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Abstract 

Zero-point quantum fluctuations of the electromagnetic vacuum create the widely 

known London-van der Waals attractive force between two atoms. Recently, there was 

a revived interest in the interaction of rotating matter with the quantum vacuum. Here, 

we consider a rotating pair of atoms maintained by London van der Waals forces and 

calculate the frictional torque they experience due to zero-point radiation. Using a semi-

classical framework derived from the Fluctuation Dissipation Theorem, we take into 

account the full electrostatic coupling between induced dipoles. Considering the case of 

zero temperature only, we find a braking torque proportional to the angular velocity and 

to the third power of the fine structure constant. Although very small compared to 

London van der Waals attraction, the torque is strong enough to induce the formation of 

dimers in binary collisions. This new friction phenomenon at the atomic level should 

induce a paradigm change in the explanation of irreversibility.  
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We would like to answer a still vivid question: “What are the various routes of energy conversion 

between matter in relative motion and propagating electromagnetic [EM] fields?” Scientists have an 

extensive knowledge on the interactions between internal energy levels of atomic matter and EM 

waves1. However, it has long been thought that non-ionized gases (atomic or molecular) have 

negligible interactions with radiation. Furthermore Boltzmann’s equation (the cornerstone of 20th 

century macroscopic physics) relies on the hypothetical ground of elastic, energy conserving atomic 

collisions2. Later, Collision Induced Absorption and Emission3 studies, especially in atomic mixtures, 

evidenced the non-universality of Boltzmann’s assumption. Meanwhile, the particular case of a pure 

atomic gas was long discarded due to a lack of quantitatively relevant interactions3. In contrast to 

this standard assumption, we find that the quantum vacuum exerts a non-negligible braking torque 

on two atoms rotating one around the other (equation (9) below). 

Atomic matter in its ground state is neutral and does not carry any permanent dipolar or higher 

order electrostatic moment. However, London4 showed with quantum mechanics that the fluctuating 

electrostatic atomic dipoles give way to the universal van der Waals forces discovered decades 

before. Forces induced by quantum fluctuations were later shown to be affected by EM propagation 

over long distances5 (i.e. greater than atomic wavelengths) and to be macroscopically detectable6. 

After accurately measuring this Casimir force7, research turned to the dynamical Casimir effect, also 

called Casimir friction, viz. on EM radiation emitted by macroscopic neutral bodies in relative 

motion8.  

Efforts were directed towards the calculation of dissipative components9,10,11,12 of van der Waals 

forces between macroscopic bodies. The question of emissive collisions between atoms was also 

raised: are these forces conservative13? In this research, translational motion was mainly considered, 

with a general conclusion that the dissipated energy was negligible14,15, especially in the zero-

temperature case. On the contrary, we focus on rotational motion and find at zero-temperature a 

non-negligible friction. 

Zel’dovich16 suggests that a rotating body could amplify an incoming EM radiation, thus losing its 

rotational energy and angular momentum at the expense of the field. The specific case of the 

scattering of zero-point EM field by matter in rotation was studied decades later17,18,19. These authors 

treated the case of a rotating macroscopic body (dielectric or metallic) interacting with an EM field of 

variable temperature. Although nanoscopic materials could be considered, their EM characteristics 

were always represented by a dielectric constant, describing linear first order interaction within the 

material. The same is true with the usual treatment of fluctuation-induced interaction between 

atoms: the equations mainly deal with the perturbative term. Only recently, the self-consistent non-

perturbative coupling was evoked20. 

Our approach combines both ways and considers two identical, neutral atoms rotating one around 

the other. The oscillator’s dipoles and the vacuum field21 are fluctuating quantum quantities. Their 

combined dynamics is treated herein via a semi classical framework derived from the Fluctuation 

Dissipation Theorem22 [FDT]. A similar approach was taken previously18 and shown to be an 

alternative to quantum treatments23. Research herein concentrates on zero temperature field only 

for which Milonni21 thoroughly discussed the fluctuation-dissipation relation linking the vacuum field 

and an atomic dipole, already noticed by Callen and Welton22. 
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In the frequency space, the FDT connects the self-correlations of a fluctuating physical quantity to 

the imaginary part of its response function. At zero temperature, the FDT for the components of the 

field at one location simply yields the self-correlation relation of the quantum vacuum: 

     
3
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      (1) 

where the brackets ...  represent the average over the fluctuations;     is Dirac’s function and 
nm  

is the Kronecker symbol. Herein two atoms interacting with the vacuum field are put into a non-

equilibrium situation: mutual attraction and symmetry-breaking rotation. The FDT permits calculating 

the non-equilibrium behavior of the system from its equilibrium fluctuations. We will be using 

equation (1) to obtain the torque exerted by the field on the rotating pair of atoms. Before that, we 

need to express the polarizability of two rotating atoms.  

A harmonic oscillator of natural angular frequency 
o , damped by radiation reaction describes an 

atom in its ground state. Applying24,25 Newton’s second law in the instantaneous inertial frame of the 

oscillator gives Abraham-Lorentz equation, which is Fourier transformed to obtain the atom’s 

polarizability    : 

 
2

2 2 3

1

o

q

i
 

   


 
      (2) 

where q  is the charge in S.I. units,  the reduced mass of the electron-nucleus system and   the 

radiation reaction time24,26 defined by  2

3

2 / 4

3
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
 , where c  is the speed of light in vacuum. The 

polarizability, equation (2), relates the Fourier component of an atomic dipole to that of the local 

field that it experiences in an inertial frame. A long standing research27,28 has tackled the well-known 

pathologies of Abraham-Lorentz equation, related to the impossibility of a point electron in classical 

physics. Corrections to Abraham-Lorentz approximation were developed in order to obtain a viable 

classical equation28. Contrary to this point of view, our semi-classical calculation treats dipoles 

immersed into a fluctuating vacuum field. This method allows approaching numerous properties of 

atoms interacting with the quantum vacuum21. Importantly, the FDT (1) is obtained22 considering 

equilibrium between a fluctuating field and atomic dipoles the polarizability of which follow equation 

(2). 

Now, two atoms rotate around their common center of mass. The distance separating them is r  and 

their angular velocity is   which is very small compared to
o . Applying Newton’s law to each atom 

in the inertial laboratory frame (in upper case letters in Fig. 1) yields two relations: 
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Each atom, j, feels a total field which is the sum of the fluctuating zero-point vacuum field, 
jE , at its 

position and the electrostatic dipolar field caused by the companion dipole. These equations include 

the well-known London van der Waals attraction20, whether the atoms rotate or not. In the 

following, the attraction causes the centripetal acceleration. Distances between atoms remains short 

(i.e. /   1  or c  ) in order to neglect the propagation of EM fields and to simplify calculations. Yet, r  

remains significantly greater than 
oa  (the Bohr radius) in order to neglect atomic repulsion. This 

hypothesis implies 
1 2 E E E . 

Adding equations (3-1) and (3-2) gives the total dipole 
1 2P P P   which obeys:
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After Fourier transform of equation (4) and some tedious algebra (cf. ref. 24 §2), the components of 

 P result: 
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By letting 
o  be the ionization frequency of the hydrogen atom and the volume o

 be 34 oa , values of 

r  larger than 
oa  result. For example, if 5 or a , then 

3
1


o

r
 results. Equations (5-1) and (5-2) express 

the generalized susceptibility of  P , which mixes both field components at three different frequencies 

 , 2    .

The total electric field exerts a torque on the oscillators’ dipole, the fluctuation-averaged value of 

which ΓSC  is given by:
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where SCE  is the total [Self-Consistent] field seen by the atom, viz. the sum of the vacuum field and 

the induced field.  
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We can now use24 (5-1), (5-2), (7) and (1) to express the integrand of equation (6) as the sum of two 

integrals on all modes of the vacuum field: 
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where we have been using the isotropy of the vacuum field, with the * referring to the complex 

conjugate. 
2

SC  is a negligibly small quantity24 which happens to be the only torque remaining in a 

first-order perturbative treatment of equations (3-1) and (3-2). 
1

SC  depends entirely on the self-

consistent interaction. 

Using a few changes of variable and developing in Taylor series (cf. ref 24 §5) with respect to the 

small parameters / o  and   o  , one obtains: 
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where the factor 
o  equals nearly the third power of the fine structure constant24, numerically 

about 710 . Although equation (9) occurs through a Taylor expansion of the integrand of equation 

(8-1), its validity is much wider than the quality of the expansion could suggest. The numerical 

integration of (8-1) yields nearly exactly (9) for numerous tested values in the range 310
o


  and 

1

3
10

 o

r
. The torque (9) was obtained as the effect of the total (vacuum + induced) field on the self-

consistent dipoles. The same result occurs when one considers the effect of the vacuum field only on 

those dipoles, within first order in 




o

. 

The braking torque given by equation (9) is the main result of this communication. The equivalent 

tangential braking force is very small compared to the van der Waals attractive force, their ratio 

being of order  : for example 1110    if 410





o

. Nevertheless, this torque decreases the kinetic 
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energy and the angular momentum of the atoms. A linear torque gives rise to a temporally 

exponential attenuation of the angular momentum with a characteristic time T , depending on r : 

 
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with M the mass of one atom. T is on order 210  s for the numerical case already considered, with  

   5 or a  and M the mass of the hydrogen atom. Before discussing the physical results, two comments 

on the order of magnitude are warranted. On the one hand, the braking time given by equation (10) 

is rather long compared to the duration of most atomic collisions, generally on order 1010  s or 

shorter, but it could be relevant when macroscopic processes are at stake. In particular, this quantum 

friction effect should be considered as a noticeable contribution to energy dissipation and entropy 

growth in gaseous systems. Within our theoretical development, the friction phenomenon shall be 

present in any atomic, or molecular, interaction. Thus the standard explanation of irreversibility 

should be revised: instead of resting on probability considerations, it could be derived from the 

universal existence of dynamical friction forces between atomic structures. This attractive task is 

nevertheless secondary compared to the experimental testing of equation (9), which is briefly 

discussed below. 

On the other hand, the braking torque (9) might be relevant macroscopically, but it is small enough 

to have stayed unnoticed, and to have been overlooked in the past. Let us now compare this 

theoretical result with other published work, and discuss its consequences and testability. 

As recalled above, Casimir friction at zero-temperature was previously considered for rectilinear 

motion mainly. In the case of a metallic plate sliding at a fixed distance from a second similar 

plate11,29 with a relative velocity v , the friction force was found scaling as v 3 . A cubic power law in 

velocity was also obtained recently30,31 for the atom-surface drag force at zero temperature, in 

contrast to several different results previously published on this Casimir-Polder configuration.  The 

material and geometric hypotheses of ref. 11 and 29-31 differ from the case of two rotating atoms 

for which we find a friction torque (9) linear in the azimuthal velocity r . The discrepancy is thus not 

surprising, but more work would be necessary to explain it. In a different perspective, also 

considering a pure translational motion, Boye and Brevik14 and independently Barton15 calculated the 

energy loss in an atomic collision. They neglected the effect of van der Waals attraction on the 

trajectory, consequently forbidding any rotation of the atoms. They found a very small friction at 

zero-temperature, which varied as vexp[ ] and was totally negligible for non-relativistic velocities. By 

taking the effect of van der Waals forces into account and integrating the full electrostatic coupling 

we find a very different result, linear in r .  

Previous calculations also considered rotating media18,19. They found the effect of vacuum friction to 

be negligible on isolated dielectrics in rotation. The interaction between the atoms in those materials 

was considered to be at equilibrium, giving rise to a polarizability, or dispersion relation, insensitive 

to thermal and mechanical parameters. Herein, on the contrary, the dissipative torque results from 

the strong dependence of the two atoms’ polarizability on the interatomic distance and from the 

self-consistent treatment of their interactions. It is fair to note that a different polarizability function 

would result in a different velocity dependence. In another configuration, a conductive sphere 



7 
 

rotating near a surface32 experiences a frictional torque scaling as  
3

r  at zero temperature and as 

r  at high temperatures.  

Further work is needed to give a comprehensive description of quantum friction in all these diverse 

configurations where the physics of momentum transfer is similar: virtual photons are exchanged by 

the atoms, resulting on average in momentum loss by the material system. A related concern of 

former work is of interest to our result. According to ref. 19, a rotating body would drag along nearby 

objects and share its angular momentum with them, through the vacuum field. Herein, the question 

is, “How and how much can a rotating pair of atoms influence the motion of another pair in the 

vicinity?” This drives the attention to the physical ways by which the energy is radiated away. 

The radiation reaction term leads to energy and angular momentum loss, and it involves the emission 

of an outgoing wave. This radiation takes place via photon emission, which cannot be tackled within 

the present semi-classical framework. The emission phenomenon should be the subject of further 

work. Nevertheless, we can still deduce two properties of this EM emission. First, it is characterized 

by its energy and angular momentum outflow, the ratio of which is the average frequency,  . 

Second, due to the symmetry of the system the emission process shall not carry any linear 

momentum.

Apart from experimental tests by detection of EM emission, the consequences of (9) should be 

studied in the mechanism for dimer formation33. With strictly conservative interactions, a third body 

is needed to induce the capture of one atom by another. Figure 2 illustrates how equation (9) can 

change the situation of a binary collision. Due to the 61/ r  attractive potential, the two atoms will 

classically experience a so-called “centrifugal barrier” of height depending on their angular 

momentum (cf. ref. 33 § 4.2). At or near the barrier, the two atoms orbit extensively, thus resembling 

the case of Fig. 1. Slowed down by (9), the atoms can “fall” into one of the bound dimer states. 

A barrier towards the experimental test of the torque (9) is its smallness, due in part to the atomic 

polarizability o
 of order the atomic volume 3

oa . However the effective size of the atom depends on 

its excitation level. For example, very recent experiments34 provided the first direct measurement of 

the attractive van der Waals force between atoms in Rydberg states, the size of which is much larger 

than 
oa . The same kind of systems could be used to detect a potential dissipative torque. 

The vacuum friction expressed in equation (9) is strong enough to induce a paradigm change in the 

explanation of irreversibility. But any attempt to reach such a goal should be aware of two other 

pending jobs. On the one hand, experimental testing awaits the design of dedicated experiments. On 

the other hand, further steps on the theoretical side should include the extension of this semi-

classical calculation with the tools of quantum electrodynamics.  
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FIGURES 

Figure 1: A rotating pair of atoms  

Atomic pair represented in its rotation plane. In the inertial frame I ,   J ,  K  (upper case letters), the 

segment linking the two oscillators turns with angular velocity  ; its unit vector, fixed in the rotating 

frame , ,i  j k  (italic lower case letters), is cosθI sinθJ i  with    t . 
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Figure 2: Effect of the dissipative torque on a binary collision  

a) The effective potential (van der Waals + centrifugal) seen by the two-atom system depends on the 

angular momentum L . Effective energy for 
2 210L   (solid line); the apex is at ~ 4.5

o

r

a
 for an 

effective energy Veff (dashed line).  

 

b) Numerical integration of the classical dynamics of the two atoms with 
2 210L   and effective 

energy slightly under Veff. The plain line takes into account the dissipative torque (9) while the dashed 

line does not. In both cases the system is “orbiting” at ~ 4.5
o

r

a
. If no energy is lost to the field, the 

dynamics is reversible and the atoms finally separate. Vacuum friction prevents the separation, and 

finally induces the two atoms to fall one towards the other. 

 

 


