

Comparison of Matrix Completion Algorithms for Background Initialization in Videos

Andrews Sobral, Thierry Bouwmans, El-Hadi Zahzah

▶ To cite this version:

Andrews Sobral, Thierry Bouwmans, El-Hadi Zahzah. Comparison of Matrix Completion Algorithms for Background Initialization in Videos. SBMI 2015 Workshop in conjunction with ICIAP 2015, Sep 2015, Genoa, Italy. pp.510-518, $10.1007/978-3-319-23222-5_62$. hal-01227959

HAL Id: hal-01227959

https://hal.science/hal-01227959

Submitted on 12 Nov 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Comparison of Matrix Completion Algorithms for Background Initialization in Videos

Andrews Sobral^{1,2} and Thierry Bouwmans² El-hadi Zahzah¹

- ¹ Université de La Rochelle, Lab. L3I, 17000, La Rochelle, France
- ² Université de La Rochelle, Lab. MIA, 17000, La Rochelle, France

Abstract. Background model initialization is commonly the first step of the background subtraction process. In practice, several challenges appear and perturb this process such as dynamic background, bootstrapping, illumination changes, noise image, etc. In this context, this work aims to investigate the background model initialization as a matrix completion problem. Thus, we consider the image sequence (or video) as a partially observed matrix. First, a simple joint motion-detection and frame-selection operation is done. The redundant frames are eliminated, and the moving regions are represented by zeros in our observation matrix. The second stage involves evaluating nine popular matrix completion algorithms with the Scene Background Initialization (SBI) data set, and analyze them with respect to the background model challenges. The experimental results shows the good performance of LRGeomCG [17] method over its direct competitors.

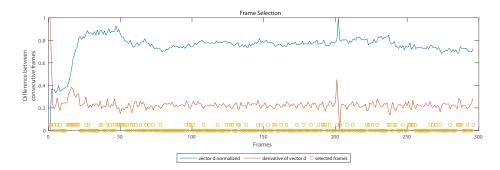
Keywords: matrix completion, background modeling, background initialization

1 Introduction

Background subtraction (BS) is an important step in many computer vision systems to detect moving objects. This basic operation consists of separating the moving objects called "foreground" from the static information called "background" [2, 16]. The BS is commonly used in video surveillance applications to detect persons, vehicles, animals, etc., before operating more complex processes for intrusion detection, tracking, people counting, etc. Typically the BS process includes the following steps: a) background model initialization, b) background model maintenance and c) foreground detection. With a focus on the step (a), the BS initialization consists in creating a background model. In a simple way, this can be done by setting manually a static image that represents the background. The main reason is that it is often assumed that initialization can be achieved by exploiting some clean frames at the beginning of the sequence. Naturally, this assumption is rarely encountered in real-life scenarios, because of continuous clutter presence. In addition, this procedure presents several limitations, because it needs a fixed camera with constant illumination, and the background needs to be static (commonly in indoor environments), and having no moving object in the first frames. In practice, several challenges appear and perturb this process such as noise acquisition, bootstrapping, dynamic factors, etc [11].

The main challenge is to obtain a first background model when more than half of the video frames contain foreground objects. Some authors suggest the initialization of the

Fig. 1. Block diagram of the proposed approach. Given an input image, a joint motion detection and frame selection operation is applied. Next, a matrix completion algorithm tries to recover the background model from the partially observed matrix. In this paper, the processes described here are conducted in a batch manner.


background model by the arithmetic mean [9] (or weighted mean) of the pixels between successive images. Practically, some algorithms are: (1) batch ones using N training frames (consecutive or not), (2) incremental with known N or (3) progressive ones with unknown N as the process generates partial backgrounds and continues until a complete background image is obtained. Furthermore, initialization algorithms depend on the number of modes and the complexity of their background models. However, BS initialization has also been achieved by many other methodologies [11,2]. We can cite for example the computation of eigen values and eigen vectors [15], and the recent research on subspace estimation by sparse representation and rank minimization [3]. The background model is recovered by the low-rank subspace that can gradually change over time, while the moving foreground objects constitute the correlated sparse outliers.

In this paper, the initialization of the background model is addressed as a matrix completion problem. The matrix completion aims at recovering a low rank matrix from partial observations of its entries. The image sequence (or video) is represented as a partially observed real-valued matrix. Figure 1 shows the proposed framework. First, a simple joint motion-detection and frame-selection operation is done. The redundant frames are eliminated, and the moving regions are represented with zeros in our observation matrix. This operation is described in the Section 2. The second stage involves evaluating nine popular matrix completion algorithms with the Scene Background Initialization (SBI) data set [12] (see Section 3). This enables to analyze them with respect to the background model challenges. Finally, in Sections 4 and 5, the experimental results are shown as well as conclusions.

Throughout the paper, we use the following notations. Scalars are denoted by lower-case letters, e.g., x; vectors are denoted by lower-case boldface letters, e.g., x; matrices by uppercase boldface, e.g., X. In this paper, only real-valued data are considered.

2 Joint Motion Detection and Frame Selection

In order to reduce the number of redundant frames, a simple joint motion detection and frame selection operation is applied. First, the color images are converted into its gray-scale representation. So, let a sequence of N gray-scale images (frames) $\mathbf{I}_0 \dots \mathbf{I}_N$ captured from a static camera, that is, $\mathbf{I} \in \mathbb{R}^{m \times n}$ where m and n denotes the frame resolution (rows by columns). The difference between two consecutive frames (motion detection step) is calculated by:

Fig. 2. Illustration of frame selection operation. The normalized vector (in blue) shows the difference between two consecutive frames. The derivative vector draw how much the normalized vector changes (in red), and then it is thresholded and the frames are selected (in orange).

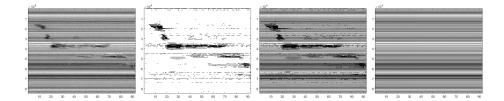
$$\mathbf{D}_{t} = \sqrt{(\mathbf{I}_{t} - \mathbf{I}_{t-1})^{2}} \,|_{t=1,\dots,N} \,, \tag{1}$$

where $\mathbf{D}_t \in \mathbb{R}^{m \times n}$ denotes the matrix of pixel-wise L_2 -norm differences from frame t-1 to frame t. Next, the sum of all elements of \mathbf{D}_t , for $t=1,\ldots,N$, is stored in a vector $\mathbf{d} \in \mathbb{R}^N$ whose t-th element is given by:

$$d_t = \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{D}_t(i,j),$$
(2)

where $\mathbf{D}_t(i,j)$ is the matrix element located in the row $i \in [1,\ldots,m]$ and column $j \in [1,\ldots,n]$. Then, the vector \mathbf{d} is normalized between 0 and 1 by:

$$\hat{\mathbf{d}} = \frac{d_t - d_{min}}{d_{max} - d_{min}} \mid_{t = 1, ..., N},$$
(3)


where d_{min} and d_{max} denotes the minimum value and the maximum value of the vector \mathbf{d} . The frame selection step is done by calculating the derivative of $\hat{\mathbf{d}}$ by:

$$\mathbf{d}' = \frac{d}{dt}\hat{\mathbf{d}},\tag{4}$$

Next, the vector \mathbf{d}' is also normalized by Equation 3 and represented by $\hat{\mathbf{d}}'$. Finally, the index of the more relevant frames are given by thresholding $\hat{\mathbf{d}}'$:

$$y = \begin{cases} 1 & \text{if } |\hat{\mathbf{d}}' - \hat{\mu}'| > \tau \\ 0 & \text{otherwise} \end{cases}, \tag{5}$$

where $\hat{\mu}'$ denotes the mean value of the vector $\hat{\mathbf{d}}'$, and $\tau \in [0,\dots,1]$ controls the threshold operator. In this paper, $R \leq N$ represent the set of all frames where $\boldsymbol{y}=1$, and the parameter τ was chosen experimentally for each scene: $\tau=0.025$ for HallAndMonitor, $\tau=0.05$ for HighwayII, $\tau=0.10$ for HighwayI, and $\tau=0.15$ to all other scenes. Figure 1 illustrates our frame selection operation, in this example, with $\tau=0.025$, only 92 relevant frames are selected from a total of 296 frames (68, 92% of reduction). In the next section, the matrix completion process is described.

Fig. 3. Illustration of the matrix completion process. From the left to the right: a) the selected frames in vectorized form (our observation matrix), b) the moving regions are represented by non-observed entries (black pixels), c) the moving regions filled with zeros (modified version of the observation matrix), and d) the recovered matrix after the matrix completion process.

3 Matrix Completion

As explained previously, the matrix completion aims to recover a low rank matrix from partial observations of its entries. Considering the general form of low rank matrix completion, the optimization problem is to find a matrix $\mathbf{L} \in \mathbb{R}^{n1 \times n2}$ with minimum rank that best approximates the matrix $\mathbf{A} \in \mathbb{R}^{n1 \times n2}$. Candès and Recht [6] show that this problem can be formulated as:

minimize
$$rank(\mathbf{A})$$
,
subject to $P_{\Omega}(\mathbf{A}) = P_{\Omega}(\mathbf{L})$, (6)

where $rank(\mathbf{A})$ is equal to the rank of the matrix \mathbf{A} , and P_{Ω} denotes the sampling operator restricted to the elements of Ω (set of observed entries), i.e., $P_{\Omega}(\mathbf{A})$ has the same values as \mathbf{A} for the entries in Ω and zero values for the entries outside Ω . Later, Candès and Recht [6] propose to replace the rank(.) function with the nuclear norm $||\mathbf{A}||_* = \sum_{i=1}^r \sigma_i$ where $\sigma_1, \sigma_2, ..., \sigma_r$ are the singular values of \mathbf{A} and r is the rank of \mathbf{A} . The nuclear norm make the problem tractable and Candès and Recht [6] have proved theoretically that the solution can be exactly recovered with a high probability. In addition, Cai et. al [4] propose an algorithm based on soft singular value thresholding (SVT) to solve this convex relaxation problem. However, in real world application the observed entries may be noisy. In order to make the Equation 6 robust to noise, Candès and Plan [5] propose a stable matrix completion approach. The equality constraint is replaced by $||P_{\Omega}(\mathbf{A} - \mathbf{L})||_F \le \epsilon$, where $||.||_F$ denotes the Frobenious norm and ϵ is an upper bound on the noise level. Recently, several matrix completion algorithms have been proposed to deal with this challenge, and a complete review can be found in [21].

In this paper, we address the background model initialization as a matrix completion problem. Once frame selection process is done, the moving regions of the R selected frames are determined by:

$$\mathbf{M}_{k}(i,j) = \begin{cases} 1 & \text{if } 0.5(\mathbf{D}_{k}(i,j))^{2} > \beta \\ 0 & \text{otherwise} \end{cases}$$
 (7)

where $k \in R$, and β is the thresholding parameter (in this paper, $\beta = 1e^{-3}$ for all experiments). Next, the moving regions of each selected frame are filled with zeros

	Main techniques	Reference
	Augmented Lagrangian Augmented Lagrangian	. , , , , , , , , , , , , , , , , , , ,
	C	[13, Meka et al. (2009)] [8, Keshavan et al. (2010)]
	U	[19, Wen et al. (2012)] [14, Ngo and Saad (2012)]
eomCG F OUSE (Riemannian Online algorithm	[17, Vandereycken (2013)] [1, Balzano et al. (2013)] [18, Wang et al. (2015)]
	pace (Fit ArassMC (eomCG)	AMR Augmented Lagrangian Hard thresholding pace Grassmannian Fit Alternating cassMC Grassmannian eomCG Riemannian USE Online algorithm

Table 1. List of low-rank matrix completion algorithms evaluated in this paper.

by $\mathbf{I}_k \circ \overline{\mathbf{M}_k}$, where $\overline{\mathbf{M}_k}$ denotes the complement of \mathbf{M}_k , and \circ denotes the elementwise multiplication of two matrices. For color images, each channel is processed individually, then they are vectorized into a partially observed real-valued matrix $\mathbf{A} = [vec(I_1) \dots vec(I_k)]$, where $\mathbf{A} \in \mathbb{R}^{n1 \times n2}$, $n1 = (m \times n)$, and n2 = k. Figure 3 illustrates our matrix completion process. It can be seen that the partially observed matrix can be recovered successfully even with the presence of many missing entries. So, let \mathbf{L} the recovered matrix from the matrix completion process, the background model is estimated by calculating the average value of each row, resulting in a vector $\mathbf{l} \in \mathbb{R}^{n1 \times 1}$, and then reshaped into a matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$.

4 Experimental results

In order to evaluate the proposed approach, nine matrix completion algorithms have been selected, and they are listed in Table 1. The algorithms were grouped in two categories, as well as its main techniques (following the same definition of Zhou et al. [21]).

In this paper, the Scene Background Initialization (SBI) data set was chosen for the background initialization task. The data set contains seven image sequences and corresponding ground truth backgrounds. It provides also MATLAB scripts for evaluating background initialization results in terms of eight metrics³. Figure 4 show the visual results for the top three best matrix completion algorithms, and Table 2 reports the quantitative results of each algorithm over the data set⁴. The algorithms are ranked as follow: 1) for each algorithm we calculate its rank position for each metric, we call it as *metric rank* (i.e. RMAMR have the first position for the AGE metric in the HallAndMonitor scene), next, 2) we sum the rank position value of each algorithm over the eight metrics, and finally, 3) we calculate the rank position over the sum, and we call it as *scene rank*. For the Global Rank, first we sum the scene rank for each MC algorithm, then

³ Please, refer to http://sbmi2015.na.icar.cnr.it/ for a complete description of each metric.

⁴ Full experimental evaluation and related source code can be found in the main website: https://sites.google.com/site/mc4bmi/

Fig. 4. Visual comparison for the background model initialization. From top to bottom: 1) example of input frame, 2) background model ground truth, and background model results for the top 3 best ranked MC algorithms: 3) LRGeomCG, 4) LMaFit, and 5) RMAMR.

we calculate its rank position over the sum. As we can see, the experimental results show the good performance of LRGeomCG [17] method over its direct competitors. Furthermore, in most cases the matrix completion algorithms outperform the traditional approaches such as Mean [9], Median [7] and MoG [22] as can be seen in the full experimental evaluation available at https://sites.google.com/site/mc4bmi/.

5 Conclusion

In this paper, we have evaluated nine recent matrix completion algorithms for the background initialization problem. Given a sequence of images, the key idea is to eliminate the redundant frames, and consider its moving regions as non-observed values. This approach results in a matrix completion problem, and the background model can be recovered even with the presence of missing entries. The experimental results on the SBI data set shows the comparative evaluation of these recent methods, and highlights the good performance of LRGeomCG [17] method over its direct competitors. Finally, MC shows a nice potential for background modeling initialization in video surveillance. Future research may concern to evaluate incremental and real-time approaches of matrix completion in streaming videos.

Table 2. Quantitative results over SBI data set, and the global rank for each matrix completion method. The bold metric values show the best score for each metric. For each scene, the results are ordered by the rank column.

				Hall	AndMoni	tor			
Method	AGE	EPs	pEPs	CEPs	pCEPS	MSSSIM	PSNR	CQM	Scene Rank
RGeomCG	2.0550	190	0.0022	0	0.0000	0.9938	37.9811	46 3255	1
MAMR	2.0499	190	0.0022	0	0.0000		37.9755		2
MaFit	2.0583	194	0.0023	0	0.0000		37.8487		3
	2.0693	193	0.0023	0	0.0000	0.9937	37.9046		4
OUSE	2.2201	191	0.0023	ő	0.0000	0.9923	37.5319		5
RIMP	2.2025	374	0.0044	ō	0.0000	0.9926	34.9021		6
ALM	3.6143		0.0277			0.9627	30.5907		7
VP	4.1486	3230	0.0382		0.0186	0.9474	28.2921		8
ptSpace	6.7051	5950	0.0704	2694	0.0319	0.9299	25.1834	37.6430	9
				Н	HighwayI				
Method	AGE	EPs	pEPs	CEPs	pCEPS	MSSSIM	PSNR	CQM	Scene Rank
RGeomCG	2.7715	192	0.0025	16	0.0002	0.9769	35.8950	58.6193	1
RMAMR	2.7601	193	0.0025	16	0.0002	0.9769	35.8899	58.6283	1
.MaFit	2.7781	196	0.0026	16	0.0002	0.9770	35.8636	58.6193	3
cGrassMC	3.2306	1088	0.0142	593	0.0077	0.9714	33.4838	58.5694	4
ROUSE	6.1324	621	0.0081	138	0.0018	0.9614	30.3643	56.2861	5
DR1MP	3.9587	1202	0.0157	691	0.0090	0.9637	32.4145	57.8051	6
ALM	6.4223	1836	0.0239	837	0.0109	0.9507	29.5142	57.9214	7
VP	6.9160	5694	0.0741	2530	0.0329	0.9095	27.6621	53.1073	8
tSpace	14.7067	19754	0.2572	13930	0.1814	0.7957	22.8624	43.8142	9
				Н	lighwayII				
Method	AGE	EPs	pEPs	CEPs	pCEPS	MSSSIM	PSNR	CQM	Scene Rank
				- 4	0.0001	0.9919	25 7076	16.1007	1
.RGeomCG	2.6840	268	0.0035	4	0.0001	0.7717	35./0/0	46.1997	
	2.6840 2.7003	268 271	0.0035 0.0035	5	0.0001	0.9919	35.6695		2
RMAMR LMaFit	2.7003 2.6919	271 275	0.0035 0.0036	5 7	0.0001 0.0001	0.9919 0.9919		46.2002	2 3
MAMR MaFit cGrassMC	2.7003 2.6919 2.9622	271 275 360	0.0035 0.0036 0.0047	5 7 2	0.0001 0.0001 0.0000	0.9919 0.9919 0.9888	35.6695 35.5752 34.6782	46.2002 46.0673 46.1585	2 3 4
RMAMR LMaFit ScGrassMC ALM	2.7003 2.6919 2.9622 4.9261	271 275 360 306	0.0035 0.0036 0.0047 0.0040	5 7 2 2	0.0001 0.0001 0.0000 0.0000	0.9919 0.9919 0.9888 0.9830	35.6695 35.5752 34.6782 31.5964	46.2002 46.0673 46.1585 46.1296	2 3 4 5
MAMR MaFit cGrassMC ALM DR1MP	2.7003 2.6919 2.9622 4.9261 3.2510	271 275 360 306 843	0.0035 0.0036 0.0047 0.0040 0.0110	5 7 2 2 102	0.0001 0.0001 0.0000 0.0000 0.0013	0.9919 0.9919 0.9888 0.9830 0.9888	35.6695 35.5752 34.6782 31.5964 32.2682	46.2002 46.0673 46.1585 46.1296 42.0740	2 3 4 5 6
MAMR MaFit cGrassMC ALM DR1MP	2.7003 2.6919 2.9622 4.9261 3.2510 4.7779	271 275 360 306 843 945	0.0035 0.0036 0.0047 0.0040 0.0110 0.0123	5 7 2 2 102 153	0.0001 0.0001 0.0000 0.0000 0.0013 0.0020	0.9919 0.9919 0.9888 0.9830 0.9888 0.9813	35.6695 35.5752 34.6782 31.5964 32.2682 30.4590	46.2002 46.0673 46.1585 46.1296 42.0740 41.8017	2 3 4 5 6 7
MAMR MaFit ::GrassMC ALM R1MP VP ROUSE	2.7003 2.6919 2.9622 4.9261 3.2510 4.7779 4.3955	271 275 360 306 843 945 1751	0.0035 0.0036 0.0047 0.0040 0.0110 0.0123 0.0228	5 7 2 2 102 153 700	0.0001 0.0001 0.0000 0.0000 0.0013 0.0020 0.0091	0.9919 0.9919 0.9888 0.9830 0.9888 0.9813 0.9756	35.6695 35.5752 34.6782 31.5964 32.2682 30.4590 31.5542	46.2002 46.0673 46.1585 46.1296 42.0740 41.8017 45.6062	2 3 4 5 6 7 8
MAMR MaFit GGrassMC ALM DR1MP VP GROUSE	2.7003 2.6919 2.9622 4.9261 3.2510 4.7779 4.3955	271 275 360 306 843 945 1751	0.0035 0.0036 0.0047 0.0040 0.0110 0.0123 0.0228	5 7 2 2 102 153 700	0.0001 0.0001 0.0000 0.0000 0.0013 0.0020	0.9919 0.9919 0.9888 0.9830 0.9888 0.9813 0.9756	35.6695 35.5752 34.6782 31.5964 32.2682 30.4590	46.2002 46.0673 46.1585 46.1296 42.0740 41.8017 45.6062	2 3 4 5 6 7
RMAMR LMaFit ScGrassMC IALM OR1MP SVP GROUSE	2.7003 2.6919 2.9622 4.9261 3.2510 4.7779 4.3955	271 275 360 306 843 945 1751	0.0035 0.0036 0.0047 0.0040 0.0110 0.0123 0.0228	5 7 2 2 102 153 700 1307	0.0001 0.0001 0.0000 0.0000 0.0013 0.0020 0.0091	0.9919 0.9919 0.9888 0.9830 0.9888 0.9813 0.9756	35.6695 35.5752 34.6782 31.5964 32.2682 30.4590 31.5542	46.2002 46.0673 46.1585 46.1296 42.0740 41.8017 45.6062	2 3 4 5 6 7 8
LRGeomCG RMAMR LMaFit ScGrassMC IALM OR1MP SVP GROUSE OptSpace	2.7003 2.6919 2.9622 4.9261 3.2510 4.7779 4.3955	271 275 360 306 843 945 1751	0.0035 0.0036 0.0047 0.0040 0.0110 0.0123 0.0228 0.0615	5 7 2 2 102 153 700 1307	0.0001 0.0001 0.0000 0.0000 0.0013 0.0020 0.0091 0.0170	0.9919 0.9919 0.9888 0.9830 0.9888 0.9813 0.9756 0.9279	35.6695 35.5752 34.6782 31.5964 32.2682 30.4590 31.5542 25.8722	46.2002 46.0673 46.1585 46.1296 42.0740 41.8017 45.6062 36.7496	2 3 4 5 6 7 8
RMAMR LMaFit ScGrassMC IALM ORIMP SVP GROUSE OptSpace	2.7003 2.6919 2.9622 4.9261 3.2510 4.7779 4.3955 8.6231	271 275 360 306 843 945 1751 4722	0.0035 0.0036 0.0047 0.0040 0.0110 0.0123 0.0228 0.0615	5 7 2 2 102 153 700 1307	0.0001 0.0001 0.0000 0.0000 0.0013 0.0020 0.0091 0.0170 CaVignal	0.9919 0.9919 0.9888 0.9830 0.9888 0.9813 0.9756 0.9279	35.6695 35.5752 34.6782 31.5964 32.2682 30.4590 31.5542 25.8722	46.2002 46.0673 46.1585 46.1296 42.0740 41.8017 45.6062 36.7496	2 3 4 5 6 7 8 9
RMAMR LMaFit SeGrassMC IALM DRIMP SVP GROUSE DptSpace Method LMaFit LRGeomCG	2.7003 2.6919 2.9622 4.9261 3.2510 4.7779 4.3955 8.6231 AGE 11.9504 11.9506	271 275 360 306 843 945 1751 4722 EPs 3788 3789	0.0035 0.0036 0.0047 0.0040 0.0110 0.0123 0.0228 0.0615 pEPs 0.1393 0.1393	5 7 2 2 102 153 700 1307 CEPs 2700 2700	0.0001 0.0000 0.0000 0.0000 0.0013 0.0020 0.0017 0.0170 CaVignal pCEPS 0.0993 0.0993	0.9919 0.9919 0.9888 0.9830 0.9883 0.9813 0.9756 0.9279 MSSSIM 0.9027 0.9026	35.6695 35.5752 34.6782 31.5964 32.2682 30.4590 31.5542 25.8722 PSNR 24.3417 24.3415	46.2002 46.0673 46.1585 46.1296 42.0740 41.8017 45.6062 36.7496 CQM 39.8279 39.8279	2 3 4 5 6 7 8 9 Scene Rank
RMAMR LMaFit ScGrassMC IALM DRIMP SVP GROUSE DptSpace Method LMaFit LRGeomCG RMAMR	2.7003 2.6919 2.9622 4.9261 3.2510 4.7779 4.3955 8.6231 AGE 11.9504 11.9506 12.0081	271 275 360 306 843 945 1751 4722 EPs 3788 3789 3817	0.0035 0.0036 0.0047 0.0040 0.0110 0.0123 0.0228 0.0615 pEPs 0.1393 0.1393 0.1403	5 7 2 2 102 153 700 1307 CEPs 2700 2700 2715	0.0001 0.0000 0.0000 0.0000 0.0013 0.0020 0.0091 0.0170 CaVignal pCEPS 0.0993 0.0993 0.0998	0.9919 0.9919 0.9888 0.9830 0.9888 0.9813 0.9756 0.9279 MSSSIM 0.9027 0.9026 0.9027	35.6695 35.5752 34.6782 31.5964 32.2682 30.4590 25.8722 PSNR 24.3417 24.3415 24.3147	46.2002 46.0673 46.1585 46.1296 42.0740 41.8017 45.6062 36.7496 CQM 39.8279 39.8279 39.8283	2 3 4 5 6 7 8 9 Scene Rank
RMAMR .MaFit ScGrassMC ALM DRIMP SVP GROUSE DptSpace Method .MaFit .RGeomCG RMAMR GROUSE	2.7003 2.6919 2.9622 4.9261 3.2510 4.7779 4.3955 8.6231 AGE 11.9504 11.9506 12.0081 12.8057	271 275 360 306 843 945 1751 4722 EPs 3788 3789 3817 3624	0.0035 0.0036 0.0047 0.0040 0.0110 0.0123 0.0228 0.0615 pEPs 0.1393 0.1393 0.1403 0.1332	5 7 2 2 102 153 700 1307 CEPs 2700 2700 2715 2205	0.0001 0.0001 0.0000 0.0000 0.0013 0.0020 0.0017 0.0170 CaVignal pCEPS 0.0993 0.0993 0.0998 0.0811	0.9919 0.9919 0.9888 0.9830 0.9888 0.9813 0.9756 0.9279 MSSSIM 0.9027 0.9026 0.9027	35.6695 35.5752 34.6782 31.5964 32.2682 30.4590 31.5542 25.8722 PSNR 24.3417 24.3417 24.3147 23.2489	46.2002 46.0673 46.1585 46.1296 42.0740 41.8017 45.6062 36.7496 CQM 39.8279 39.8279 39.8279 39.8083 38.8799	2 3 4 5 6 7 8 9 Scene Rank
RMAMR MaFit scGrassMC ALM DRIMP SVP GROUSE DptSpace Method MaFit RGeomCG RMAMR GROUSE	2.7003 2.6919 2.9622 4.9261 3.2510 4.7779 4.3955 8.6231 AGE 11.9504 11.9506 12.0081	271 275 360 306 843 945 1751 4722 EPs 3788 3789 3817 3624	0.0035 0.0036 0.0047 0.0040 0.0110 0.0123 0.0228 0.0615 pEPs 0.1393 0.1393 0.1403 0.1332	5 7 2 2 102 153 700 1307 CEPs 2700 2700 2715 2205	0.0001 0.0001 0.0000 0.0000 0.0013 0.0020 0.0017 0.0170 CaVignal pCEPS 0.0993 0.0993 0.0998 0.0811	0.9919 0.9919 0.9880 0.9830 0.9883 0.9813 0.9756 0.9279 MSSSIM 0.9027 0.9026 0.9026 0.9026 0.8846 0.8916	35.6695 35.5752 34.6782 31.5964 32.2682 30.4590 25.8722 PSNR 24.3417 24.3415 24.3147	46.2002 46.0673 46.1585 46.1296 42.0740 41.8017 45.6062 36.7496 CQM 39.8279 39.8279 39.8279 39.8083 38.8799	2 3 4 5 6 7 8 9 Scene Rank
MAMR MaFit GeGrassMC ALM PINE BROUSE OptSpace Method MaFit RGeomCG MAMR RIFOLE MROUSE MROUSE METHOD METHOD MROUSE MROUS	2.7003 2.6919 2.9622 4.9261 3.2510 4.7779 4.3955 8.6231 AGE 11.9504 11.9506 12.0081 12.8057	271 275 360 306 843 945 1751 4722 EPs 3788 3789 3817 3624 4084	0.0035 0.0036 0.0047 0.0040 0.0110 0.0123 0.0228 0.0615 pEPs 0.1393 0.1403 0.1332 0.1501	5 7 2 2 102 153 700 1307 CEPs 2700 2700 2715 2205 2942	0.0001 0.0000 0.0000 0.0003 0.0013 0.0020 0.0091 0.0170 CaVignal pCEPS 0.0993 0.0993 0.0998 0.0811 0.1082	0.9919 0.9919 0.9888 0.9830 0.9888 0.9813 0.9756 0.9279 MSSSIM 0.9027 0.9026 0.9027	35.6695 35.5752 34.6782 31.5964 32.2682 30.4590 31.5542 25.8722 PSNR 24.3417 24.3417 24.3147 23.2489	46.2002 46.0673 46.1585 46.1296 42.0740 41.8017 45.6062 36.7496 CQM 39.8279 39.8279 39.8279 39.8237 39.8237	2 3 4 5 6 7 8 9 Scene Rank 1 2 3 4 5 6
RMAMR MaFit MaFit MEHOM RIMP SVP GROUSE JPISPACE Method MaFit RGeomCG RMAMR GROUSE SeGrassMC ALM	2.7003 2.6919 2.9622 4.9261 3.2510 4.7779 4.3955 8.6231 AGE 11.9504 11.9506 12.0081 12.8057 12.8375 12.2618	271 275 360 306 843 945 1751 4722 EPs 3788 3789 3817 3624 4084 4764	0.0035 0.0036 0.0047 0.0040 0.0110 0.0123 0.0228 0.0615 pEPs 0.1393 0.1403 0.1332 0.1501	5 7 2 2 102 153 700 1307 CEPs 2700 2700 2715 2205 2942 3531	0.0001 0.0000 0.0000 0.0000 0.0013 0.0020 0.0091 0.0170 CaVignal pCEPS 0.0993 0.0998 0.0811 0.1082 0.1298	0.9919 0.9919 0.9888 0.9888 0.9813 0.9756 0.9279 MSSSIM 0.9027 0.9026 0.9027 0.8846 0.8779	35.6695 35.5752 34.6782 31.5964 32.2682 30.4590 31.5542 25.8722 PSNR 24.3417 24.3415 24.3415 24.3415 23.2489 23.9111	46.2002 46.0673 46.1585 46.1286 42.0740 41.8017 45.6062 36.7496 CQM 39.8279 39.8279 39.8083 39.8237 40.6135	2 3 4 5 6 7 8 9 Scene Rank 1 2 3 4 5
MAMR MaFit GrassMC LLM RIMP VP ROUSE ptSpace Method MaFit RGeomCG MAMR ROUSE GrassMC LLM RIMP VP	2.7003 2.6919 2.9622 4.9261 3.2510 4.7779 4.3955 8.6231 AGE 11.9504 11.9504 12.0081 12.0081 12.8057 12.3375 12.2618 12.5266 13.2230	271 275 360 306 843 945 1751 4722 EPs 3788 3789 3817 3624 4084 4764 4455 5628	0.0035 0.0036 0.0047 0.0040 0.0110 0.0123 0.0228 0.0615 pEPs 0.1393 0.1403 0.1501 0.1751 0.1638 0.2069	5 7 2 102 153 700 1307 CEPs 2700 2700 2715 2205 2942 3531 3356 3982	0.0001 0.0001 0.0000 0.0000 0.0013 0.0020 0.0017 0.0170 CaVignal pCEPS 0.0993 0.0993 0.0998 0.0811 0.1082 0.1234 0.1464	0.9919 0.9919 0.9888 0.9830 0.9888 0.9813 0.9756 0.9279 MSSSIM 0.9027 0.9026 0.9027 0.8846 0.8916 0.8779 0.8855	35.6695 35.5752 34.6782 31.5964 32.2682 30.4590 31.5542 25.8722 PSNR 24.3417 24.3415 24.3147 23.2489 23.9111 23.7955 23.7925 23.3352	46.2002 46.0673 46.1585 46.1296 42.0740 41.8017 45.6062 36.7496 CQM 39.8279 39.8283 38.8799 39.8237 40.6135 39.7716 39.8300	2 3 4 4 5 6 7 8 8 9 9 Scene Rank 1 2 3 4 4 5 6 6 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
IAMR IaFit ForassMC LM IMP P OUSE ISpace Method IaFit GeomCG IAMR OUSE GrassMC LM IIMP P	2.7003 2.6919 2.9622 4.9261 3.2510 4.7779 4.3955 8.6231 AGE 11.9504 12.8057 12.8057 12.3375 12.2378 12.23618	271 275 360 306 843 945 1751 4722 EPs 3788 3789 3817 3624 4084 4764 4455 5628	0.0035 0.0036 0.0047 0.0040 0.0110 0.0123 0.0228 0.0615 pEPs 0.1393 0.1403 0.1501 0.1751 0.1638 0.2069	5 7 2 102 153 700 1307 CEPs 2700 2700 2715 2205 2942 3531 3356 3982	0.0001 0.0001 0.0000 0.0000 0.0013 0.0020 0.0017 0.0170 CaVignal pCEPS 0.0993 0.0993 0.0998 0.0811 0.1082 0.1234 0.1464	0.9919 0.9919 0.9888 0.9830 0.9888 0.9813 0.9756 0.9279 MSSSIM 0.9027 0.9026 0.9027 0.8846 0.8916 0.8779 0.8855	35.6695 35.5752 34.6782 31.5964 32.2682 30.4590 31.5542 25.8722 PSNR 24.3417 24.3415 24.3147 23.2489 23.9111 23.7957 23.7925	46.2002 46.0673 46.1585 46.1296 42.0740 41.8017 45.6062 36.7496 CQM 39.8279 39.8283 38.8799 39.8237 40.6135 39.7716 39.8300	2 3 4 5 6 7 8 9 Scene Rank 1 2 3 4 5 6 7

References

- 1. L. Balzano and S. J. Wright. On GROUSE and incremental SVD. In *CAMSAP'2013*, pages 1–4, 2013.
- T. Bouwmans. Traditional and recent approaches in background modeling for foreground detection: An overview. In Computer Science Review, 2014.
- 3. T. Bouwmans and E. Zahzah. Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance. In *Special Isssue on Background Models Challenge, Computer Vision and Image Understanding*, volume 122, pages 22–34, May 2014.
- 4. J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion. *SIAM J. on Optimization*, 20(4):1956–1982, March 2010.
- 5. E. J. Candès and Y. Plan. Matrix completion with noise. CoRR, abs/0903.3131, 2009.
- E. J. Candès and B. Recht. Exact matrix completion via convex optimization. CoRR, abs/0805.4471, 2008.
- R. Cucchiara, C. Grana, M. Piccardi, and A. Prati. Detecting objects, shadows and ghosts in video streams by exploiting color and motion information. In *ICIAP'2001*, pages 360–365, Sep 2001.
- 8. R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from noisy entries. *The Journal of Machine Learning Research*, 99:2057–2078, 2010.
- 9. A. H. S. Lai and N. H. C. Yung. A fast and accurate scoreboard algorithm for estimating stationary backgrounds in an image sequence. In *IEEE SCS'98*, pages 241–244, 1998.
- 10. Z. Lin, M. Chen, and Y. Ma. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. *Mathematical Programming*, 2010.
- L. Maddalena and A. Petrosino. Background model initialization for static cameras. In Background Modeling and Foreground Detection for Video Surveillance. CRC Press, Taylor and Francis Group, 2014.
- 12. L. Maddalena and A. Petrosino. Towards benchmarking scene background initialization. *CoRR*, abs/1506.04051, 2015.
- 13. R. Meka, P. Jain, and I. S. Dhillon. Guaranteed rank minimization via singular value projection. *CoRR*, abs/0909.5457, 2009.
- T. Ngo and Y. Saad. Scaled gradients on grassmann manifolds for matrix completion. In Advances in Neural Information Processing Systems 25, pages 1412–1420. 2012.
- N. M. Oliver, B. Rosario, and A. P. Pentland. A bayesian computer vision system for modeling human interactions. *IEEE PAMI*, 22(8):831–843, 2000.
- 16. A. Sobral and A. Vacavant. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. *CVIU*, 122(0):4–21, 2014.
- 17. B. Vandereycken. Low-rank matrix completion by Riemannian optimization. *SIAM Journal on Optimization*, 23(2):1214–1236, 2013.
- 18. Z. Wang, M. Lai, Z. Lu, W. Fan, H. Davulcu, and J. Ye. Orthogonal rank-one matrix pursuit for low rank matrix completion. *SIAM J. Scientific Computing*, 37(1), 2015.
- 19. Z. Wen, W. Yin, and Y. Zhang. Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. *Mathematical Programming Computation*, 4(4):333–361, 2012.
- 20. X. Ye, J. Yang, X. Sun, K. Li, C. Hou, and Y. Wang. Foreground-background separation from video clips via motion-assisted matrix restoration. *IEEE T-CSVT*, PP(99):1–1, 2015.
- 21. X. Zhou, C. Yang, H. Zhao, and W. Yu. Low-rank modeling and its applications in image analysis. *ACM Computing Surveys (CSUR)*, 47(2):36, 2014.
- Z. Zivkovic. Improved adaptive gaussian mixture model for background subtraction. In ICPR 2004, volume 2, pages 28–31 Vol.2, Aug 2004.