
HAL Id: hal-01228110
https://hal.science/hal-01228110v1

Submitted on 12 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using GPU for Multi-agent Soil Simulation
Guillaume Laville, Kamel Mazouzi, Christophe Lang, Laurent Philippe,

Nicolas Marilleau

To cite this version:
Guillaume Laville, Kamel Mazouzi, Christophe Lang, Laurent Philippe, Nicolas Marilleau. Using
GPU for Multi-agent Soil Simulation. PDP 2013, 21st Euromicro International Conference on Parallel,
Distributed and Network-based Computing, 2013, Belfast, Ireland. pp.392–399. �hal-01228110�

https://hal.science/hal-01228110v1
https://hal.archives-ouvertes.fr

Using GPU for Multi-agent Soil Simulation
Guillaume Laville, Kamel Mazouzi,

Christophe Lang and Laurent Philippe
Institut FEMTO-ST/DISC

Université de Franche-Comté, France
Email: guillaume.laville@univ-fcomte.fr

Nicolas Marilleau
UMI 209 UMMISCO IRD-UPMC

Bondy, France
Email: nicolas.marilleau@ird.fr

Abstract—Multi-Agent Systems (MAS) can be used to model
systems where the global behavior cannot be uniformly rep-
resented by standard techniques such as partial differential
equations or linear systems because the system elements have
their own independent behavior. This is, for instance, the case
in complex systems such as daily mobility in a city for example.
Depending on the system size the computing power needs for
the MAS may be as big as for more traditional linear numerical
systems and may need to be parallelized to fully represent real
systems. Graphical Processing Units (GPU) have already proven
to be an efficient support to execute large linear programs. In
this paper we present the use of GPU for the execution of Sworm,
a multi-scale MAS system. We show that GPU computing can be
efficient in that less regular case and when the agent behavior
is simple. We advocate for a wider use of the GPU in Agent
Based Models in particular for multi-scale systems with work
distribution between the CPU and GPU.

Keywords-multi-agent systems; GPU; parallel computing

I. INTRODUCTION

Physical systems are often modeled by mathematical repre-
sentations and their behavior simulated by dynamic differential
equations. This is possible when the behavior of the elements
of the system is uniformly driven by the same law, but when
these elements have their own behavior, the modeling process
is too complex to rely on this approach. Multi-Agent Systems
(MAS) is a recognized approach to model and simulate
systems where individuals have an autonomous behavior that
cannot be simulated by the evolution of a set of variables
driven by mathematical laws. MAS are often used to simulate
natural or collective phenomenons whose actors are too nu-
merous or various to provide a unified algorithm describing
the system evolution. The agent-based approach is to divide
these complex systems into individual, self-contained entities
with their smaller set of attributes and functions. But, as for
mathematical simulations, when the size of the Multi-Agent
System increases the need of computing power and memory
also increases. For this reason, multi-agent systems should
benefit from the use of distributed computing architectures.
Clusters and Grids are often identified as the main solution
to increase simulation performance but Graphical Processing
Units (GPU) are also a promising technology with an attractive
performance/cost ratio.

Conceptually an Agent Based Model (ABM) is a distributed
system as it favors the definition and description of large sets
of individuals, the agents, that can be run in parallel. Most

of the agent-based simulators are however designed with a
sequential scheme in mind and these simulators seldom use
more than one core for their execution. Due to simulation
scheduling constraints, data sharing and exchange between
agents and the huge amount of interactions between agents and
their environment, it is indeed rather difficult to distribute an
agent based simulator to take advantage of new multi-threaded
computer architectures. Thus, guidelines and tools dedicated
to MAS paradigm and HPC is now a need for other complex
system communities. Note that, from the described structure
(large number of agents sharing data), we can conclude
that MAS would more easily make good use of many-cores
computing than from other kinds of parallelism.

Another fact that advocates for the use of many-core in
MAS is the growing need for multi-scale simulations. Multi-
scale simulations explore problems with interactions between
several scales. The different scales use different granularities
of the structure and potentially different models. Most of the
time the lower scale simulations provide results to higher scale
simulations. In that case the execution of the simulations can
easily be distributed between the local cores and a many-core
architecture, i.e. a GPU device.

We explore in this paper the use of many-core archi-
tectures to execute many-core simulations. Our case study
is the Sworm simulator that aims at reproducing effects of
earthworms on bacteria dynamics in a bulked soil. In Section
?? of the paper we present the work related to MAS and
parallelization with a special focus on many-core use. We give
an overview of the Sworm simulator in Section ?? and we
detail its GPU implementation in Section ??. We present the
experiments and results in Section ?? then we conclude on the
possible generalization of our work.

II. GPU AND MULTI-AGENT SYSTEMS

A. Agent-Based Simulations

Agent-Based systems are often used to simulate natural or
collective phenomenons whose actors are too numerous or
various to provide a simple unified algorithm describing the
studied system dynamic [?]. The implementation of an agent
based simulation usually starts by designing the underlying
Agent Based Model (ABM). Most ABM are based around
a few types of entities: Agent, Environment and Interaction
Organization [?]. In the complex system domain, the environ-
ment often describes a real space, its structure (e.g. matter

organization in soils) and its dynamics (e.g. organic matter
decomposition). It is a virtual world in which agents represent
studied entities (e.g. biotic organisms) evolving. The actual
agent is animated by a behavior that can range between
reactivity (only react to external stimuli) and cognition (lives
its own process alongside other individuals). Interaction and
Organization define functions, types and patterns of commu-
nications of their member agents in the system [?]. Note
that, depending on the MAS, agents can communicate either
directly through special primitives or indirectly through the
information stored in the environment.

Agent based simulations have been used for more than one
decade to simulate complex systems and have proved their
interest in various scientific communities. Nowadays generic
agent based frameworks are promoted such as Repast [?] or
NetLogo [?] to implement simulations. Many ABM such as the
crown model representing a city-wide scale [?] tend however
to require a large number of agents to provide a realistic
behavior and reliable global statistics. Moreover, an achieved
model analysis needs to run many simulations identified into
an experiment plan to obtain enough confidence in a simula-
tion. In this case the available computing power often limits
the simulation size and the result range thus requiring the use
of parallelism to explore bigger configurations.

For that, three major approaches can be identified:
1) parallelizing experiments plan on a cluster or a grid (one

or few simulations are submitted to each core) [?], [?]
2) parallelizing the simulator on a cluster (the environment

of the MAS is split and run on several distributed
nodes) [?], [?]

3) optimizing simulator by taking advantage of computer
resources (multi-threading, GPU, and so on)[?]

In the first case, the experiments are run independently
of one another and only the simulation parameters change
between two runs. A simple version of an existing simulator
can thus be used. It does not imply model code changes except
for Graphical Unit Interface extracting as the experiments does
not run interactively but in batch. In the second and the third
case, model and code modifications are necessary. Only few
frameworks however introduce distribution in agent simulation
(Madkit [?] or MASON [?]) and parallel implementations
are often based on the explicit use of threads using shared
memory [?] or cluster libraries such as MPI [?].

Parallelizing a multi-agent simulation is however complex
due to space and time constraints. Multi-agent simulations
are usually based on a synchronous execution of time steps
by the agents that share the same environment. At each
time step, numerous events (space data modification, agent
motion) and interactions between agents happen. Distribut-
ing the simulation on several computers or grid nodes thus
implies to guaranty a distributed synchronous execution and
coherency, which often leads to poor performances or complex
synchronization problems. Multi-cores execution or delegating
part of this execution to others processors as GPUs [?] are
usually easier to implement since all the threads share the
data and the local clock.

Different agent patterns can be adopted in an ABMs such
as cognitive and reactive ones [?]. Cognitive agents act on
the environment and interact with other agents according to a
complex behavior. This behavior takes a local perception of
the virtual world and the agent past (a memory characterized
by an internal state and belief, imperfect knowledge about the
world) into account. Reactive agents have a much systematic
pattern of action based on stimuli response schemes (no or few
knowledge and state conservation in agent). The evolution of
the ABM environment, in particular, is often represented with
this last kind of agents. As their behavior is usually simple, we
propose in this paper to delegate part of the environment and of
the reactive agents execution to the graphical processing unit
of the computer. This way we can balance the load between
both CPU and GPU execution resources.

In the particular case of multi-scale simulations such as
the Sworm simulation [?] the environment may be used at
different levels. Since the representation of the whole simu-
lated soil area would be costly, the environment is organized
as a multi-level tree of small soil cubes which can be lazily
instantiated during the simulation. This allows to gradually
refine distribution details in units of soil as agents progress
and need those informations, by using a fractal process based
on the bigger-grained already instantiated levels. This charac-
teristic, especially for a fractal model, could be the key of the
distribution. For instance, each branch of a fractal environment
could be identified as an independent area and parallelized. In
addition Fractal is a famous approach to describe multi-scale
environment (such as soil) and its organization [?]. In that case
the lower scale simulations can also be delegated to the GPU
card to limit the load of the main (upper scale) simulation.

B. Introduction to GPU computing

Graphics Processing Unit devices are based on a massively-
parallel hardware architecture, which allows the execution of
a big amount of floating point instructions at the same time
and their computing power is often measured in hundred of
GFlops. These units were originally designed to be used by
the graphic driver for multimedia [?] or graphic processes. The
last few years saw however the apparition of new generations
of graphic cards based on more general purpose execution
units. These units can be programmed using GPGPU plat-
forms to solve various problems in HPC applications such as
linear algebra resolutions. They can be used both for dense
problems, such as CuBLAS, a GPU implementation of the
BLAS library, MAGMA [?] and sparse ones such as [?][?].
These applications are based on matrix manipulations where
a set of operations is applied multiple times on each input
data. The same kind of treatments are used in geometric
computations which also suit the GPU particularly and yield
to big performance gains.

These matrix-based data representation and SIMD compu-
tations are not so straightforward in Multi-Agent Systems,
where data structures and algorithms are tightly coupled to the
described simulation. However, works from existing literature
show that MAS can benefit from these performance gains on

various simulation types, such as traffic simulation [?], cellular
automatons [?], mobile-agent based path-finding [?] or genetic
algorithms [?].

An application-specific adaptation process was required in
the case of these MAS: some of the previous examples are
driven by mathematical laws (path-finding) or use a natural
mapping between a discrete environment (cellular automaton)
and GPU cores. Unfortunately, this mapping often requires
algorithmic adaptations in other models but the experience
shows that the more reactive a MAS is the more adapted its
implementation is to GPU.

C. MAS Implementation on GPU

The first step in the adaptation of an ABM to GPU platforms
is the choice of the language. On the one hand, the Java
programming language is often used for the implementation
of MAS due to its availability on numerous platforms or
frameworks and its focus on high-level, object-oriented pro-
gramming. On the other hand, GPU platforms can only run
specific languages as OpenCL or CUDA. OpenCL (supported
on AMD, Intel and NVIDIA hardware) better suits the porta-
bility concerns across a wide range of hardware needed the
agent simulators, as opposed to CUDA which is a NVIDIA-
specific library.

OpenCL is a C library which provides access to the un-
derlying CPUs or GPUs using an asynchronous interface.
Various OpenCL functions allow the compilation and the
execution of programs on these execution resources, the copy
of data buffers between devices, or the collection of profiling
information.

This library is based around three main concepts:
• the kernel, which represents a runnable program contain-

ing instructions to be executed on the GPU.
• the work-item (or task), which is analogous to the concept

of thread on GPU, in that it represents one running
instance of a GPU kernel.

• the work-group (or task-group) which is a set of work-
items sharing some memory to speed up data accesses and
computations. Synchronization operations such as barrier
can only be used across the same work-group.

Running an OpenCL computation consists in launching
numerous work-items that execute the same kernel. The work-
items are submitted to a submission queue to optimize the
available cores usage. A calculus is achieved once all these
kernel instances have terminated.

The number of work-items used in each work-group is an
important implementation choice which determines how many
tasks will share the same cache memory. Data used by the
work-items can be stored as N-dimensions matrices in local
or global GPU memory. Since the size of this memory is often
limited to a few hundred of kilobytes, choosing this number
often implies a compromise between the model synchroniza-
tion or data requirements and the available resources.

In the case of agent-based simulations, each agent can be
naturally mapped to a work-item. Work-groups can then be
used to represents groups of agents or simulations sharing

common data (such as the environment) or algorithms (such
as the background evolution process).

III. THE MIOR MODEL

The MIOR [?] model was developed by the GEODES Team
of IRD (ex UMMISCO) to simulate local interactions in a soil
between microbial colonies and organic matters. It reproduces
each small cubic units (0.002) of soil as a MAS.

Multiple implementations of the MIOR model have already
been realized, in Smalltalk and Netlogo, in 2 or 3 dimensions.
The last implementation, used in our work and referenced as
MIOR in the rest of the paper, is freely accessible online as
WebSimMior 1.

MIOR is based around two types of agents: (i) the Meta-
Mior (MM), which represents microbial colonies consuming
carbon and (ii) the Organic Matter (OM) which represents
carbon deposits occurring in soil.

The Meta-Mior agents are characterized by two distinct
behaviors:

• breath: the action converts mineral carbon from the soil
to carbon dioxide CO2 that is released in the soil.

• growth: by this action each microbial colony fixes the
carbon present in the environment to reproduce itself
(augments its size). This action is only possible if the
colony breathing needs where covered, i.e. enough min-
eral carbon is available.

These behaviors are described in the following algorithm ??.

Algorithm 1 Evolution step of each Meta-Mior (microbial
colony) agent

Input: mmList List of MM
Input: omList List of OM
Input: world Environment MIOR
breathNeed← world.respirationRate×mm.carbon
growthNeed← world.growthRate×mm.carbon
availableCarbon← totalAccessibleCarbon(mm)
if availableCarbon > breathNeed then

// Breath
mm.active← true
availableCarbon ← availableCarbon −
consumCarbon(mm, breathNeed)
world.CO2← world.CO2 + breathNeed
if availableCarbon > 0 then

// Growth
growthConsum← max(totalAccessCarbon(mm),

growthNeed)
consumCarbon(mm, growthConsum)
mm.carbon← mm.carbon+ growthConsum

end if
else

mm.active← false

end if

Since this simulation takes place at a microscopic scale, a
large number of these simulations must be executed at each
macroscopic simulation step to model realistic-sized unit of
soil, despite the small computation cost of each individual
simulation.

1http://www.IRD.fr/websimmior/

Workgroup

Kernel

Mior simulations

Workgroup Workgroup

Fig. 1. Execution distribution retained on GPU

IV. MIOR IMPLEMENTATION ON GPU

As a starting point, we realized a simple GPU implemen-
tation of the MIOR simulator, with only minimal changes to
the CPU algorithm. Execution times showed the inefficiency
of this approach, and highlighted the necessity of adapting the
simulator to take advantage of the GPU execution capabilities.
In this part, we show the main changes which were realized
to adapt the MIOR simulator on GPU architectures.

A. GPU Architecture of the MIOR model

Each MIOR simulation is represented by a work-group, and
each agent by a work-item. A kernel is responsible of the life
cycle process of each agent of the model. It is executed by all
work-items of the simulation on their own gpu core.

The usage of a work-group for each simulation allows
to easily execute multiple simulations in parallel, as shown
on figure ??. Thus it becomes possible to exploit all the
cores at the same time by taking advantage of execution
overlap possibilities provided by OpenCL, even if an unique
simulation is to small to use all the available GPU cores.
However, the maximum size of a work-group is limited (512),
which only allows use to execute one simulation per work-
group when using 310 threads (number of OM in the reference
model) to execute the simulation.

The usage of the GPU to execute multiple simulations is
initiated by the CPU. The later keeps total control of the
simulator execution flow. Thus, optimized scheduling policies
(such as submitting kernels in batch, or limiting the number
of kernels, or asynchronously retrieving the simulation results)
can be defined to minimize the cost related to data transfers
between CPU and GPUs.

B. Data structures translation

The adaptation of the MIOR model to GPU requires the
mapping of the data model to OpenCL data structures. The

environment and the agents are represented by arrays of struc-
tures, where each structure describes the state of one entity.
The behavior of these entities are implemented as OpenCL
functions to be called from the kernels during execution.

Four main data structures are defined: (i) an array of MM
agents, representing the state of the microbial colonies. (ii)
an array of OM agents, representing the state of the carbon
deposits. (iii) a topology matrix, which stores accessibility
information between the two types of agents of the model
(iv) a world structure, which contains all the global input data
(metabolism rate, numbers of agents) and output data (quantity
of CO2 produced) of the simulation.

These data structures are initialized by the CPU and then
copied on the GPU.

The world topology is stored as a two-dimension matrix
which contains OM indexes on the abscissa and the MM index
on the ordinate. Each agent walks through its line/column
of the matrix at each iteration to determinate which agents
can be accessed during the simulation. Since many agents are
not connected this matrix is sparse, which introduces a big
number of useless memory accesses. To reduce the impact of
these memory accesses we propose a compacted, optimized
representation of this matrix based on [?], as illustrated on
the figure ??. Since memory allocations are impossible yet
in OpenCL and only provided in the lastest revisions of the
CUDA standard, these matrices are statically allocated to
handle the worst-case scenario where all OM and MM are
linked, since the actual occupation of the matrix cells cannot
be deduced without some kind of preprocessing computations.

nbOM

nbMM

nbOM

Fig. 2. Compact representation of the topology of a MIOR simulation

The compact representation considers each line of the
matrix as an index list, and only stores accessible agents
continuously, to reduce the size of the list and the number
of non productive accesses.

C. Critical resources access management
One of the main issue in a MIOR model is to ensure

that all the microbial colonies will have an equitable access
to carbon resources, when multiple colonies share the same
deposits. Access synchronizations are mandatory in these cases
to prevent conflicting updates on the same data that may lead
to calculus error (e.g. loss of matter).

On a massively parallel architecture such as GPUs, this kind
of synchronization conflicts can however lead to an inefficient
implementation by enforcing a quasi-sequential execution. It
is necessary, in the case of MIOR as well as for other ABM,
to ensure that each work-item is not too constrained in its
execution.

From the sequential algorithm 1 where all the agents share
the same data, we have developed a parallel algorithm com-
posed of three sequential stages separated by synchronization
barriers. This new algorithm is based on the distribution of the
available OM carbon deposits into parts at the beginning of
each execution step. The three stages, illustrated on figure ??,
are the following:

1) distribution: The available carbon in each carbon deposit
(OM) is equitably dispatched between all accessible MM
in the form of parts.

2) metabolism: Each MM consumes carbon in its allocated
parts for its breathing and growing processes.

3) gathering: Unconsumed carbon in parts is gathered back
into the carbon deposits.

This solution suppresses the data synchronization needed
by the first algorithm and thus the need for synchronization
barriers.

Distribution
(Nbom work-items)

Live
(Nbmm work-items)

Gathering
(Nbom work-items)

barrier

barrier

Fig. 3. Decomposition in OpenCL kernels of one MIOR parallel execution
cycle.

D. Termination detection

The termination of a MIOR simulation is reached when the
model stabilizes, and no more CO2 is produced. This detection
can be done either on the CPU or the GPU.

In the first case, it is the CPU which controls the GPU simu-
lation process: (i) the CPU starts the execution of a simulation
step on the GPU. (ii) Once this step is finished, the CPU
retrieves the GPU data, and determines if another iteration
must be launched or if the simulation has terminated. This
approach allows a fine-grain control over the GPU execution,
but it requires many costly transfers as each iteration results
must be sent from the GPU to the CPU. In the case of the

MIOR model, these costs are mainly due to the inherent PCI-
express port latencies, rather than to bandwidth limitation,
since data sizes remains rather small, in the order of few
dozens of Megabytes.

In the second case the termination detection is directly
implemented on the GPU: The CPU does not have any
feedback while the simulation is running, but retrieves the
results once the kernel execution is finished. This approach
minimizes the number of transfers between the CPU and the
GPU.

V. EXPERIMENTS

In this section we present several MIOR GPU implementa-
tions using the distribution/gathering process described in Sec-
tion ?? and compare their performance on two distinct hard-
ware platform; i.e two different GPU devices. Five incremental
MIOR implementations were realized with an increasing level
of adaptation for the algorithm: In all cases, we choose the
average time over 50 executions as a performance indicator.

• the GPU 1.0 implementation is a direct implementation
of the existing algorithm and its data structures where
data dependencies were removed and using the non-
compact topology representation described in Section ??

• the GPU 2.0 implementation uses the previously de-
scribed compact representation of the topology and re-
mains otherwise identical to the GPU 1.0 implementation.

• the GPU 3.0 implementation introduces the manual copy
into local (private) memory of often-accessed global data,
such as carbon parts or topology information.

• the GPU 4.0 implementation is also a variant of the
GPU 1.0 implementation which allows the execution of
multiple simulations for each kernel execution.

• the GPU 5.0 implementation is a multi-simulation of the
GPU 2.0 implementation, using the execution of multiple
simulations for each kernel execution as for GPU 4.0

The two last implementations – GPU 4.0 and GPU 5.0 –
illustrate the gain provided by a better usage of the hardware
resources, thanks to the driver execution overlap capabilities.
A sequential version of the MIOR algorithm, labeled as CPU,
is provided for comparison purpose. This sequential version
is developped in Java, the same language used for GPU
implementations and the Sworm model.

For these performance evaluations, two platforms are used.
The first one is representative of the kind of hardware which
is available on HPC clusters. It is a cluster node dedicated to
GPU computations with two Intel X5550 processors running
at 2.67GHz and two Tesla C1060 GPU devices running at
1.3GHz and composed of 240 cores (30 multi-processors).
Only one of these GPU is used in these experiments, at the
moment. The second platform illustrates what can be expected
from a personal desktop computer built a few years ago. It uses
a Intel Q9300 CPU, running at 2.5GHz, and a Geforce 8800GT
GPU card running at 1.5GHz and composed of 112 cores (14
multi-processors). The purpose of these two platforms is to
assess the benefit that could be obtained either when a scientist

has access to specialized hardware as a cluster or tries to take
benefit from its own personal computer.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10

A
v
e
ra

g
e
 s

im
u
la

ti
o
n
 t

im
e
 (

m
s)

Model scaling factor

CPU
GPU v1.0
GPU v2.0
GPU v3.0

Fig. 4. CPU and GPU performance on a Tesla C1060 node

Figures ?? and ?? show the execution time for 50 simula-
tions on the two hardware platforms. A size factor is applied
to the problem: at scale 1, the model contains 38 MM and 310
OM, while at the scale 6 these numbers are multiplied by six.
The size of the environment is modified as well to maintain
the same average agent density in the model. This scaling
factor display the impact of the chosen size of simulation on
performance.

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10

A
v
e
ra

g
e
 s

im
u
la

ti
o
n
 t

im
e
 (

m
s)

Model scaling factor

CPU
GPU v1.0
GPU v2.0
GPU v3.0

Fig. 5. CPU and GPU performance on a personal computer with a Geforce
8800GT

The charts show that for small problems execution times of
all implementations are very close. This is because the GPU
implementation does not have enough threads (representing
agents) for an optimal usage of GPU resources. This trend
changes after scale 5 where GPU 2.0 and GPU 3.0 take
the advantage on the GPU 1.0 and CPU implementations.
This advantage continues to grow with the scaling factor, and

reaches a speedup of 10 at the scale 10 between the fastest
single-simulation GPU implementation and the first, naive one
GPU 1.0.

Multiple trends can be observed in these results. First,
optimizations for the GPU hardware show a big, positive
impact on performances, illustrating the strong requirements
on the algorithm properties to reach execution efficiency.
These charts also show that despite the vast difference in
numbers of cores between the two GPUs platforms the same
trends can be observed in both case. We can therefore expect
similar results on other GPU cards, without the need for more
adaptations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

To
ta

l
e
xe

cu
ti

o
n
 t

im
e
 (

m
s)

Number of simulations (blocks) for each kernel

GPU v4.0
GPU v5.0

Fig. 6. Execution time of one multi-simulation kernel on the Tesla platform

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 10 20 30 40 50 60 70 80 90 100

To
ta

l
e
xe

cu
ti

o
n
 t

im
e
 (

m
s)

Number of simulations (blocks) for each kernel

GPU v4.0
GPU v5.0

Fig. 7. Total execution time for 1000 simulations on the Tesla platform,
while varying the number of simulations for each kernel

There are two ways to measure multi-simulations perfor-
mance: (i) by executing only one kernel, and varying its size
(the number of simulations executed in parallel), as seen on
Figure ??), to test the costs linked to the parallelization process
or (ii) by executing a fixed number of simulations (Figure ??)
and varying the size of each kernel.

Figure ?? illustrates the execution time for only one kernel.
It shows that for small numbers of simulations run in parallel,
the compact implementation of the model topology is faster
than the two-dimension matrix representation. This trends
reverse with more than 50 simulations in parallel, which

can be explained either by the non linear progression of the
synchronization costs or by the additional memory required
for the access-efficient representation.

Figure ?? illustrates the execution time of a fixed number of
simulations. It shows that for a small number of simulations
run in parallel, the costs resulting of program setup, data copies
and launch on GPU are determinant and very detrimental
to performance. Once the number of simulations executed
for each kernel grows, these costs are counterbalanced by
computation costs. This trend is more marked in the case of
the sparse implementation (GPU 4.0) than the compact one
but appears on both curves. With more than 30 simulations for
each kernel, execution times stalls, since hardware limits are
reached. This indicates that the cost of preparing and launching
kernels become negligible compared to the computing time
once a good GPU occupation rate is achieved.

VI. CONCLUSION

This paper addresses the issue of complex system simulation
by using agent based paradigm and GPU hardware. From the
experiment on an existing Agent Based Model of soil science
(Mior model) we intend to provide useful information on the
architecture, the algorithm design and, the data management
to run Agent based simulations on GPU. The first result of
this work is that adapting the algorithm to a GPU architecture
is possible and suitable to speed up agent based simulations.
Coupling CPU with GPU seems even to be an interesting way
to better take advantage of the power given by computers
and clusters: cognitive agents can be run on the CPU and
reactive agents or environment be run on the GPU. Note that
simulations of reactive agents, with a simple behavior, give
interesting and efficient results whereas the running of cogni-
tive agent (such as social agents) on GPU are too complicated
and less adapted to this kind of execution. From our point
of view this adaptation process is lighter than a traditional
parallelization on distributed nodes and not much difficult than
a standard multi-threaded parallelization, since all the data
remains on the same host and can be shared in central memory.
The OCL adaptation also enables a portable simulator that can
be run on different graphical units. Even using a mainstream
card as the GPU card of a standard computer can lead to
significant performance improvements. This is an interesting
result as it opens the field of inexpensive HPC to the ABM
community.

In this perspective, we are working on a generalization
of these tools to other multi-agent models based around
reactive computations. One first challenge is the definition of
common, efficient, reusable data structures, such as grids or
lists. Another goal of this solution is to provide easier means
to control the distribution of specific processes on CPU or
GPU, to allow the easy exploitation of the strengths of each
platform in the same multi-agent simulation.

ACKNOWLEDGMENT

The authors would like to thanks the Mésocentre de calcul
de Franche-Comté, which provided the computer facilities

used for the computations described in the paper.

