD hys IHFIIRSGIQTWQWTFIQUHHIU vttner@PHHPA vttner g @PHHPA vvwX en snfrstruture for wultiEtge yptimiztionF wster9s thesisD gomputer iene heptFD niversity of sllinois t rnEghmpignD rnD sv veone nd vee@IWWRA veone wD vee @IWWRA vightweight unEime gode qenertionF ehF repFD heprtment of gomputer ieneD niversity of welourne veone nd vee@IWWTA veone wD vee @IWWTA e helrtive epproh to unEime gode qenertionF snX sn orkshop on gompiler upport for ystem oftwre @gD pp V!IU wok et l@PHHHAwokD ghmersD nd iggers wok wD ghmers gD iggers t @PHHHA glpX tool for utomting seletive dynmi ompiltionF snX roeedings of the QQrd nnul egwGsiii interntionl symposium on wirorhitetureD egwD xew orkD xD eD wsgy QQD pp PWI!QHPD hys IHFIIRSGQTHIPVFQTHISVD v httpXGGdoiFmForgGIHFIIRSGQTHIPVFQTHISV hwrz et l@PHHIAhwrzD heryD endrewsD nd vegendre hwrz fD hery D enE drews qD vegendre w @PHHIA ltoX e linkEtime optimizer for the intel iEQP rhitetureF snX sn roF PHHI orkshop on finry rnsltion @fEPHHI hylor@PHHPA hylor x @PHHPA e justEinEtime ompiler for memoryEonstrined lowE power deviesF snX tv w9HPD ixs essoitionD ferkeleyD geD eD pp IIW!IPT hley nd hongrr@IWWVA hley gD hongrr t @IWWVA eutomtilly tuned linE er lger softwreF snX upergomputing IWWVX righ erformne xetworking nd gomputingD v httpXGGwwwFsFutsFeduG£whleyGppersG tlssWVFps

 work)owX from the writing of pplition9s soure ode to the exeution of kernel generted t runtime 1.2.2 Workow of code generation he uilding nd the exeution of n pplition using deqol onsists of the following stepsX writing the soure odeY ompiling the inry ode of the pplition nd the inry ode of ompilettes using stti toolsY generting the inry ode of kernels y ompilettesY running the kernelsF hese steps re illustrted in pigure IFP nd re explined elowX Application development time: writing the source code his tsk is hndled y the pplition developerD ndGor y highElevel toolsF he soure ode of ompilettes is written in speilized .cdg soure (les tht llow for the mix of Cdg nd C lngugesD while the rest of the pplition softwre omponents re written using stndrd progrmming lngugeD suh s gF Rewrite time: generation of C source les his step onsists in soureE toEsoure trnsformtionX the .cdg soure (les re trnslted into stndrd C soure (les y degoaltocD whih is one of deqol toolsF

 generted from (gure IFT pigF IFUX finry ode @disssemledA of the kernel generted y the omE pilettes for the slr multiplitionD with alpha a RPF por the ske of simE pliityD gurd registers re not shown hereF (rst exploits mtrix properties suh s mtrix sizeD element sizeD nd memory ddressesY the seond exploits the vlues of mtrix elementsF 1.3.1.1 Reference implementation yur im is to perform the stndrd mtrix multiplition s desried in eqution IFID where aD b nd c stnd respetively for elements of mtries [A]D [B] nd [C] of sizes n × pD p × q nd n × qX ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , q}, c ij =

 the kernel 's structure */ (kernel_templ , v) = template_gen (A , B , C); /* process matrix multiplication */ for (y =0; y < n; y ++) { for (i =0; i < p; i += v){ /* specialize instructions on matrices ' data */ kernel = data_gen (kernel_templ , A , y , i); if (NULL != kernel) kernel (y , i); } } pigF IFIHX smplementtion of the mtrix multiplition @pseudoEodeA with ode speiliztion on mtrix vlues 1.3.2 Experimental results 1.3.2.1 Target architecture e trget in this work the emedded pltform lled ryw @formerly ltform PHIPAD jointly developed y wiroeletronis nd gieD nd presented in detils in hpter ?? of this ookF gontents IU