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Abstract. Background model initialization is commonly the first step of the
background subtraction process. In practice, several challenges appear and per-
turb this process such as dynamic background, bootstrapping, illumination changes,
noise image, etc. In this context, this work aims to investigate the background
model initialization as a matrix completion problem. Thus, we consider the image
sequence (or video) as a partially observed matrix. First, a simple joint motion-
detection and frame-selection operation is done. The redundant frames are elimi-
nated, and the moving regions are represented by zeros in our observation matrix.
The second stage involves evaluating nine popular matrix completion algorithms
with the Scene Background Initialization (SBI) data set, and analyze them with
respect to the background model challenges. The experimental results shows the
good performance of LRGeomCG [17] method over its direct competitors.
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1 Introduction

Background subtraction (BS) is an important step in many computer vision systems to
detect moving objects. This basic operation consists of separating the moving objects
called “foreground” from the static information called “background” [2, 16]. The BS is
commonly used in video surveillance applications to detect persons, vehicles, animals,
etc., before operating more complex processes for intrusion detection, tracking, peo-
ple counting, etc. Typically the BS process includes the following steps: a) background
model initialization, b) background model maintenance and c) foreground detection.
With a focus on the step (a), the BS initialization consists in creating a background
model. In a simple way, this can be done by setting manually a static image that rep-
resents the background. The main reason is that it is often assumed that initialization
can be achieved by exploiting some clean frames at the beginning of the sequence. Nat-
urally, this assumption is rarely encountered in real-life scenarios, because of continu-
ous clutter presence. In addition, this procedure presents several limitations, because it
needs a fixed camera with constant illumination, and the background needs to be static
(commonly in indoor environments), and having no moving object in the first frames.
In practice, several challenges appear and perturb this process such as noise acquisition,
bootstrapping, dynamic factors, etc [11].

The main challenge is to obtain a first background model when more than half of the
video frames contain foreground objects. Some authors suggest the initialization of the
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Fig. 1. Block diagram of the proposed approach. Given an input image, a joint motion detection
and frame selection operation is applied. Next, a matrix completion algorithm tries to recover the
background model from the partially observed matrix. In this paper, the processes described here
are conducted in a batch manner.

background model by the arithmetic mean [9] (or weighted mean) of the pixels between
successive images. Practically, some algorithms are: (1) batch ones using N training
frames (consecutive or not), (2) incremental with known N or (3) progressive ones
with unknown N as the process generates partial backgrounds and continues until a
complete background image is obtained. Furthermore, initialization algorithms depend
on the number of modes and the complexity of their background models. However,
BS initialization has also been achieved by many other methodologies [11, 2]. We can
cite for example the computation of eigen values and eigen vectors [15], and the recent
research on subspace estimation by sparse representation and rank minimization [3].
The background model is recovered by the low-rank subspace that can gradually change
over time, while the moving foreground objects constitute the correlated sparse outliers.

In this paper, the initialization of the background model is addressed as a matrix
completion problem. The matrix completion aims at recovering a low rank matrix from
partial observations of its entries. The image sequence (or video) is represented as a
partially observed real-valued matrix. Figure 1 shows the proposed framework. First,
a simple joint motion-detection and frame-selection operation is done. The redundant
frames are eliminated, and the moving regions are represented with zeros in our obser-
vation matrix. This operation is described in the Section 2. The second stage involves
evaluating nine popular matrix completion algorithms with the Scene Background Ini-
tialization (SBI) data set [12] (see Section 3). This enables to analyze them with respect
to the background model challenges. Finally, in Sections 4 and 5, the experimental re-
sults are shown as well as conclusions.

Throughout the paper, we use the following notations. Scalars are denoted by lower-
case letters, e.g., x; vectors are denoted by lowercase boldface letters, e.g., x; matrices
by uppercase boldface, e.g., X. In this paper, only real-valued data are considered.

2 Joint Motion Detection and Frame Selection

In order to reduce the number of redundant frames, a simple joint motion detection
and frame selection operation is applied. First, the color images are converted into its
gray-scale representation. So, let a sequence of N gray-scale images (frames) I0 . . . IN
captured from a static camera, that is, I ∈ Rm×n where m and n denotes the frame
resolution (rows by columns). The difference between two consecutive frames (motion
detection step) is calculated by:
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Fig. 2. Illustration of frame selection operation. The normalized vector (in blue) shows the dif-
ference between two consecutive frames. The derivative vector draw how much the normalized
vector changes (in red), and then it is thresholded and the frames are selected (in orange).

Dt =
√

(It − It−1)2 | t= 1,...,N , (1)

where Dt ∈ Rm×n denotes the matrix of pixel-wise L2-norm differences from frame
t − 1 to frame t. Next, the sum of all elements of Dt, for t = 1, . . . , N , is stored in a
vector d ∈ RN whose t-th element is given by:

dt =

m∑
i=1

n∑
j=1

Dt(i, j), (2)

where Dt(i, j) is the matrix element located in the row i ∈ [1, . . . ,m] and column
j ∈ [1, . . . , n]. Then, the vector d is normalized between 0 and 1 by:

d̂ =
dt − dmin

dmax − dmin
| t= 1,...,N , (3)

where dmin and dmax denotes the minimum value and the maximum value of the vector
d. The frame selection step is done by calculating the derivative of d̂ by:

d′ =
d

dt
d̂, (4)

Next, the vector d′ is also normalized by Equation 3 and represented by d̂
′
. Finally, the

index of the more relevant frames are given by thresholding d̂
′
:

(5)y =

{
1 if |d̂′ − µ̂′| > τ

0 otherwise
,

where µ̂′ denotes the mean value of the vector d̂
′
, and τ ∈ [0, . . . , 1] controls the thresh-

old operator. In this paper, R ≤ N represent the set of all frames where y = 1, and the
parameter τ was chosen experimentally for each scene: τ = 0.025 for HallAndMoni-
tor, τ = 0.05 for HighwayII, τ = 0.10 for HighwayI, and τ = 0.15 to all other scenes.
Figure 1 illustrates our frame selection operation, in this example, with τ = 0.025, only
92 relevant frames are selected from a total of 296 frames (68, 92% of reduction). In
the next section, the matrix completion process is described.
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Fig. 3. Illustration of the matrix completion process. From the left to the right: a) the selected
frames in vectorized form (our observation matrix), b) the moving regions are represented by
non-observed entries (black pixels), c) the moving regions filled with zeros (modified version of
the observation matrix), and d) the recovered matrix after the matrix completion process.

3 Matrix Completion

As explained previously, the matrix completion aims to recover a low rank matrix from
partial observations of its entries. Considering the general form of low rank matrix
completion, the optimization problem is to find a matrix L ∈ Rn1×n2 with minimum
rank that best approximates the matrix A ∈ Rn1×n2. Candès and Recht [6] show that
this problem can be formulated as:

minimize rank(A),

subject to PΩ(A) = PΩ(L),
(6)

where rank(A) is equal to the rank of the matrix A, and PΩ denotes the sampling
operator restricted to the elements of Ω (set of observed entries), i.e., PΩ(A) has the
same values as A for the entries in Ω and zero values for the entries outside Ω. Later,
Candès and Recht [6] propose to replace the rank(.) function with the nuclear norm
||A||∗=

∑r
i=1 σi where σ1, σ2, ..., σr are the singular values of A and r is the rank

of A. The nuclear norm make the problem tractable and Candès and Recht [6] have
proved theoretically that the solution can be exactly recovered with a high probability.
In addition, Cai et. al [4] propose an algorithm based on soft singular value thresholding
(SVT) to solve this convex relaxation problem. However, in real world application the
observed entries may be noisy. In order to make the Equation 6 robust to noise, Candès
and Plan [5] propose a stable matrix completion approach. The equality constraint is
replaced by ||PΩ(A− L)||F≤ ε, where ||.||F denotes the Frobenious norm and ε is an
upper bound on the noise level. Recently, several matrix completion algorithms have
been proposed to deal with this challenge, and a complete review can be found in [21].

In this paper, we address the background model initialization as a matrix completion
problem. Once frame selection process is done, the moving regions of the R selected
frames are determined by:

(7)Mk(i, j) =

{
1 if 0.5(Dk(i, j))2 > β

0 otherwise

where k ∈ R, and β is the thresholding parameter (in this paper, β = 1e−3 for all
experiments). Next, the moving regions of each selected frame are filled with zeros
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Table 1. List of low-rank matrix completion algorithms evaluated in this paper.

Category Method Main techniques Reference

Rank Minimization
IALM Augmented Lagrangian [10, Lin et al. (2010)]
RMAMR Augmented Lagrangian [20, Ye et al. (2015)]

Matrix Factorization

SVP Hard thresholding [13, Meka et al. (2009)]
OptSpace Grassmannian [8, Keshavan et al. (2010)]
LMaFit Alternating [19, Wen et al. (2012)]
ScGrassMC Grassmannian [14, Ngo and Saad (2012)]
LRGeomCG Riemannian [17, Vandereycken (2013)]
GROUSE Online algorithm [1, Balzano et al. (2013)]
OR1MP Matching pursuit [18, Wang et al. (2015)]

by Ik ◦Mk, where Mk denotes the complement of Mk, and ◦ denotes the element-
wise multiplication of two matrices. For color images, each channel is processed in-
dividually, then they are vectorized into a partially observed real-valued matrix A =
[vec(I1) . . . vec(Ik)], where A ∈ Rn1×n2, n1 = (m× n), and n2 = k. Figure 3 illus-
trates our matrix completion process. It can be seen that the partially observed matrix
can be recovered successfully even with the presence of many missing entries. So, let
L the recovered matrix from the matrix completion process, the background model is
estimated by calculating the average value of each row, resulting in a vector l ∈ Rn1×1,
and then reshaped into a matrix B ∈ Rm×n.

4 Experimental results

In order to evaluate the proposed approach, nine matrix completion algorithms have
been selected, and they are listed in Table 1. The algorithms were grouped in two cat-
egories, as well as its main techniques (following the same definition of Zhou et al.
[21]).

In this paper, the Scene Background Initialization (SBI) data set was chosen for
the background initialization task. The data set contains seven image sequences and
corresponding ground truth backgrounds. It provides also MATLAB scripts for evaluat-
ing background initialization results in terms of eight metrics3. Figure 4 show the visual
results for the top three best matrix completion algorithms, and Table 2 reports the quan-
titative results of each algorithm over the data set4. The algorithms are ranked as follow:
1) for each algorithm we calculate its rank position for each metric, we call it as metric
rank (i.e. RMAMR have the first position for the AGE metric in the HallAndMonitor
scene), next, 2) we sum the rank position value of each algorithm over the eight met-
rics, and finally, 3) we calculate the rank position over the sum, and we call it as scene
rank. For the Global Rank, first we sum the scene rank for each MC algorithm, then

3 Please, refer to http://sbmi2015.na.icar.cnr.it/ for a complete description of
each metric.

4 Full experimental evaluation and related source code can be found in the main website:
https://sites.google.com/site/mc4bmi/
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Fig. 4. Visual comparison for the background model initialization. From top to bottom: 1) exam-
ple of input frame, 2) background model ground truth, and background model results for the top
3 best ranked MC algorithms: 3) LRGeomCG, 4) LMaFit, and 5) RMAMR.

we calculate its rank position over the sum. As we can see, the experimental results
show the good performance of LRGeomCG [17] method over its direct competitors.
Furthermore, in most cases the matrix completion algorithms outperform the traditional
approaches such as Mean [9], Median [7] and MoG [22] as can be seen in the full exper-
imental evaluation available at https://sites.google.com/site/mc4bmi/.

5 Conclusion

In this paper, we have evaluated nine recent matrix completion algorithms for the back-
ground initialization problem. Given a sequence of images, the key idea is to eliminate
the redundant frames, and consider its moving regions as non-observed values. This
approach results in a matrix completion problem, and the background model can be re-
covered even with the presence of missing entries. The experimental results on the SBI
data set shows the comparative evaluation of these recent methods, and highlights the
good performance of LRGeomCG [17] method over its direct competitors. Finally, MC
shows a nice potential for background modeling initialization in video surveillance. Fu-
ture research may concern to evaluate incremental and real-time approaches of matrix
completion in streaming videos.
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Table 2. Quantitative results over SBI data set, and the global rank for each matrix completion method. The bold metric values show the best score for
each metric. For each scene, the results are ordered by the rank column.

HallAndMonitor

Method AGE EPs pEPs CEPs pCEPS MSSSIM PSNR CQM Scene Rank

LRGeomCG 2.0550 190 0.0022 0 0.0000 0.9938 37.9811 46.3255 1
RMAMR 2.0499 190 0.0022 0 0.0000 0.9938 37.9755 46.3222 2
LMaFit 2.0583 194 0.0023 0 0.0000 0.9938 37.8487 46.2893 3
ScGrassMC 2.0693 193 0.0023 0 0.0000 0.9937 37.9046 46.2838 4
GROUSE 2.2201 191 0.0023 0 0.0000 0.9923 37.5319 45.8794 5
OR1MP 2.2025 374 0.0044 0 0.0000 0.9926 34.9021 44.8283 6
IALM 3.6143 2336 0.0277 1190 0.0141 0.9627 30.5907 40.9249 7
SVP 4.1486 3230 0.0382 1574 0.0186 0.9474 28.2921 41.4398 8
OptSpace 6.7051 5950 0.0704 2694 0.0319 0.9299 25.1834 37.6430 9

HighwayI

Method AGE EPs pEPs CEPs pCEPS MSSSIM PSNR CQM Scene Rank

LRGeomCG 2.7715 192 0.0025 16 0.0002 0.9769 35.8950 58.6193 1
RMAMR 2.7601 193 0.0025 16 0.0002 0.9769 35.8899 58.6283 1
LMaFit 2.7781 196 0.0026 16 0.0002 0.9770 35.8636 58.6193 3
ScGrassMC 3.2306 1088 0.0142 593 0.0077 0.9714 33.4838 58.5694 4
GROUSE 6.1324 621 0.0081 138 0.0018 0.9614 30.3643 56.2861 5
OR1MP 3.9587 1202 0.0157 691 0.0090 0.9637 32.4145 57.8051 6
IALM 6.4223 1836 0.0239 837 0.0109 0.9507 29.5142 57.9214 7
SVP 6.9160 5694 0.0741 2530 0.0329 0.9095 27.6621 53.1073 8
OptSpace 14.7067 19754 0.2572 13930 0.1814 0.7957 22.8624 43.8142 9

HighwayII

Method AGE EPs pEPs CEPs pCEPS MSSSIM PSNR CQM Scene Rank

LRGeomCG 2.6840 268 0.0035 4 0.0001 0.9919 35.7076 46.1997 1
RMAMR 2.7003 271 0.0035 5 0.0001 0.9919 35.6695 46.2002 2
LMaFit 2.6919 275 0.0036 7 0.0001 0.9919 35.5752 46.0673 3
ScGrassMC 2.9622 360 0.0047 2 0.0000 0.9888 34.6782 46.1585 4
IALM 4.9261 306 0.0040 2 0.0000 0.9830 31.5964 46.1296 5
OR1MP 3.2510 843 0.0110 102 0.0013 0.9888 32.2682 42.0740 6
SVP 4.7779 945 0.0123 153 0.0020 0.9813 30.4590 41.8017 7
GROUSE 4.3955 1751 0.0228 700 0.0091 0.9756 31.5542 45.6062 8
OptSpace 8.6231 4722 0.0615 1307 0.0170 0.9279 25.8722 36.7496 9

CaVignal

Method AGE EPs pEPs CEPs pCEPS MSSSIM PSNR CQM Scene Rank

LMaFit 11.9504 3788 0.1393 2700 0.0993 0.9027 24.3417 39.8279 1
LRGeomCG 11.9506 3789 0.1393 2700 0.0993 0.9026 24.3415 39.8279 2
RMAMR 12.0081 3817 0.1403 2715 0.0998 0.9027 24.3147 39.8083 3
GROUSE 12.8057 3624 0.1332 2205 0.0811 0.8846 23.2489 38.8799 4
ScGrassMC 12.3375 4084 0.1501 2942 0.1082 0.8916 23.9111 39.8237 5
IALM 12.2618 4764 0.1751 3531 0.1298 0.8779 23.7957 40.6135 6
OR1MP 12.5266 4455 0.1638 3356 0.1234 0.8855 23.7925 39.7716 7
SVP 13.2230 5628 0.2069 3982 0.1464 0.8760 23.3352 39.8300 8
OptSpace 14.1744 6176 0.2271 4214 0.1549 0.8927 23.0940 39.8662 9

Foliage

Method AGE EPs pEPs CEPs pCEPS MSSSIM PSNR CQM Scene Rank

GROUSE 26.4036 17840 0.6194 13271 0.4608 0.8957 18.4042 33.4059 1
LRGeomCG 26.4006 18074 0.6276 13459 0.4673 0.8970 18.4522 33.2733 2
LMaFit 26.4093 18070 0.6274 13442 0.4667 0.8970 18.4490 33.2663 2
RMAMR 26.5144 18146 0.6301 13548 0.4704 0.8965 18.4160 33.2392 4
ScGrassMC 29.2509 19189 0.6663 15385 0.5342 0.8645 17.4636 33.2173 5
OR1MP 31.3678 19094 0.6630 15257 0.5298 0.8221 16.7364 33.0468 5
OptSpace 32.1405 19156 0.6651 15234 0.5290 0.8656 16.6268 31.4830 7
IALM 31.6036 19451 0.6754 14986 0.5203 0.7473 16.8016 31.0114 8
SVP 35.3522 19469 0.6760 16003 0.5557 0.7556 15.6496 33.1273 9

PeopleAndFoliage

Method AGE EPs pEPs CEPs pCEPS MSSSIM PSNR CQM Scene Rank

LRGeomCG 38.7467 64150 0.8353 59210 0.7710 0.8505 15.1638 27.6167 1
OptSpace 41.8200 60020 0.7815 53183 0.6925 0.7535 14.1746 25.9930 2
IALM 42.9444 63161 0.8224 58560 0.7625 0.7951 14.1751 27.8900 2
GROUSE 40.3918 63556 0.8276 57097 0.7435 0.8130 14.6485 26.5857 4
OR1MP 42.8580 62335 0.8117 56809 0.7397 0.7861 14.0424 26.7015 4
ScGrassMC 39.6045 64076 0.8343 58991 0.7681 0.8472 14.9449 27.6499 6
LMaFit 38.7738 64155 0.8354 59220 0.7711 0.8501 15.1567 27.6143 7
RMAMR 38.8234 64189 0.8358 59276 0.7718 0.8502 15.1484 27.5987 8
SVP 45.0733 63916 0.8322 58803 0.7657 0.7644 13.6320 27.0416 9

Snellen

Method AGE EPs pEPs CEPs pCEPS MSSSIM PSNR CQM Scene Rank

ScGrassMC 43.8219 17838 0.8602 16070 0.7750 0.8469 14.3702 37.6451 1
LRGeomCG 41.8853 18621 0.8980 17379 0.8381 0.8807 14.8166 37.4253 2
OptSpace 49.2605 16619 0.8015 15292 0.7375 0.7419 12.8053 29.4492 2
LMaFit 41.8688 18623 0.8981 17387 0.8385 0.8809 14.8203 37.4234 4
GROUSE 41.8123 18629 0.8984 17403 0.8393 0.8809 14.8421 37.5570 5
IALM 46.0978 18433 0.8889 17084 0.8239 0.8330 14.0292 37.1551 6
OR1MP 50.4572 18084 0.8721 16677 0.8043 0.7504 13.1602 36.2566 7
SVP 54.6990 17649 0.8511 16189 0.7807 0.7105 12.5506 35.6896 7
RMAMR 42.0476 18625 0.8982 17395 0.8389 0.8800 14.7872 37.3821 9

Global rank over all scenes

Method Global rank

LRGeomCG 1
LMaFit 2
RMAMR 3
ScGrassMC 3
GROUSE 5
IALM 6
OR1MP 6
OptSpace 8
SVP 9
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