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Introduction

Background subtraction (BS) is an important step in many computer vision systems to detect moving objects. This basic operation consists of separating the moving objects called "foreground" from the static information called "background" [START_REF] Bouwmans | Traditional and recent approaches in background modeling for foreground detection: An overview[END_REF][START_REF] Sobral | A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos[END_REF]. The BS is commonly used in video surveillance applications to detect persons, vehicles, animals, etc., before operating more complex processes for intrusion detection, tracking, people counting, etc. Typically the BS process includes the following steps: a) background model initialization, b) background model maintenance and c) foreground detection. With a focus on the step (a), the BS initialization consists in creating a background model. In a simple way, this can be done by setting manually a static image that represents the background. The main reason is that it is often assumed that initialization can be achieved by exploiting some clean frames at the beginning of the sequence. Naturally, this assumption is rarely encountered in real-life scenarios, because of continuous clutter presence. In addition, this procedure presents several limitations, because it needs a fixed camera with constant illumination, and the background needs to be static (commonly in indoor environments), and having no moving object in the first frames. In practice, several challenges appear and perturb this process such as noise acquisition, bootstrapping, dynamic factors, etc [START_REF] Maddalena | Background model initialization for static cameras[END_REF].

The main challenge is to obtain a first background model when more than half of the video frames contain foreground objects. Some authors suggest the initialization of the background model by the arithmetic mean [START_REF] Lai | A fast and accurate scoreboard algorithm for estimating stationary backgrounds in an image sequence[END_REF] (or weighted mean) of the pixels between successive images. Practically, some algorithms are: (1) batch ones using N training frames (consecutive or not), (2) incremental with known N or (3) progressive ones with unknown N as the process generates partial backgrounds and continues until a complete background image is obtained. Furthermore, initialization algorithms depend on the number of modes and the complexity of their background models. However, BS initialization has also been achieved by many other methodologies [START_REF] Maddalena | Background model initialization for static cameras[END_REF][START_REF] Bouwmans | Traditional and recent approaches in background modeling for foreground detection: An overview[END_REF]. We can cite for example the computation of eigen values and eigen vectors [START_REF] Oliver | A bayesian computer vision system for modeling human interactions[END_REF], and the recent research on subspace estimation by sparse representation and rank minimization [START_REF] Bouwmans | Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance. In Special Isssue on Background Models Challenge[END_REF]. The background model is recovered by the low-rank subspace that can gradually change over time, while the moving foreground objects constitute the correlated sparse outliers.

In this paper, the initialization of the background model is addressed as a matrix completion problem. The matrix completion aims at recovering a low rank matrix from partial observations of its entries. The image sequence (or video) is represented as a partially observed real-valued matrix. Figure 1 shows the proposed framework. First, a simple joint motion-detection and frame-selection operation is done. The redundant frames are eliminated, and the moving regions are represented with zeros in our observation matrix. This operation is described in the Section 2. The second stage involves evaluating nine popular matrix completion algorithms with the Scene Background Initialization (SBI) data set [START_REF] Maddalena | Towards benchmarking scene background initialization[END_REF] (see Section 3). This enables to analyze them with respect to the background model challenges. Finally, in Sections 4 and 5, the experimental results are shown as well as conclusions.

Throughout the paper, we use the following notations. Scalars are denoted by lowercase letters, e.g., x; vectors are denoted by lowercase boldface letters, e.g., x; matrices by uppercase boldface, e.g., X. In this paper, only real-valued data are considered.

Joint Motion Detection and Frame Selection

In order to reduce the number of redundant frames, a simple joint motion detection and frame selection operation is applied. First, the color images are converted into its gray-scale representation. So, let a sequence of N gray-scale images (frames) I 0 . . . I N captured from a static camera, that is, I ∈ R m×n where m and n denotes the frame resolution (rows by columns). The difference between two consecutive frames (motion detection step) is calculated by: Fig. 2. Illustration of frame selection operation. The normalized vector (in blue) shows the difference between two consecutive frames. The derivative vector draw how much the normalized vector changes (in red), and then it is thresholded and the frames are selected (in orange).

D t = (I t -I t-1 ) 2 | t = 1,...,N , (1) 
where D t ∈ R m×n denotes the matrix of pixel-wise L 2 -norm differences from frame t -1 to frame t. Next, the sum of all elements of D t , for t = 1, . . . , N , is stored in a vector d ∈ R N whose t-th element is given by:

d t = m i=1 n j=1 D t (i, j), (2) 
where D t (i, j) is the matrix element located in the row i ∈ [1, . . . , m] and column j ∈ [1, . . . , n]. Then, the vector d is normalized between 0 and 1 by:

d = d t -d min d max -d min | t = 1,...,N , (3) 
where d min and d max denotes the minimum value and the maximum value of the vector d. The frame selection step is done by calculating the derivative of d by:

d = d dt d, (4) 
Next, the vector d is also normalized by Equation 3 and represented by d . Finally, the index of the more relevant frames are given by thresholding d :

(5) y = 1 if | d -μ | > τ 0 otherwise ,
where μ denotes the mean value of the vector d , and τ ∈ [0, . . . , 1] controls the threshold operator. In this paper, R ≤ N represent the set of all frames where y = 1, and the parameter τ was chosen experimentally for each scene: τ = 0.025 for HallAndMonitor, τ = 0.05 for HighwayII, τ = 0.10 for HighwayI, and τ = 0.15 to all other scenes. Figure 1 illustrates our frame selection operation, in this example, with τ = 0.025, only 92 relevant frames are selected from a total of 296 frames (68, 92% of reduction). In the next section, the matrix completion process is described. 

Matrix Completion

As explained previously, the matrix completion aims to recover a low rank matrix from partial observations of its entries. Considering the general form of low rank matrix completion, the optimization problem is to find a matrix L ∈ R n1×n2 with minimum rank that best approximates the matrix A ∈ R n1×n2 . Candès and Recht [START_REF] Candès | Exact matrix completion via convex optimization[END_REF] show that this problem can be formulated as: minimize rank(A),

subject to P Ω (A) = P Ω (L), (6) 
where rank(A) is equal to the rank of the matrix A, and P Ω denotes the sampling operator restricted to the elements of Ω (set of observed entries), i.e., P Ω (A) has the same values as A for the entries in Ω and zero values for the entries outside Ω. Later, Candès and Recht [START_REF] Candès | Exact matrix completion via convex optimization[END_REF] propose to replace the rank(.) function with the nuclear norm ||A|| * = r i=1 σ i where σ 1 , σ 2 , ..., σ r are the singular values of A and r is the rank of A. The nuclear norm make the problem tractable and Candès and Recht [START_REF] Candès | Exact matrix completion via convex optimization[END_REF] have proved theoretically that the solution can be exactly recovered with a high probability. In addition, Cai et. al [START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF] propose an algorithm based on soft singular value thresholding (SVT) to solve this convex relaxation problem. However, in real world application the observed entries may be noisy. In order to make the Equation 6 robust to noise, Candès and Plan [START_REF] Candès | Matrix completion with noise[END_REF] propose a stable matrix completion approach. The equality constraint is replaced by ||P Ω (A -L)|| F ≤ , where ||.|| F denotes the Frobenious norm and is an upper bound on the noise level. Recently, several matrix completion algorithms have been proposed to deal with this challenge, and a complete review can be found in [START_REF] Zhou | Low-rank modeling and its applications in image analysis[END_REF].

In this paper, we address the background model initialization as a matrix completion problem. Once frame selection process is done, the moving regions of the R selected frames are determined by:

(7) M k (i, j) = 1 if 0.5(D k (i, j)) 2 > β 0 otherwise
where k ∈ R, and β is the thresholding parameter (in this paper, β = 1e -3 for all experiments). Next, the moving regions of each selected frame are filled with zeros by I k • M k , where M k denotes the complement of M k , and • denotes the elementwise multiplication of two matrices. For color images, each channel is processed individually, then they are vectorized into a partially observed real-valued matrix A = [vec(I 1 ) . . . vec(I k )], where A ∈ R n1×n2 , n1 = (m × n), and n2 = k. Figure 3 illustrates our matrix completion process. It can be seen that the partially observed matrix can be recovered successfully even with the presence of many missing entries. So, let L the recovered matrix from the matrix completion process, the background model is estimated by calculating the average value of each row, resulting in a vector l ∈ R n1×1 , and then reshaped into a matrix B ∈ R m×n .

Experimental results

In order to evaluate the proposed approach, nine matrix completion algorithms have been selected, and they are listed in Table 1. The algorithms were grouped in two categories, as well as its main techniques (following the same definition of Zhou et al. [START_REF] Zhou | Low-rank modeling and its applications in image analysis[END_REF]). In this paper, the Scene Background Initialization (SBI) data set was chosen for the background initialization task. The data set contains seven image sequences and corresponding ground truth backgrounds. It provides also MATLAB scripts for evaluating background initialization results in terms of eight metrics 3 . Figure 4 show the visual results for the top three best matrix completion algorithms, and Table 2 reports the quantitative results of each algorithm over the data set 4 . The algorithms are ranked as follow: 1) for each algorithm we calculate its rank position for each metric, we call it as metric rank (i.e. RMAMR have the first position for the AGE metric in the HallAndMonitor scene), next, 2) we sum the rank position value of each algorithm over the eight metrics, and finally, 3) we calculate the rank position over the sum, and we call it as scene rank. For the Global Rank, first we sum the scene rank for each MC algorithm, then we calculate its rank position over the sum. As we can see, the experimental results show the good performance of LRGeomCG [START_REF] Vandereycken | Low-rank matrix completion by Riemannian optimization[END_REF] method over its direct competitors. Furthermore, in most cases the matrix completion algorithms outperform the traditional approaches such as Mean [START_REF] Lai | A fast and accurate scoreboard algorithm for estimating stationary backgrounds in an image sequence[END_REF], Median [START_REF] Cucchiara | Detecting objects, shadows and ghosts in video streams by exploiting color and motion information[END_REF] and MoG [START_REF] Zivkovic | Improved adaptive gaussian mixture model for background subtraction[END_REF] as can be seen in the full experimental evaluation available at https://sites.google.com/site/mc4bmi/.

Conclusion

In this paper, we have evaluated nine recent matrix completion algorithms for the background initialization problem. Given a sequence of images, the key idea is to eliminate the redundant frames, and consider its moving regions as non-observed values. This approach results in a matrix completion problem, and the background model can be recovered even with the presence of missing entries. The experimental results on the SBI data set shows the comparative evaluation of these recent methods, and highlights the good performance of LRGeomCG [START_REF] Vandereycken | Low-rank matrix completion by Riemannian optimization[END_REF] method over its direct competitors. Finally, MC shows a nice potential for background modeling initialization in video surveillance. Future research may concern to evaluate incremental and real-time approaches of matrix completion in streaming videos. 

Fig. 1 .

 1 Fig.1. Block diagram of the proposed approach. Given an input image, a joint motion detection and frame selection operation is applied. Next, a matrix completion algorithm tries to recover the background model from the partially observed matrix. In this paper, the processes described here are conducted in a batch manner.

Fig. 3 .

 3 Fig. 3. Illustration of the matrix completion process. From the left to the right: a) the selected frames in vectorized form (our observation matrix), b) the moving regions are represented by non-observed entries (black pixels), c) the moving regions filled with zeros (modified version of the observation matrix), and d) the recovered matrix after the matrix completion process.
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 4 Fig. 4. Visual comparison for the background model initialization. From top to bottom: 1) example of input frame, 2) background model ground truth, and background model results for the top 3 best ranked MC algorithms: 3) LRGeomCG, 4) LMaFit, and 5) RMAMR.

Table 1 .

 1 List of low-rank matrix completion algorithms evaluated in this paper.

	Category	Method	Main techniques	Reference
	Rank Minimization	IALM RMAMR	Augmented Lagrangian [10, Lin et al. (2010)] Augmented Lagrangian [20, Ye et al. (2015)]
		SVP	Hard thresholding	[13, Meka et al. (2009)]
		OptSpace	Grassmannian	[8, Keshavan et al. (2010)]
		LMaFit	Alternating	[19, Wen et al. (2012)]
	Matrix Factorization	ScGrassMC Grassmannian	[14, Ngo and Saad (2012)]
		LRGeomCG Riemannian	[17, Vandereycken (2013)]
		GROUSE Online algorithm	[1, Balzano et al. (2013)]
		OR1MP	Matching pursuit	[18, Wang et al. (2015)]

Table 2 .

 2 Quantitative results over SBI data set, and the global rank for each matrix completion method. The bold metric values show the best score for each metric. For each scene, the results are ordered by the rank column.

				HallAndMonitor				Foliage
	Method	AGE	EPs pEPs CEPs pCEPS MSSSIM PSNR CQM Scene Rank	Method	AGE	EPs pEPs CEPs pCEPS MSSSIM PSNR CQM Scene Rank
	LRGeomCG 2.0550 190 0.0022	0	0.0000 0.9938 37.9811 46.3255	1	GROUSE	26.4036 17840 0.6194 13271 0.4608 0.8957 18.4042 33.4059	1
	RMAMR	2.0499 190 0.0022	0	0.0000 0.9938 37.9755 46.3222	2	LRGeomCG 26.4006 18074 0.6276 13459 0.4673 0.8970 18.4522 33.2733	2
	LMaFit	2.0583 194 0.0023	0	0.0000 0.9938 37.8487 46.2893	3	LMaFit	26.4093 18070 0.6274 13442 0.4667 0.8970 18.4490 33.2663	2
	ScGrassMC 2.0693 193 0.0023	0	0.0000 0.9937 37.9046 46.2838	4	RMAMR	26.5144 18146 0.6301 13548 0.4704 0.8965 18.4160 33.2392	4
	GROUSE	2.2201 191 0.0023	0	0.0000 0.9923 37.5319 45.8794	5	ScGrassMC 29.2509 19189 0.6663 15385 0.5342 0.8645 17.4636 33.2173	5
	OR1MP	2.2025 374 0.0044	0	0.0000 0.9926 34.9021 44.8283	6	OR1MP	31.3678 19094 0.6630 15257 0.5298 0.8221 16.7364 33.0468	5
	IALM	3.6143 2336 0.0277 1190 0.0141 0.9627 30.5907 40.9249	7	OptSpace	32.1405 19156 0.6651 15234 0.5290 0.8656 16.6268 31.4830	7
	SVP	4.1486 3230 0.0382 1574 0.0186 0.9474 28.2921 41.4398	8	IALM	31.6036 19451 0.6754 14986 0.5203 0.7473 16.8016 31.0114	8
	OptSpace	6.7051 5950 0.0704 2694 0.0319 0.9299 25.1834 37.6430	9	SVP	35.3522 19469 0.6760 16003 0.5557 0.7556 15.6496 33.1273	9
					HighwayI				PeopleAndFoliage
	Method	AGE	EPs pEPs CEPs pCEPS MSSSIM PSNR CQM Scene Rank	Method	AGE	EPs pEPs CEPs pCEPS MSSSIM PSNR CQM Scene Rank
	LRGeomCG 2.7715 192 0.0025 16 0.0002 0.9769 35.8950 58.6193	1	LRGeomCG 38.7467 64150 0.8353 59210 0.7710 0.8505 15.1638 27.6167	1
	RMAMR	2.7601 193 0.0025 16 0.0002 0.9769 35.8899 58.6283	1	OptSpace	41.8200 60020 0.7815 53183 0.6925 0.7535 14.1746 25.9930	2
	LMaFit	2.7781 196 0.0026 16 0.0002 0.9770 35.8636 58.6193	3	IALM	42.9444 63161 0.8224 58560 0.7625 0.7951 14.1751 27.8900	2
	ScGrassMC 3.2306 1088 0.0142 593 0.0077 0.9714 33.4838 58.5694	4	GROUSE	40.3918 63556 0.8276 57097 0.7435 0.8130 14.6485 26.5857	4
	GROUSE	6.1324 621 0.0081 138 0.0018 0.9614 30.3643 56.2861	5	OR1MP	42.8580 62335 0.8117 56809 0.7397 0.7861 14.0424 26.7015	4
	OR1MP	3.9587 1202 0.0157 691 0.0090 0.9637 32.4145 57.8051	6	ScGrassMC 39.6045 64076 0.8343 58991 0.7681 0.8472 14.9449 27.6499	6
	IALM	6.4223 1836 0.0239 837 0.0109 0.9507 29.5142 57.9214	7	LMaFit	38.7738 64155 0.8354 59220 0.7711 0.8501 15.1567 27.6143	7
	SVP	6.9160 5694 0.0741 2530 0.0329 0.9095 27.6621 53.1073	8	RMAMR	38.8234 64189 0.8358 59276 0.7718 0.8502 15.1484 27.5987	8
	OptSpace	14.7067 19754 0.2572 13930 0.1814 0.7957 22.8624 43.8142	9	SVP	45.0733 63916 0.8322 58803 0.7657 0.7644 13.6320 27.0416	9
					HighwayII				Snellen
	Method	AGE	EPs pEPs CEPs pCEPS MSSSIM PSNR CQM Scene Rank	Method	AGE	EPs pEPs CEPs pCEPS MSSSIM PSNR CQM Scene Rank
	LRGeomCG 2.6840 268 0.0035	4	0.0001 0.9919 35.7076 46.1997	1	ScGrassMC 43.8219 17838 0.8602 16070 0.7750 0.8469 14.3702 37.6451	1
	RMAMR	2.7003 271 0.0035	5	0.0001 0.9919 35.6695 46.2002	2	LRGeomCG 41.8853 18621 0.8980 17379 0.8381 0.8807 14.8166 37.4253	2
	LMaFit	2.6919 275 0.0036	7	0.0001 0.9919 35.5752 46.0673	3	OptSpace	49.2605 16619 0.8015 15292 0.7375 0.7419 12.8053 29.4492	2
	ScGrassMC 2.9622 360 0.0047	2	0.0000 0.9888 34.6782 46.1585	4	LMaFit	41.8688 18623 0.8981 17387 0.8385 0.8809 14.8203 37.4234	4
	IALM	4.9261 306 0.0040	2	0.0000 0.9830 31.5964 46.1296	5	GROUSE	41.8123 18629 0.8984 17403 0.8393 0.8809 14.8421 37.5570	5
	OR1MP	3.2510 843 0.0110 102 0.0013 0.9888 32.2682 42.0740	6	IALM	46.0978 18433 0.8889 17084 0.8239 0.8330 14.0292 37.1551	6
	SVP	4.7779 945 0.0123 153 0.0020 0.9813 30.4590 41.8017	7	OR1MP	50.4572 18084 0.8721 16677 0.8043 0.7504 13.1602 36.2566	7
	GROUSE	4.3955 1751 0.0228 700 0.0091 0.9756 31.5542 45.6062	8	SVP	54.6990 17649 0.8511 16189 0.7807 0.7105 12.5506 35.6896	7
	OptSpace	8.6231 4722 0.0615 1307 0.0170 0.9279 25.8722 36.7496	9	RMAMR	42.0476 18625 0.8982 17395 0.8389 0.8800 14.7872 37.3821	9
					CaVignal		Global rank over all scenes
	Method	AGE	EPs pEPs CEPs pCEPS MSSSIM PSNR CQM Scene Rank	Method Global rank
	LMaFit	11.9504 3788 0.1393 2700 0.0993 0.9027 24.3417 39.8279	1	LRGeomCG	1
	LRGeomCG 11.9506 3789 0.1393 2700 0.0993 0.9026 24.3415 39.8279	2	LMaFit	2
	RMAMR	12.0081 3817 0.1403 2715 0.0998 0.9027 24.3147 39.8083	3	RMAMR	3
	GROUSE	12.8057 3624 0.1332 2205 0.0811 0.8846 23.2489 38.8799	4	ScGrassMC	3
	ScGrassMC 12.3375 4084 0.1501 2942 0.1082 0.8916 23.9111 39.8237	5	GROUSE	5
	IALM	12.2618 4764 0.1751 3531 0.1298 0.8779 23.7957 40.6135	6	IALM	6
	OR1MP	12.5266 4455 0.1638 3356 0.1234 0.8855 23.7925 39.7716	7	OR1MP	6
	SVP	13.2230 5628 0.2069 3982 0.1464 0.8760 23.3352 39.8300	8	OptSpace	8
	OptSpace	14.1744 6176 0.2271 4214 0.1549 0.8927 23.0940 39.8662	9	SVP	9

Please, refer to http://sbmi2015.na.icar.cnr.it/ for a complete description of each metric.

Full experimental evaluation and related source code can be found in the main website: https://sites.google.com/site/mc4bmi/