N

N

Introduction to Dynamic Code Generation an
Experiment with Matrix Multiplication for the
STHORM Platform

Damien Couroussé, Victor Lomiiller, Henri-Pierre Charles

» To cite this version:

Damien Couroussé, Victor Lomiiller, Henri-Pierre Charles. Introduction to Dynamic Code Generation
an Experiment with Matrix Multiplication for the STHORM Platform. M. Torquati, K. Bertels, S.
Karlsson, and F. Pacull. Smart Multicore Embedded Systems, Springer Verlag, 2013, 10.1007/978-1-
4614-8800-2_6 . hal-01228147

HAL Id: hal-01228147
https://hal.science/hal-01228147

Submitted on 19 Nov 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-01228147
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 1

Introduction to Dynamic Code

Generation — an Experiment with
Matrix Multiplication for the STHORM

Platform

Damien Couroussé, Victor Lomiiller, and Henri-Pierre Charles

Abstract The processing applications that are now being used in mobile
and embedded platforms require at the same time a fair amount of process-
ing power and a high level of flexibility, due to the nature of the data to
process. In this context, we propose a lightweight code generation process
that enables the capability to perform data-dependent optimizations, at run-
time, for processing kernels. In this paper, we present the motivations and
the use of deGoal, a tool designed to build fast and portable binary code
generators, called compilettes. We illustrate the use of compilettes on a typi-
cal CPU-bounded processing kernel: matrix multiplication. We were able to
outperform the compiler of our target platform (the STxP70 processor of
the STHORM platform): we obtained a reduction of the execution time of
21 % and 17 %, respectively for integer and floating-point multiplication with
256 x 256 matrices. Furthermore, code specialization on the data to process
allows us to further increase the performance of the multiplication kernel by
a factor of more than 10x in favorable conditions.

Damien Couroussé
CEA, LIST, DACLE/LIALP, F-38054 Grenoble, France e-mail: damien.courousse@cea.fr

Victor Lomiiller
CEA, LIST, DACLE/LIALP, F-38054 Grenoble, France e-mail: victor.lomuller@cea.fr

Henri-Pierre Charles
CEA, LIST, DACLE/LIALP, F-38054 Grenoble, France e-mail: henri-pierre.charles@cea.fr






Contents

1 Introduction to Dynamic Code Generation — an
Experiment with Matrix Multiplication for the

STHORM Platform .......... ... ... ... ... ... iiiiiio.. 1
Damien Couroussé, Victor Lomiiller, and Henri-Pierre Charles
1.1 Introduction .......... ... i 3
1.2 Overview of deGoal. ... ... .. i 6
1.2.1  Kernels and compilettes ........................ 6
1.2.2  Workflow of code generation..................... 8
1.2.3 A Tutorial Example . ............. ... ... ...... 9
1.3 An experiment on matrix multiplication.................. 13
1.3.1  Implementation of matrix multiplication .......... 13
1.3.2  Experimental results ........................... 16
1.4  Related work ...... ... 19
1.5  Conclusion ........... ... 23
References . ... ... ... . i 23

1.1 Introduction

Since the early beginning of computer history, one has needed programming
languages as an intermediate representation between algorithms description
and machine-readable instructions. In broad outline, running an algorithm on
a computer requires the following steps: (1- software development, implemen-
tation) the developer transcribes the algorithm into a source file containing
programming language instructions, (2— compilation) a compiler translates
these programming language instructions into machine code and performs
adaptations to the original code for optimized fit to the target execution
support, (3— execution) the processor reads and executes the machine in-
structions, loads the input data and produces the data results.



4 Contents

Because compilation is performed before the program is run, the execution
context and run-time data are not known at the time of code generation
(Figure 1.1a). This means that, in order to leverage such information in
code optimizations, one has either to assume about the characteristics of
the execution context (and to provide verification mechanisms), to add extra
instructions to adapt the program behaviour depending on runtime data,
which is known as code specialization, or to generate the program’s machine
code at run-time, after the execution context is known.

Dynamic code generation can be achieved by interpretation or compi-
lation at runtime [Aycock(2003)]. In classical frameworks, the aim is to
provide a generic infrastructure for code generation, bounded by the syn-
tactic and semantic definition of a programming language. The generality
of such solutions comes at the expense of an important overhead in code
generation, both in terms of memory footprint and computing power. A
well-known example is the Java programming language, designed to en-
hance application portability: Java source code is written without a pri-
ori knowledge of the platform that will execute the final machine code,
thanks to a virtual machine that relies on an intermediate representa-
tion, the Java bytecode (Figure 1.1b). At runtime, the bytecode is ei-
ther interpreted or compiled into machine code as soon as the overhead
of code generation can be amortized by repeated calls of the generated
code [Kotzmann et al(2008)Kotzmann, Wimmer, Mdssenbock, Rodriguez, Russell, and Cox].
Despite the fact that a virtual machine has all required information to per-
form data-dependent optimizations, interesting values are difficult to use for
such systems owing to an already high code generation cost [Aycock(2003)].

Code optimization from run-time information is also useful for large-scale
parallel computing systems, where an application component can be popu-
lated on a lot of processing elements. This application component has to be
parametrisable so that its behaviour can be adapted to the processing ele-
ment where it is instantiated. To do so, one would need either (1) a generic
implementation that one can parameterise at instantiation but that will suffer
from the performance overhead brought by a generic implementation, or (2)
to modify and re-compile the component dynamically at run-time after one
knows where it will be finally executed. Being able to specialize the executed
code for each of the computing elements is likely to provide performance im-
provements, as long as the cost for such optimization remains modest. This
issue is applicable to all large-scale multi-processor platforms: from High
Performance Computers in data centers to multiprocessor Systems-on-Chip
(MPSoCs) in future embedded devices. Due to the distributed nature of com-
puting and memory resources in many-core platforms, it becomes challenging
to bring dynamic compilation capabilities to such platforms. Moreover, be-
cause of the non-negligible memory footprint of the frameworks for Just-In-
Time compilation (JITs), the limited size of the local memory in embedded
many-core platforms becomes another important bottleneck in this context.



Contents 5

RUNTIME

(c) runtime code generation with deGoal compilettes

Fig. 1.1: Hlustration of the static and dynamic compilation schemes, and
comparison with the runtime code generation with compilettes. IR stands
for Intermediate Representation

deGoal was designed to provide application developers the ability to imple-
ment application kernels adaptable at run-time depending on the execution
context, on the characteristics on the target processor, and furthermore on the
data to process: their characteristics and their values [Charles(2012)]. Usu-
ally in processing applications, most of the execution time is spent in a very
small portion of the whole application source code, which is most of the time
a computation-intensive task also called kernel. We assume that improving
the performance of kernels can leverage the overall application performance.
Therefore, the idea using deGoal is to embed ad hoc run-time code generators,
called compilettes, in a software application. Each compilette is specialized
to produce the machine code of one application kernel. On the contrary to
dynamic compilation, in our solution we embed at runtime only the neces-
sary processing intelligence to perform code optimizations that can exploit
the properties of the data to process, but no analysis of the intermediate
representation or a subset such as bytecode (Figure 1.1c). As a consequence,
this enables the production of very fast code generators (10 to 100 times
faster than typical frameworks for runtime code interpretation or dynamic
compilation). As such, deGoal provides a lightweight solution for dynamic
code generation applicable to massively parallel systems. The compilettes



6 Contents

offer a low memory footprint and very fast code generation. Furthermore,
deGoal was designed to provide very large portability, which makes it easily
applicable to heterogeneous platforms: The compilettes are compiled from
ANSI-C source code after source-to-source code transformations. This code
generation process that we propose here can target a large number of plat-
form architectures, which is only limited by the availability of a C compiler
for the processor that will perform the code generation at runtime.

In this paper, we present an approach to describe a specialized code gen-
erator. The aim is to build a system that:

e Minimizes the generation overhead compared to classical JIT systems.

e Allows more flexibility over the generated function application domain.
Specifically, we want to be able to select the data-type at run-time.

e Brings gain in performance, or at least similar performances, by removing
dead code, unused loads or by constant propagation. ..

Our main contribution in this paper is:

e The presentation of a way to describe how a code generator should behave
for a key part of an algorithm.

e To illustrate that taking into account run-time environment for auto-
tuning is possible, and how it offers a performance improvement.

e The illustrate the use of specialized code generation for the STHORM
platform.

The rest of this paper is organized as follows: section 1.2 introduces the core
ideas of deGoal and data-dependent code optimization, section 1.3 details the
use of our tool on matrix multiplication for the processors of a MPSoC, and
the results achieved. We end this chapter by providing an overview of the
related works in section 1.4.

1.2 Overview of deGoal

1.2.1 Kernels and compilettes

The two categories of software components around which our code generation
technique is organised are called kernels and compilettes.

Kernel A kernel is a small portion of code, which is part of a larger appli-
cation, and which is the target of our runtime code generation setup. Our
technique focuses on the optimisation at runtime of these small parts of
a larger application in order to improve the kernel’s performance. In the
context of the typical use of deGoal, good performance is understood as
one or several criteria among low execution time, low memory footprint
and low energy consumption.



Contents 7

Compilette A compilette is designed to generate the code of one kernel at
runtime. A compilette can be understood as an an hoc small code gener-
ator that is executed at application runtime. We use the term compilette
to underline the fact that, in order to achieve very fast code generation,
this small runtime generator does not embed all the optimisation tech-
niques usually carried out by a static compiler, but only the required ones
considering the target kernel to optimize.

In order to target computing architectures that include domain-specific ac-
celerators and to raise the level of abstraction of the source code, compilettes
are described using a mix of standard C and of a dedicated high-level ASM
language: Cdg [Charles(2012)]. This language has demonstrated its ability
to achieve performance improvements in comparison with highly optimised
static code [Couroussé and Charles(2012)]. We have chosen to stay with an
assembler-like language in order to stay as close as possible to the final run-
time model: an instruction-set processor. Our aim is furthermore to allow the
direct use of multimedia arithmetics and to provide flexible and easy support
to vectors and complex data sets.

The main paradigm shift relies in the fact that Cdg instructions describe
code to be generated instead of code to be executed. On the contrary to
common ASM languages, it is possible here to parametrise these instructions
with values known at runtime, and to use vector variables. The variables
manipulated are vector registers, whose size will be determined at the time
of code generation, when the use of the physical registers in the programming
context is known. It is also possible to map the assembly instructions to vector
instructions when they are available on the target processor, and to map the
assembly instructions to different arithmetic operators depending on the data
values to process. As we will illustrate in section 1.2.3.2, it is possible to mix C
instructions and Cdg instructions. In this case, the C source code will control
the code generation done in the Cdg instructions.

The instruction set includes:

A variable length register set The instruction set uses vectorial registers
with variable width and a variable number of elements. i.e. the program-
mer could define VectorType f float 64 8, to use any register of type
f as a vector of 8 elements of 64 bit floating point values.

Classical arithmetic instructions add, sub, mul, div, but also instructions
specific to the multimedia domain such as sad (sum of absolute differ-
ences), mma (matrix multiply and add) and FFT butterfly. These instruc-
tions can work on registers of variable length and type.

Load and store This family of instructions supports stride description. This
permits the description of complex memory access patterns.

Using this high-level instruction set, deGoal can generate the correspond-
ing instructions for processors which have native support, or generate opti-
mised code for processors without support. In both cases the code generation
is fast and produces efficient code.



Contents

runtime
binary

static
binary

.cdg

ED,
—2

.cdg.c

E®,
=,

ompilette]

deGoal
compilette

paltform
compiler

STATIC
DESIGN RUNTIME .
TIME COM.'I?IIhAEHON (data adaptation)’

Fig. 1.2: deGoal workflow: from the writing of application’s source code to
the execution of a kernel generated at runtime

1.2.2 Workflow of code generation

The building and the execution of an application using deGoal consists of
the following steps: writing the source code; compiling the binary code of the
application and the binary code of compilettes using static tools; generating
the binary code of kernels by compilettes; running the kernels. These steps
are illustrated in Figure 1.2 and are explained below:

Application development time: writing the source code This task
is handled by the application developer, and/or by high-level tools. The
source code of compilettes is written in specialized .cdg source files that
allow for the mix of Cdg and C languages, while the rest of the application
software components are written using a standard programming language,
such as C.

Rewrite time: generation of C source files This step consists in a source-
to-source transformation: the . cdg source files are translated into standard
C source files by degoaltoc, which is one of deGoal tools.

Static compilation time: compilation of the application The source
code of the application now consists in a set of standard C source files,
including the source code of the compilettes. The binary code of the ap-
plication is produced by a standard C compiler. This step is the same as
in the development of a standard C application.

Runtime: generation of kernel’s binary code At runtime, the com-
pilette generates optimized binary code for the kernel(s) to optimize. This
task can be executed on a processor that is different of the processor that
will later run the kernel. Furthermore, the compilette’s processor and the
kernel’s one do not necessarily need to have the same architecture. A com-
pilette can be run several times, for example as soon as the kernel needs
to be regenerated for new data to process. We have detailed on figure 1.2



w

—

© 00~ O U W N

Contents 9

int genericMul (int param, int PUSHRL 0x4000 ;;
val) G77 MAKE32 R12, 3 ;;
{ /.\G7? MP RO, RO, R12 ;;
return (param#*val); : POPRL 0x4000 ;;
} :G?‘? RTS
(a) Generic code in C : (¢) assembly code (val=10)
void mulCompile(cdgInsnT *code, PUSHRL 0x4000 ;;
int val) 677 SHL RO, 1;;
{ POPRL 0x4000 ;;
#[ 7 @77 RTS ;5
Begin code Prelude in.~ .~
mul out, in, #(val) 7 (d) assembly code (val=2)
rtn
End
T#: G77 MAKE32 R12, 10 ;;
} G7? MP RO, RO, R12 ;;
G77? RTS HA

(b) Compilette code (in Cdg)
(e) assembly code (val=10) for a leaf kernel

Fig. 1.3: A tutorial example: dynamic specialisation of multiplication.

two particular inputs of the compilette: data and hardware description.
The originality of our approach indeed relies in the generation of a binary
code optimized for a particular set of application data. At the same time,
the code generation is able to introduce hardware-specific features.
Runtime: kernel execution The program memory buffer filled by the
compilette is run on the target processor (not shown in figure 1.2).

1.2.3 A Tutorial Example

Our tutorial example illustrates how to handle simple kernels for scalar mul-
tiplication using deGoal (Figure 1.3). We introduce the main concepts of de-
Goal with the trivial example of the multiplication of two integer variables.
We then elaborate on vector multiplication. For the purpose of illustrating
how code generation is performed, our examples are based on the STxP70
processor, described in section 1.3.2.1. However, the source code of the com-
pilettes illustrated here could be applied straightforward to other processor
architectures.

Tt W N =

W N



10 Contents

1.2.3.1 Simple multiplication

We want to perform the runtime specialization of the generic function
genericMul that multiplies two integers (Figure 1.3a). After specialization,
the function will be replaced by a function that multiplies by a constant
known at runtime, i.e. that specializes the val parameter of genericMul.
However, this parameter can only be known at runtime: at the initialization
time of the process or during the program execution. Furthermore, it is likely
to change multiple times.

The compilette mulCompile is a standard C function that includes ele-
ments of the Cdg language at lines 3 to 8 between #[ and 1# (Figure 1.3b).
Line 4 marks the moment where the code generation actually begins. Prelude
states that this block needs stack and register management: in the generated
code, we only save and restore the R14 register (link register) because R0 and
R1 are defined as scratch registers in the ABI (Application Binary Interface)
of the STxP70. code is the pointer to the code cache, and finally Prelude
comes with one parameter: in, which means that the generated kernel will
take one parameter named in. According to the ABI of our target processor,
in will be allocated by default on RO.

Finally, the rtn instruction is the return instruction that ends the ker-
nel routine and inserts the return instruction. End ends the code generation:
during code generation, the evaluation of this instruction triggers the com-
putation of branch locations and the flushing of internal data.

Line 5 performs the multiplication between register in and a C r-value
(written inside #()) and stores the result in out. In this case, the r-value
is simply val. The compilette, when called at runtime, produces a binary
kernel for the architecture selected at compilation time (Figures 1.3c and 1.3d,
respectively when val equals to 10 and 2). The two dotted arrows highlight
the locations where the runtime value val is evaluated and integrated into the
produced code as a constant. In this tutorial example we illustrate a simple
data-dependent optimization: the compilette generates either a kernel that
uses the standard multiplication instruction (Figure 1.3c), or the shift left
instruction (Figure 1.3d) depending on the value taken by val at runtime.

The source code of the compilette (Figure 1.3b) is statically processed by
deGoal. The specialized code generator is then generated and dumped into
a C file, which is statically compiled by the compiler of the target platform.
This approach removes any direct intermediate representation manipulation
which needs complex code generation. This way, we reduce the required com-
putation time to the minimum.

1.2.3.2 Scalar multiplication for vectors

Now that we have introduced the main elements of deGoal for the building
of code generators, we can safely introduce an important feature of our tool:



G W N =

Contents 11

void dot_product(int * A, int A_len, int alpha, int * B) {
for (int i=0; i<A_len; i++) {
B[i] = alpha * A[i];
T

Fig. 1.4: A trivial implementation of the scalar multiplication in C

vectorial registers. To do so, we will extend our previous example to the scalar
multiplication. Our aim is to compute [B] = « x [A], where [A] is the input
vector, a a scalar known at the time of code generation, and [B] is the result
vector.

Using standard C, we could write the scalar multiplication as in figure 1.4.
With dynamic code generation, we will specialise the kernel according to the
memory location of A, its length, and the value of «. As a consequence, the
kernel generated by the compilette will need only one invocation parameter:
the address of vector B (assuming that it has the same length than A).

There are several possibilities to implement such a code generator, and
we will illustrate two of them here: (1) with the vector support of deGoal
instructions (figure 1.5), and (2) by mixing cdg instructions with plain C to
control the code generation and loop over the vector elements (figure 1.6). The
disassembled binary code that will be produced for these two generated kernel
are illustrated in figures 1.7a and 1.7b, respectively. To use float arithmetic
instead of integer, one would simply need to replace int by float at lines 5
and 6 in figure 1.5 and at line 4 in figure 1.6, when declaring the types used
for scalar arithmetics.

In the compilette illustrated in figure 1.5, each of the elements of the vector
register v will be mapped to a physical register, as long as there are enough
registers available on our target processor. In figure 1.5, one can see in the
generated code that v has been mapped on registers R2 to R9. v being a vec-
tor register of 8 elements, the instruction 1w v, tmp will actually generate 8
successive memory loads with a stride of 1 word from the address contained
in the register variable tmp, mapped to R1. The code generator proceeds
similarly for the mul and sw instructions. The multiplication (MP) instruc-
tion of the STxP70 processor only works with two register arguments and
not with an indirect memory address as an argument. Thus, the instruction
make32 R12, 42 instruction at line 2 of figure 1.7a is automatically gener-
ated by mul to store the contents of variable alpha in the scratch register
R12.

Figure 1.7a also demonstrates the capability of our instruction scheduler
to deal with instruction latency and register dependencies. We will illustrate
this point on one example: on the STxP70 processor, the LW instructions
have a latency of 3 cycles. This means that, to avoid cycle stalls, the MP



O~ O U W N

10
11
12
13
14
15
16
17
18

12 Contents

void compilette(cdgInsnT* code, int * A_addr, int A_len, int
alpha) {
#L
Begin code Prelude B_addr
Type int32 int 32
Type vectorInt32 int 32 8
Alloc int32 tmp
Alloc vectorInt32 v

mv tmp, #(A_addr)
lw v, tmp

mul v, v, #(alpha)
sw B_addr, v

rtn

Free tmp, v
End

1#;

}

Fig. 1.5: Implementation of a compilette for the scalar multiplication with
vector registers. For the sake of simplicity, we assume that we have enough
registers available to allocate vectors A and B at once.

instruction on R2 (line 6) must come 3 cycles after the instruction LW R2
(line 3).

The main difference of the C-controlled kernel (figure 1.6) with the vec-
torized kernel (figure 1.5) comes from the use of the same register variable
tmp, mapped on the physical register R5. tmp successively stores each of the
memory loads from vector A (A_addr) and is then used to store the result
of the multiplication by « (alpha_r). Because the same physical register R5
is used to perform all of the store and multiplication operations for each
of the vector elements, our instruction scheduler is not able to bundle the
instructions generated in this kernel because of register dependencies. As a
consequence, the binary code generated from this kernel (figure 1.7b) is far
less compact than the code in figure 1.7a.

To give an idea of the level of optimisation enabled in this example, we
compare the execution times of the kernels in figures 1.7a and 1.7b and of the
C version illustrated in figure 1.4. The compilation is performed with the -03
optimization flag, and the execution times are measured using the simulator
of the STxP70 processor in CAS mode, presented later in section 1.3.2.1. The
kernels execute respectively in 51, 71 and 80 cycles for two vectors containing
8 elements. The binary code of the C version counts 18 instruction bundles.
This code is even smaller than our kernel in figure 1.7a because the C kernel
uses the hardware loop instructions of the STxP70. We could help the C
compiler with hints about vectorisation (e.g. #pragma unroll), but unrolling



—

O~ O U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Contents 13

void compilette(cdgInsnT* code, int * A_addr, int A_len, int
alpha) {
#L
Begin code Prelude B_addr
Type scalar32_t int 32

Type addr_t uint 32
Alloc scalar32_t alpha_r
Alloc addr_t A_addr_r

Alloc scalar32_t tmp

mv alpha_r, #(alpha)
mv A_addr_r, #((unsigned int)A_addr)

J#;
for (int i=0; i<A_len; i++) {
#L
lw tmp, @(A_addr_r + #(i))
mul tmp, tmp, alpha_r
sw Q(B_addr + #(1i)), tmp
J#;
}
#L
rtn
Free tmp, A_addr_r, alpha_r
End
J#;
}

Fig. 1.6: A compilette for the scalar multiplication. The unrolling of the
product is controlled by C statements

the multiplication at the time of static compilation is difficult because the
vector lengths are not known. On the contrary, at runtime, it becomes easy to
perform loop unrolling knowing the lengths of the vector that our kernel will
process. For larger loops where unrolling would incur a loss in performance,
we could as well use branch instructions and loop structures. This is not
shown in this paper for the sake of brevity.

1.3 An experiment on matrix multiplication

1.3.1 Implementation of matrix multiplication

This section describes the implementation of a processing kernel for matrix
multiplication in order to illustrate the use of deGoal. We describe first a
reference implementation, which is statically compiled with the platform’s
compiler. We then describe two improved implementations using deGoal: the



OO Utk Wk~

14 Contents

PUSHRL 0x43F8;; PUSHRL 0x4038;;
MAKE32 R12, 42; MAKE32 R1, 16176;; MAKE32 R4, 16152; MAKE32 R1, 42;
LW R2, @(R1+0x0);; LW R5, @(R4 + 0x0);;
LW R3, @(R1+0x4);; MP R5, R5, R1l;;

LW R4, @(R1+0x8);; SW @(RO + 0x0), R5;;
LW R5, @(R1+0xC); MP R2, R2, R12;; LW R5, @(R4 + 0x4);;
LW R6, @(R1+0x10); MP R3, R3, R12;; MP R5, R5, R1l;;

LW R7, @(R1+0x14); MP R4, R4, R12;; SW @(RO + 0x4), Rb5;;
LW R8, @(R1+0x18); MP R5, R5, R12;; LW R5, @(R4 + 0x8);;
LW R9, @(R1+0x1C); MP R6, R6, R12;; MP R5, R5, R1l;;

SWw @(RO+0x0), R2; MP R7, R7, R12;; SW @(RO + 0x8), R5;;
SW @(RO+0x4), R3; MP R8, R8, R12;; LW R5, @(R4 + 0xC);;
SW @(RO+0x8), R4; MP R9, R9, R12;; MP R5, R5, R1l;;

SW @(RO+0xC), R5;; SW @(RO + 0xC), R5;;
SW @(R0O+0x10), R6;; LW R5, @(R4 + 0x10);;
SW @(R0O+0x14), R7;; MP R5, R5, R1;;

SW @(RO+0x18), R8;; SW @(RO + 0x10), Rb5;;
SW @(RO+0x1C), R9;; LW R5, @(R4 + 0x14);;
POPRL 0x43F8;; MP R5, R5, R1;;

RTS;; SW @(RO + 0x14), R5;;

LW R5, @(R4 + 0x18);;
MP R5, R5, R1;;

SW @(RO + 0x18), Rb6;;
LW R5, @(R4 + 0x1C);;
MP R5, R5, R1l;;

SW @(RO + 0x1C), R5;;
POPRL 0x4038;;

RTS;;

(a) kernel generated from figure 1.5

(b) kernel generated from figure 1.6

Fig. 1.7: Binary code (disassembled) of the kernel generated by the com-
pilettes for the scalar multiplication, with alpha = 42. For the sake of sim-
plicity, guard registers are not shown here.

first exploits matrix properties such as matrix size, element size, and memory
addresses; the second exploits the values of matrix elements.

1.3.1.1 Reference implementation

Our aim is to perform the standard matrix multiplication as described in

equation 1.1, where a, b and ¢ stand respectively for elements of matrices [4],
[B] and [C] of sizes n X p, p X ¢ and n X ¢:

p
Vi € {1,...,n},Vj S {1,...,q},cij :Zaikbkj (1.1)
k=1

The reference implementation of this algorithm is illustrated in Figure 1.8.
We used it as a reference implementation for our experimental measurements.

© 0~ UWN -



Contents 15

clear (C)
for (y=0; y < mn; y++) {
for (x=0; x < q; x++) {
for (i=0; i < p; i++) {
Clx,yl] = C[x,y] + A[i,y] * Blx,1il]
¥

Fig. 1.8: Reference implementation of the matrix multiplication (in pseudo
C code)

1.3.1.2 First implementation in a compilette

A simplified overview of our implementation of the matrix multiplication
using deGoal is illustrated in Figure 1.9. compilette is the code generator
that produces an optimized kernel function kernel, which encompasses the
inner-most loop from Figure 1.8. The code generated for kernel depends
on the properties of matrices A, B and C : row and column sizes, memory
alignment and address of the data in memory. These values are precomputed
and propagated into the instructions of kernel at code generation time. In
consequence, kernel does not need invocation parameters.

This implementation of kernel is very similar to the reference implemen-
tation introduced above, at the exception that all the constants describing
matrix properties, which are known at code generation time, have been prop-
agated into the generated code. As we will show in the results section, these
improvements alone already contribute to a good performance improvement.

/* generation of the kernel’s code x/
(kernel, v) = compilette(A, B, C)

/% compute matrix multiplication */

clear (C)
kernel () ;

Fig. 1.9: Optimized implementation of the matrix multiplication using deGoal
(in pseudo-code)

1.3.1.3 Kernel specialization on matrix values

If the matrices to process are sparse or contain remarkable data values, it is
possible to further increase performance by specializing the generated code



16 Contents

depending on the element values of the matrix to process. We illustrate the
data-dependent specialization of our processing kernel with a naive algorithm
for sparse matrices. Usually, applications that involve the processing of sparse
matrices will move to different processing algorithms and to a dedicated rep-
resentation of data. However, our aim is to illustrate here how, thanks to
the use of data-dependent optimizations with runtime code generation, it is
possible to drastically improve the performance of our base algorithm.

The code generation is split in two phases (Figure 1.10): template_gen
generates the global structure of the processing kernel that is independent of
data values in A. At each processing loop, data_gen fills the kernel’s code
upon data values in the row vector to process in A. When there is nothing
to execute (for example, all matrix values in the current row in A are null),
data_gen returns NULL and we immediately move to the next loop step.

This technique involves an extra overhead because the kernel’s code is
regenerated at each step in the innermost loop. However, as we will show
below, this overhead can be compensated very quickly for sparse matrices.

clear (C)

/* generate the kernel’s structure x/
(kernel_templ, v) = template_gen(A, B, C);

/% process matrix multiplication */
for (y=0; y < n; y++){
for (i=0; i < p; i+=v){
/* specialize instructions on matrices’ data */
kernel = data_gen(kernel_templ, 4, y, i);
if (NULL !'= kernel)
kernel(y, 1);
L

Fig. 1.10: Implementation of the matrix multiplication (pseudo-code) with
code specialization on matrix values

1.3.2 Experimental results

1.3.2.1 Target architecture

We target in this work the embedded platform called STHORM (formerly
Platform P2012), jointly developed by STMicroelectronics and CEA, and
presented in details in chapter ?? of this book.



Contents 17

The STxP70-4 processor is a 32-bit RISC core. It comes with a variable-
length instruction encoding and a dual issue VLIW architecture. Two sets of
hardware loop counters are provided to enable loop execution at maximum
speed without cycle overheads due to software control. The core processor
contains an internal extension for integer multiplication, and an optional
single-precision floating point extension used in this experiment.

The STHORM SDK is delivered with a full toolchain for compiling, de-
bugging, profiling and simulation in functional and cycle-accurate modes.
Our experiments are based on the platform’s toolchain and on the ISS sim-
ulator of the STxP70 core in CAS (cycle-accurate) mode. In this mode, the
simulator models all the latencies that can occur in the processor pipeline :
instruction latency, CPU stalls and register dependencies. The latencies of
memory accesses are not taken into account by this mode. All our experi-
ments are however using the scratchpad memories (TCDM and TCPM) of
the processor, which lowers the effect of this limitation of the simulator in
our experiments.

1.3.2.2 Port of deGoal for the STxP70 processor

deGoal handles by default register allocation and a simple mechanism for
instruction scheduling. A simple scheduler allows for the optimization of in-
struction scheduling with regards to instruction latencies and register depen-
dencies.

However, as compared to standard RISC processors, code generation for
the STxP70 processor is a bit more challenging, especially when moving to
runtime code generation. Thenceforth, we extended the port of deGoal for
this architecture with VLIW support: optimizing the dual issue and the con-
struction of instruction bundles. Also the floating-point support comes as an
extension and uses a separate register file of 16 32-bit registers. Our port of
deGoal supports all of these features of the STxP70.

1.3.2.3 Experimental setup

We have evaluated our optimized version of the matrix multiplication against
the reference implementation described in section 1.3.1.1.

The reference implementation is compiled in -03. Loop unrolling, sup-
port of hardware loop counters and of the floating-point extension are also
enabled. The best performance for the reference implementation was eventu-
ally obtained with an implementation close to the pseudo code described in
Figure 1.8, with the addition of #pragma unroll 8 on top of the innermost
loop.

The code generated by deGoal’s compilette does not depend on compiler
optimizations, because it is generated at run-time by the compilette. Hence



18 Contents

whatever the compiler optimizations selected, the execution time of the gener-
ated kernel remains constant. Compiler optimizations have however an effect
on the performance of the compilette, because it is statically compiled as a
standard application component. In our performance measurements, we have
used the same compiler options to compare the reference implementation and
our implementation using deGoal.

We have also exploited the VLIW extension of the STxP70-v4 core, using
the appropriate compilation flags. On the compilette’s side, VLIW support is
integrated in the cdg pseudo-ASM language of deGoal. As a consequence, it is
not exposed to the developer and the compilette is tailored to automatically
exploit this feature as soon as the processor supports it.

1.3.2.4 Measure of the code generation time

We have instrumented the compilette to measure the time spent in code
generation at run-time: code generation takes from 150 to 300 cycles per
instruction bundle generated. The variation of the average speed of code
generation per instruction bundles is due to the computation of instruction
bundling, the scheduling of instructions according to register dependencies
and the extra computations done at the end of code generation, for example
computing the jump addresses. The best code generation speed is achieved
for unrolled code without instruction bundling.

The code generation time is not taken into account in the speedup results
presented below, because it is not necessary to regenerate the code for each
matrix multiplication. As an indicator, code generation represents 100 % of
the execution time for a multiplication of 16 x 16 matrices, and less than
0,1 % for 256 x 256 matrices.

1.3.2.5 Performance of the processing kernels

Figure 1.11 illustrates the performance improvements achieved using deGoal
as compared to the reference implementation compiled with full optimization,
for two cases of code generation: using the hardware loop counters provided by
the STxP70 core (HW loop), and fully unrolling the kernel’s code (unrolled).
The speedup factor s represents the reduction factor of the execution du-
ration of our implementation as compared to the reference implementation.
We calculate it as follows: s = %, where t(ref) measures the time exe-
cution of the reference implementation, ¢(degoal) the time execution of the
generated kernel. Our implementation using compilette brings a good overall
performance improvement: when the matrix size is 256 x 256 elements, we
achieve a reduction of the execution time of 21 % for integer multiplication,
and of 17 % for floating-point multiplication.



Contents 19

1.25 - : ;
o—e int, HW loop
¥Y—v int, unrolled e ——mmm—- Y
1.20r| @ - fpx, HW loop P S 1
v ¥ fpx, unrolled [~

1.15¢

1.10

speedup factor

1.05

1.00f 1

0'9516 32 64 128 256
matrix size

Fig. 1.11: Speedup factor measured, for integer multiplication (plain line) and
floating-point multiplication (dashed line), according to the implementation
described in section 1.3.1.2.

Figure 1.12 illustrates the speedup factor measured when using code spe-
cialization on the data of matrix A, as presented in section 1.3.1.3. We illus-
trate here the most favourable case where matrix A is the identity matrix.
In this case, the looped implementation shows a huge speedup because of
the instructions removed from the kernel when null values are met in matrix
A. The unrolled version is not efficient, considering the favourable experi-
mental conditions, because a part of the code generation is performed during
kernel’s execution, and code unrolling requires a lot more instructions to be
generated.

1.4 Related work

There is an extensive amount of literature about approaches related to our
work with deGoal.

Dynamic compilation and interpretation are most of the time used together
in Just-In-Time compilers (JITs) [Aycock(2003)]. JITs use interpretation for



20 Contents

14 : . :
e—e int, HW loop
1 ¥Y—¥ int, unrolled
e o fpx, HW loop
fpx, unrolled

10

speedup factor

016 32 64 128 256
matrix size

Fig. 1.12: Speedup factor measured, for integer multiplication (plain line) and
floating-point multiplication (dashed line), according to the implementation
described in section 1.3.1.3.

the parts of the program that are run seldom, and dynamic compilation is
reserved for hostpots, which are identified by tracing the application activity
at runtime. Such techniques usually require embedding a large amount of
intelligence in the JIT framework, which means a large footprint and a sig-
nificant performance overhead. In order to target embedded systems, some
research works have tried to tackle these limitations: memory footprint can
be reduced to a few hundreds of KB [Gal et al(2006)Gal, Probst, and Franz],
but the binary code produced often presents a lower performance because of
the smaller amount of optimizing intelligence embedded in the JIT com-
piler [Shaylor(2002)].

In deGoal, the objective is to reduce the cost incurred by runtime code
generation. Our approach allows generating code at least 10 times faster
than traditional JITs: JITs hardly go below 1000 cycles per instruction
generated while we obtain 25 to 80 cycles per instruction generated on
the STxP70 processor. Our approach is similar to partial evaluation tech-
niques [Consel and Noél(1996), Jones(1996)], which consists in pre-computing
during the static compilation passes the maximum of the generated code to
reduce the run-time overhead. At run-time, the finalization of the machine



Contents 21

code consists in: selecting code templates, filling pre-compiled binary code
with data values and jump addresses. Using deGoal we compile statically an
ad hoc code generator (the compilette) for each kernel to specialize. The origi-
nality of our approach relies in the possibility to perform run-time instruction
selection depending on the data to process [Charles(2012)].

Code specialization is a technique similar to partial evaluation. Special-
ization can be done statically, at compilation time, or dynamically. C++
templates might be the most well known static specializer. The developer
writes a function that is parametrized by a list of types or integer-constant
parameters. When the template is used, the user indicates missing parame-
ters and the compiler automatically generates the new function according to
those parameters. This brings more flexibility during the development pro-
cess at the expense of a fast growing binary size (for each set of parameters,
a new function is generated). However, the template parameter values have
to be known at compile time, which strongly limits the number of code opti-
mizations applicable.

Equivalent systems that operate at run-time are less used and include a
larger diversity of approaches, which can be regrouped into different cate-
gories. Fully-manual approaches rely on the user to describe what should be
generated at run-time [Brifault and Charles(2004), Engler et al(1996)Engler, Hsieh, and Kaashoek].
With this approach, the user has a fine control over the generated code. Semi-
manual approaches rely on the user to annotate parameters that should be
specialized [Grant et al(2000)Grant, Mock, Philipose, Chambers, and Eggers].
Fully-automatic approaches try to detect, at compile-time, the code parts
that could benefit from run-time code generation [Leone and Lee(1994),
Consel et al(1998)Consel, Hornof, Marlet, Muller, Thibault, Volanschi, Lawall, and Noy¢,
Mock et al(2000)Mock, Chambers, and Eggers]. Each approach avoids an ex-
plosion in code size while maintaining a larger spectrum in which it can be
used. A major advantage is the capability to cover the whole function appli-
cation domain without having to speculate on parameter values. The major
drawback is, of course, that a part of the compilation cost has to be paid at
run-time and has to be amortized in one way or another.

Various optimizations can be performed in the various times of application
lifetime, for instance during static compilation (where most optimizations are
usually performed), during link time [Schwarz et al(2001)Schwarz, Debray, Andrews, and Legendre,
De Sutter et al(2002)De Sutter, De Bus, and De Bosschere] or during instal-
lation time like ATLAS [Whaley and Dongarra(1998)]. Some tools use com-
plex schemes like FFTW [Frigo and Johnson(1998)], where multiple code
variants are generated, compiled and then evaluated at installation time.
Then, during program initialization the codelets are selected by a planner
that is parametrized by the size of the DFT to be computed. Another ex-
ample that use a similar approach is ATLAS [Whaley and Dongarra(1998)].
Some other optimizations are staged across several times. For instance, it-
erative compilation accumulates information through different times. With
enough information, it rolls back to an earlier time to perform new optimiza-



22 Contents

tions. Profile-guided compilation (PGC) uses execution traces obtained by
running the application with a learning data-set to perform new optimiza-
tions. But few tools are able to perform optimization based on the run-time
environment.
Late code specialization is very close to our approach. Generally speaking,
these approaches pre-compile statically a template version of the application
code, which is completed at runtime by a code specializer. * C [Engler et al(1996)Engler, Hsieh, and Kaashoek]
extends the C syntax by adding syntactic elements like * or @ to describe
parts of code that will be generated at run-time. The compilation phase
transforms * C expressions into an Intermediate Representation (IR). At run-
time the IR is assembled and compiled via simplified compiler back-end.
DyC [Grant et al(2000)Grant, Mock, Philipose, Chambers, and Eggers] is a
tool that creates code generators from an annotated C code. Like " C, it adds
some tokens such as @ to evaluate C expressions and inject the results as an
immediate value into the machine code. Calpa [Mock et al(2000)Mock, Chambers, and Eggers|
uses profile-guided compilation to detect functions that could benefit from
runtime code specialization and generate the code generator using DyC.
Tempo [Consel et al(1998)Consel, Hornof, Marlet, Muller, Thibault, Volanschi, Lawall, and Noy¢|
works on an unannotated subset of C. It analyses the source code to detect
parts of the code that could benefit from constant propagation, and creates a
binary template from it. At run-time, the template is filled with missing val-
ues and executed. Fabius [Leone and Lee(1994), Leone and Lee(1996)] uses a
similar approach to Tempo, applied to ML. Our approach differs from those
tools targeting late code specialization by using;:

a low-level code representation with vector description,

no manipulation of byte-code at runtime,

the capability to control the code generation,

the capability to perform cross-architecture code generation.

Approaches for multi-core architectures mostly use a classical JIT. Our ap-
proach tries to avoid the use of byte-code manipulation to focus on specializa-
tion using run-time information. LLVM [Lattner(2002)] (Low Level Virtual
Machine) is a compilation framework that can target many architectures,
including x86, ARM or PTX. One of its advantages is the unified internal
representation (LLVM IR) that encode a virtual low-level instruction with
some high-level information embedded on it. Various tools were built on top
of it, starting with clang, a C/C+4/Objective-C compiler. With the release
of the CUDA toolkit 4.1, the Nvidia compiler is based on LLVM. The driver
loads a textual representation of the assembly language targeting the GPU,
and then dynamically compiles it to a binary representation. This technique
is here mainly used to hide the implementation details of Nvidia GPUs, and
not in the purpose of runtime optimizations.



Contents 23

1.5 Conclusion

In this paper, we have introduced deGoal as a tool for runtime code generation
thanks to the integration of compilettes in a binary application, and have
illustrated the benefits of using deGoal to optimize processing kernels.

We have shown that deGoal can easily compete with a highly optimized
code produced by a static compiler with little effort: the code produced has
better performance than a code statically compiled with full optimization,
and furthermore the quality of the code produced with deGoal is consistent
and does not depend on compiler’s options. deGoal also allows to specialize
the code of a processing kernel for a particular set of run-time data, which is
not possible using a static compiler. We have shown that for processing ker-
nels with a high dependency on the data to process the performance increase
can be huge.

Because deGoal is related to the generation of machine binary instructions,
its scope of application is actually restricted to the processor. In order to use
these optimization techniques in large scale platforms, e.g. MPSoCs or HPC
clusters, one must rely on tools of higher level for the parallelization of an
application on multiple processing elements. Future work will present how it
is possible to integrate kernels optimized with deGoal’s compilettes in large
scale applications.

deGoal is currently under active development. It is able to produce code for
multiple platforms: Nvidia GPUs, ARM processors (Jazelle, SIMD, Thumb,
NEON), the STxP70, and other RISC processors under NDA.

References

[Aycock(2003)] Aycock J (2003) A brief history of just-in-time. ACM Comput Surv 35:97—
113

[Brifault and Charles(2004)] Brifault K, Charles HP (2004) Efficient data driven run-time
code generation. In: Proc. of Seventh Workshop on Languages, Compilers, and Run-
time Support for Scalable Systems, Houston, Texas, USA

[Charles(2012)] Charles HP (2012) Basic infrastructure for dynamic code generation. In:
Charles HP, Clauss P, Pétrot F (eds) workshop "Dynamic Compilation Everywhere",
in conjunction with the 7th HiPEAC conference, Paris, France

[Consel and Nogl{(1996)] Consel C, Noél F (1996) A general approach for run-time special-
ization and its application to C. In: Proceedings of the 23th Annual Symposium on
Principles of Programming Languages, pp 145-156

[Consel et al(1998)Consel, Hornof, Marlet, Muller, Thibault, Volanschi, Lawall, and Noyé|
Consel C, Hornof L, Marlet R, Muller G, Thibault S, Volanschi EN,
Lawall J, Noyé J (1998) Tempo: specializing systems applications and
beyond. ACM Comput Surv 30(3es), DOI 10.1145/289121.289140, URL
http://doi.acm.org/10.1145,/289121.289140

[Couroussé and Charles(2012)] Couroussé D, Charles HP (2012) Dynamic code genera-
tion: An experiment on matrix multiplication. In: Proceedings of the Work-in-Progress
Session, LCTES 2012



24 Contents

[De Sutter et al(2002)De Sutter, De Bus, and De Bosschere] De Sutter B, De Bus
B, De Bosschere K (2002) Sifting out the mud: low level c++ code
reuse. SIGPLAN Not 37(11):275-291, DOI 10.1145/583854.582445, URL
http://doi.acm.org/10.1145/583854.582445

[Engler et al(1996)Engler, Hsieh, and Kaashoek] Engler DR, Hsieh WC, Kaashoek MF
(1996) ‘C: A Language for High-Level, Efficient, and Machine-independent Dynamic
Code Generation. In: In Symposium on Principles of Programming Languages, pp
131-144

[Frigo and Johnson(1998)] Frigo M, Johnson SG (1998) Fftw: An adaptive software archi-
tecture for the FFT. In: Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Pro-
cessing, Seattle, WA, vol 3, pp 1381-1384, URL citeseer.ist.psu.edu/frigo98fftw.html

[Gal et al(2006)Gal, Probst, and Franz] Gal A, Probst CW, Franz M (2006) HotpathVM:
an effective JIT compiler for resource-constrained devices. In: VEE 06, ACM, New
York, NY, USA, pp 144-153

[Grant et al(2000)Grant, Mock, Philipose, Chambers, and Eggers| Grant B, Mock M,
Philipose M, Chambers C, Eggers SJ (2000) DyC: an expressive annotation-directed
dynamic compiler for C. Theor Comput Sci 248(1-2):147-199, DOI 10.1016/S0304-
3975(00)00051-7, URL http://dx.doi.org/10.1016/S0304-3975(00)00051-7

[Jones(1996)| Jones ND (1996) An introduction to partial evaluation. ACM Comput Surv
28:480-503

[Kotzmann et al(2008)Kotzmann, Wimmer, M&ssenbock, Rodriguez, Russell, and Cox|
Kotzmann T, Wimmer C, Mdgssenbtck H, Rodriguez T, Russell K, Cox D (2008)
Design of the java hotspot client compiler for java 6. ACM Trans Archit Code Optim
5(1):7:1-7:32, DOI 10.1145/1369396.1370017

[Lattner(2002)] Lattner C (2002) LLVM: An Infrastructure for Multi-Stage Optimization.
Master’s thesis, Computer Science Dept., University of Illinois at Urbana-Champaign,
Urbana, IL

[Leone and Lee(1994)] Leone M, Lee P (1994) Lightweight Run-Time Code Generation.
Tech. rep., Department of Computer Science, University of Melbourne

[Leone and Lee(1996)] Leone M, Lee P (1996) A Declarative Approach to Run-Time Code
Generation. In: In Workshop on Compiler Support for System Software (WCSSS, pp
8-17

[Mock et al(2000)Mock, Chambers, and Eggers] Mock M, Chambers C, Eggers SJ (2000)
Calpa: a tool for automating selective dynamic compilation. In: Proceedings of
the 33rd annual ACM/IEEE international symposium on Microarchitecture, ACM,
New York, NY, USA, MICRO 33, pp 291-302, DOI 10.1145/360128.360158, URL
http://doi.acm.org/10.1145/360128.360158

[Schwarz et al(2001)Schwarz, Debray, Andrews, and Legendre| Schwarz B, Debray S, An-
drews G, Legendre M (2001) Plto: A link-time optimizer for the intel ia-32 architecture.
In: In Proc. 2001 Workshop on Binary Translation (WBT-2001

[Shaylor(2002)] Shaylor N (2002) A just-in-time compiler for memory-constrained low-
power devices. In: Java VM’02, USENIX Association, Berkeley, CA, USA, pp 119-126

[Whaley and Dongarra(1998)] Whaley RC, Dongarra J (1998) Automatically tuned lin-
ear algebra software. In: SuperComputing 1998: High Performance Networking and
Computing, URL http://www.cs.utsa.edu/ whaley/papers/ atlas_sc98.ps



