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Abstract

The development of automated video-surveillance appli-
cations for maritime environment is a very difficult task
due to the complexity of the scenes: moving water, waves,
etc. The motion of the objects of interest (i.e. ships
or boats) can be mixed with the dynamic behavior of
the background (non-regular patterns). In this paper, a
double-constrained Robust Principal Component Analysis
(RPCA), named SCM-RPCA (Shape and Confidence Map-
based RPCA), is proposed to improve the object foreground
detection in maritime scenes. The sparse component is
constrained by shape and confidence maps both extracted
from spatial saliency maps. The experimental results in the
UCSD and MarDT data sets indicate a better enhancement
of the object foreground mask when compared with some
related RPCA methods.

1. Introduction

Background subtraction (BS) or foreground separation
is commonly the first step in many video surveillance sys-
tems to detect moving objects. This basic operation con-
sists of separating the moving objects called “foreground”
from the static information called “background”. However,
in most cases, the background model is not always static due
to the complexity of natural scenes: wind in the trees, mov-
ing water, waves, etc. A specific case is the development
of automated video-surveillance applications for maritime
environment (i.e. automatic detection of ships or boats to
improve the sea border control).

The maritime surveillance represents a challenging sce-
nario due to the different background dynamics of the ob-
served scenes. Many algorithms have been designed to per-
form foreground detection [5, 6, 13], but only a few of

them have been designed for maritime scenes. Some re-
lated works can be found in Bloisi et al. [3]. The authors
propose a multimodal approach for BS to deal with the wa-
ter background. In addition, Liu et al. [10] proposes an
iterative approach for ship target segmentation in infrared
images based on multiple features. However, the recent re-
search on subspace estimation by sparse representation and
rank minimization show an interesting framework to sep-
arate moving objects from the background in videos. The
background sequence is modeled by the low-rank subspace
that can gradually change over time, while the moving fore-
ground objects constitute the correlated sparse outliers.

Robust Principal Component Analysis (RPCA) solved
via Principal Component Pursuit (PCP) [7] decomposes a
data matrix A in two components such that A = L + S,
where L is a low-rank matrix and S is constrained to be a
sparse matrix. The low-rank minimization concerning L of-
fers a suitable framework for background modeling due to
the correlation between frames. So, minimizing L and S
implies that the background is approximated by a low-rank
subspace that can gradually change over time, while the
moving foreground objects constitute the correlated sparse
outliers which are contained in S. To obtain the foreground
mask, S needs to be thresholded. Usually, the threshold is
determined experimentally.

However, PCP is limited to the low-rank component be-
ing exactly low-rank and the sparse component being ex-
actly sparse but the observations in real applications are of-
ten corrupted by noise affecting every entry of the data ma-
trix. Therefore, Zhou et al. [18] proposed a stable PCP
(SPCP) that guarantee stable and accurate recovery in the
presence of entry-wise noise. SPCP assumes that the ob-
servation matrix A is represented as A = L + S + E (also
named as three-term decomposition), where E is a noise
term. To recover L, S and E, Zhou et al. [18] proposed to
solve the following optimization problem, as a relaxed ver-
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Figure 1. Block diagram of the proposed approach. Given an input image (a), a saliency detector is applied (b). Next, the confidence map
(c) is built by normalizing the saliency map, while the shape constraint (or region of interest) (d) is built by thresholding this one, and
(e) the foreground mask obtained by thresholding the RPCA sparse component. Note that in some environments where a) the object of
interest move very slowly (i.e long distance boats), or b) the background is very dynamic (i.e boats in the sea), the optical flow may not be
enough to ensure the object detection. In addition, the double constraints (confidence map and shape) can be built from two different types
of source (i.e. from spatial, temporal, or spatio-temporal information), but in this work we focus only on spatial saliency maps.

sion to PCP: min
L,S,E

||L||∗+λ||S||1+γ||E||2F , s.t. A = L +

S + E, where ||.||∗, ||.||1 and ||.||F are the nuclear norm
(i.e. sum of singular values), l1-norm (sum of matrix el-
ements magnitude) and the Frobenius norm, respectively,
while λ > 0 and γ > 0 are an arbitrary weighting parame-
ter. This decomposition is called “stable” decomposition as
it separates the outliers in S and the noise in E.

In scenes where the background is very dynamic (i.e. sea
waves in maritime surveillance [3]), the motion of the ob-
jects of interest (i.e. boats) will be mixed with the dynamic
behavior of the background (i.e. waves). SPCP-based meth-
ods tries to deal with this problem under the term where the
multi-modality of the background (i.e. waves) is consid-
ered as noise component (E), while the moving objects (i.e.
boats) is considered as sparse component (S). The low-rank
component (L) represents the static part of the background.

In this paper, a double-constrained RPCA, named SCM-
RPCA (Shape and Confidence Map-based RPCA), is pro-
posed to improve the object foreground detection in dy-
namic scenes. The sparse component is constrained by
shape and confidence maps both extracted from spatial
saliency maps. One advantage of the SCM-RPCA in re-
lation to its direct competitors, is the possibility to combine
two different types of source: spatial, temporal, and spatio-
temporal information, but in this work we focus only on
spatial saliency maps. Fig. 1 highlights our proposed ap-
proach. Given an input image (a), a saliency detector is
applied (b). Next, the confidence map (c) is built by nor-
malizing the saliency map, while the shape constraint (d) is
built by thresholding this one, and (e) the foreground mask
given by thresholding the RPCA sparse component.

First, we start with the related works (Section 2), and
next we describe our proposed approach (Section 3). The
remainder of the paper is organized as follows: Section 4

describes how to solve our SCM-RPCA algorithm. Section
5 defines the concept of shape and confidence map. Finally,
in Sections 6 and 7, the experimental results are shown as
well as conclusions.

2. Related works
In the literature, there are several modifications which

concern the original SPCP. Some authors [12, 14, 15] added
constraint in the sparse term in order to improve the fore-
ground detection. First, Oreifej et al. [12] use a tur-
bulence model to enforce an additional constraint on the
rank minimization. The authors quantify the scenes mo-
tion in terms of the motion of the particles which are driven
by dense optical flow. The obtained confidence map (a
real-valued matrix) provides a rough prior knowledge of
the moving objects locations, which can be incorporated
into the matrix optimization problem. Subsequently, Yang
et al. [14, 15] propose a motion-assisted matrix restora-
tion (MAMR) model for foreground-background separa-
tion. Thus, a dense motion field is estimated for each frame
by dense optical flow, and mapped into a weighting ma-
trix which indicates the likelihood that each pixel belongs
to the background. By incorporating this information, areas
dominated by slowly-moving objects are suppressed while
the background that appears at only a few frames has more
chances to be recovered in the foreground detection results.
In addition, Yang et al. [15] extended MAMR (RMAMR)
which is robust approach to noise for practical applications.

3. SCM-RPCA approach
In this work, we propose to combine some ideas pro-

posed by both Oreifej et al. [12] and Yang et al. [14, 15].
The weighting matrix proposed by Yang et al. [14, 15]



Author(s) Minimization

Oreifej et al. [12] min
L,S,E

||L||∗+λ||Π(S)||1+γ||E||2F
s.t. A = L+ S + E

Yang et al. [15] min
L,S,E

||L||∗+λ||S||1+γ||E||2F
s.t. W ◦A = W ◦ (L+ S + E)

SCM-RPCA min
L,S,E

||L||∗+λ||Π(S)||1+γ||E||2F
s.t. A = L+W ◦ S + E

Table 1. Comparison of the proposed method and related works.

can be used as a shape constraint (or region constraint),
while the confidence map proposed by Oreifej et al.[12] re-
inforces the pixels belonging from the moving objects. A
modified version of the original 3WD method was imple-
mented adding the shape constraint as has been done in the
RMAMR. Part of the reason we chose to modify the 3WD
instead of RMAMR is it capacity to deal with the multi-
modality of the background. The second contribution of
this paper refers to the way of building the shape constraint
and confidence map. Instead of using dense optical flow
(temporal descriptor) as a preliminary step, we suggest to
use a saliency detector (spatial descriptor). In some cases
where a) the object of interest moves very slowly (i.e long
distance boats) or b) the background is very dynamic (i.e
boats in the sea), the optical flow may not be enough to en-
sure the object detection. In addition, computing the dense
optical flow request high computational cost, while comput-
ing the saliency map is commonly much more fast. Several
saliency detection methods have been proposed in the litera-
ture [4]. In this work, the BMS1 method proposed by Zhang
and Sclaroff [16, 17] was selected by its speed performance
and visual results.

Let a sequence of k gray-scale images (frames) I1 . . . Ik
captured from a static camera, that is, I ∈ Rm×n where
m and n denotes the frame resolution (rows by columns).
All frames are vectorized into a observation matrix A =
[vec(I1) . . . vec(Ik)], where A ∈ Rmn×k and mn = (m ×
n). Our decomposition can be formulated as:

(1)
min
L,S,E

||L||∗ + λ||Π(S)||1 + γ||E||2F ,

s.t. A = L+W ◦ S + E

where Π ∈ Rmn×k and W ∈ [0, 1]mn×k are the confi-
dence map and shape constraint (binary map), respectively,
and “◦” denotes element-wise multiplication of two matrix.
As explained previously, the confidence map Π reinforce
the pixels belonging from the moving objects and the shape
constraint W defines the region of interest. Table 1 shows

1http://cs-people.bu.edu/jmzhang/BMS/BMS.html

Algorithm 1 Algorithm for solving SCM-RPCA.
Input:
Observation A ∈ Rmn×k
Confidence Map Π ∈ Rmn×k
Shape Constraint W ∈ [0, 1]mn×k

Output:
Background L ∈ Rmn×k
Foreground S ∈ Rmn×k
Noise E ∈ Rmn×k
while not converged do
Υ = β−1

t Yt
URV T = svd(A− Lt − Et + Υ)
Lt+1 = Us(1/βt)(R)V T

St+1 = W ◦ s(λ/βtΠ)(A− Lt+1 − Et + Υ)
κ = (1 + 2γ

βt
)−1

Et+1 = κ(A− Lt+1 − St+1 + Υ)
Z = At+1 − Lt+1 − St+1 − Et+1

Yt+1 = Yt + βtZ
βt+1 = ρβt
t = t+ 1
end

the comparison of the proposed method between Oreifej et
al. [12] and Yang et al. [14, 15]. These minimization prob-
lems are convex and can be solved by the Alternating Di-
rection Method (ADM) under the Augmented Lagrangian
Multiplier (ALM) framework [9].

4. Solving the SCM-RPCA
To solve the Equation 1, the ALM [9] is used. The ALM

framework convert the constrained optimization problem to
the minimization of the augmented Lagrange function:

L(L, S,E, Y ) = ||L||∗+λ||Π(S)||1+γ||E||2F
+ < Y,A− L−W ◦ S − E) >

+
β

2
||(A− L−W ◦ S − E)||2F

(2)

where Y ∈ Rmn×k is a Lagrange multiplier matrix, β > 0
is the penalty parameter for the violation of the linear con-
straint, and <,> denotes the matrix inner product. Next,
the ADM is used to solve L, S, E and Y alternatingly:

Lt+1 = argmin
L
L(L, St, Et, Yt),

St+1 = argmin
S
L(Lt+1, S, Et, Yt),

Et+1 = argmin
E
L(Lt+1, St+1, E, Yt),

Z = (At+1 − Lt+1 − St+1 − Et+1),

Yt+1 = Yt + βtZ

(3)

where Z ∈ Rmn×k is the residuals. Then, a closed form
solution for each of minimization problems can be defined
by:
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Figure 2. Visual comparison on background subtraction results over three scenes of UCSD data set. From top to bottom: surfers, boats
and birds. From left to right: (a) input frame, (b) saliency map generated by BMS [17], (c) ground truth, (d) proposed approach, (e) 3WD
[12], and (f) RMAMR [15]. The top 3 best algorithms (organized by rank) from Table 2 was chosen. The true positives (TP ) pixels are in
white, true negatives (TN ) pixels in black, false positives (FP ) pixels in red and false negatives (FN ) pixels in green.

Υ = β−1
t Yt,

URV T = svd(A− Lt − Et + Υ),

Lt+1 = Us(1/βt)(R)V T ,

St+1 = W ◦ s(λ/βtΠ)(A− Lt+1 − Et + Υ),

κ = (1 +
2γ

βt
)−1,

Et+1 = κ(A− Lt+1 − St+1 + Υ)

(4)

where svd(.) denotes a full singular value decomposition,
and s(.)(.) is the soft thresholding operator defined by:

s(α)(X) = sign(X)max(abs(X)− α, 0) (5)

where s(.)(.) is applied in a matrix X in an element-wise
manner. The main steps of our proposed algorithm are
shown in Algorithm 1. Usually the convergence is done
when (||Z||F /||A||F ) < ε (where ε is the error tolerance),
or when the # of iterations is reached. The parameters λ and
γ are scalars and defines the weighting parameter for the
sparse and noise component, respectively, and ρ is a con-
stant scalar and growth factor for the β parameter. Oreifej
et al. [12] shows when βt is a monotonically increasing pos-
itive sequence, the iterations converge to the optimal solu-
tion of problem 1. In this work, λ, γ, ρ, and β0 were defined
empirically as 2, 1/||A||2, 1.25, and 5/

√
m, respectively.

5. Definition of shape and confidence map
In this work, both the confidence map Π and the shape

constraintW are constructed from spatial information given
by saliency maps instead of optical flow, as proposed orig-
inally by Oreifej et al. [12] and Yang et al. [14, 15]. Let a

sequence of k saliency maps denoted by M1 . . .Mk where
M ∈ Rm×n, so:

(6a)Π = [vec(norm(M1)) . . . vec(norm(Mk))]

(6b)W = [vec(thresh(M1)) . . . vec(thresh(Mk))]

where norm(.) denotes the min-max normalization, scaling
all entries of M between 0 and 1 by:

(7)norm(M(i,j)) =
M(i,j) −Mmin

Mmax −Mmin

with Mmin and Mmax the minimum value and the maxi-
mum value of the matrix M , respectively, and M(i,j) the
matrix element located in the row i ∈ [1 . . .m] and column
j ∈ [1 . . . n]. Subsequently, thresh(.) denotes the thresh-
olding function defined as:

(8)thresh(M(i,j)) =

{
1 if (0.5M(i,j))

2 < µ

0 otherwise

where µ = 0.5η(std(vec(M)))2, and std(.) denotes the
standard deviation of a data vector. In this work, η was
chosen experimentally and defined as 10.

6. Experimental results
In order to evaluate the performance of the proposed

method for background subtraction, four videos extracted
from the UCSD Background Subtraction Dataset2 proposed
by Mahadevan and Vasconcelos [11] and three videos from
MarDT data set3 proposed by Bloisi et al. [2] was selected.

2http://www.svcl.ucsd.edu/projects/background\
_subtraction/ucsdbgsub\_dataset.htm

3http://www.dis.uniroma1.it/˜labrococo/MAR/
index.htm



Table 2. Quantitative results on four videos of UCSD Background Subtraction Dataset [11].
Birds Surfers Boats Ocean Rank

Re Pr F1 Re Pr F1 Re Pr F1 Re Pr F1 Avg.F1

PCP [7] 0.842 0.094 0.170 0.754 0.075 0.137 0.814 0.100 0.178 0.748 0.115 0.200 0.171
Lag-SPCP-QN [1] 0.413 0.322 0.362 0.244 0.282 0.261 0.405 0.215 0.281 0.484 0.313 0.380 0.321

RMAMR [15] 0.823 0.229 0.358 0.775 0.248 0.376 0.816 0.230 0.359 0.777 0.175 0.286 0.345
3WD [12] 0.586 0.604 0.595 0.538 0.405 0.462 0.673 0.473 0.556 0.563 0.337 0.422 0.509

SCM-RPCA 0.573 0.638 0.604 0.518 0.565 0.541 0.663 0.550 0.602 0.457 0.544 0.497 0.561

Table 3. Benchmark evaluation over four videos of UCSD Background Subtraction Dataset [11].

Birds Surfers Boats Ocean
(242× 156× 71) (344× 224× 41) (344× 224× 31) (316× 196× 176)

Iter Time∗ Iter Time∗ Iter Time∗ Iter Time∗

PCP [7] +100 27.29 +100 21.19 +100 18.47 +100 110.53
Lag-SPCP-QN [1] 29 10.12 53 16.27 39 10.01 18 29.49
RMAMR [15] 34 10.63 35 13.09 33 11.44 35 44.22
3WD [12] 30 4.53 26 4.28 31 4.06 42 29.96
SCM-RPCA 29 4.59 25 4.37 27 3.82 43 33.02
(width× height× length) denotes the frame resolution and the number of processed frames.
∗ Time for matrix decomposition (in seconds). Does not include the time to compute the input constraint (saliency maps).
+ Iteration limit 100 reached.

Table 4. Precision, Recall and F-Measure metrics.

Metrics Description

Precision (Pr) TP/(TP + FP )
Recall (Re) TP/(TP + FN )
F-Measure (F1) 2× (Pr ×Re)/(Pr +Re)

TP = # of foreground pixels classified as foreground.

FP = # of background pixels classified as foreground.

TN = # of background pixels classified as background.

FN = # of foreground pixels classified as background.

The UCSD and MarDT data sets consists of 18 and 28 video
sequences, respectively, both acquired from a stationary and
moving camera, but in this work (due to page limits) we
have selected only the four sequences from UCSD and three
sequences from MarDT.

We have compared the SCM-RPCA with its direct com-
petitors: the orignal PCP proposed by Candès et al. [7],
the stable PCP proposed by Aravkin et al. [1], the 3WD
proposed by Oreifej et al. [12], and the RMAMR proposed
by Yang et al. [15]. Note that the PCP and stable PCP
are not constrained, while 3WD and RMAMR are single-
constrained RPCA. Is important to note that all constrained
RPCA evaluated in this paper have been used the saliency
maps as the input constraint.

In the next sections, we report the quality evaluation and
the benchmark evaluation of the selected algorithms.

6.1. Quality evaluation

Figures 2 and 3 show the visual results for background
subtraction task in the UCSD and MarDT data sets, respec-

tively. Is important to note that in the UCSD scenes we
have used the original spatial saliency map provided by
BMS, while for the MarDT scenes we have subtracted its
temporal median due to the high saliency from the build-
ings around the river. The quantitative results in Table 2
show that the SCM-RPCA outperforms the previous meth-
ods, with the highest F -measure average over the selected
video sequences. Each metric is described in Table 4. As
can be seen from Figures 2 and 3, and Table 2, the combi-
nation with confidence map and shape constraint can reduce
the amount of false positive pixels.

6.2. Benchmark evaluation

In Table 3, we report our benchmark evaluation over four
videos of UCSD Background Subtraction Dataset [11]. The
algorithms are implemented in MATLAB (R2014a) run-
ning on a laptop computer with Windows 7 Professional
64 bits, 2.7 GHz Core i7-3740QM processor and 32Gb of
RAM. Note that in Table 3 the number of iterations (Iter)
of the proposed method is slightly less than the 3WD and
RMAMR, except for the Ocean scene. However, the com-
putation time is slightly increased, except for the Boats
scene. We noticed that the combination of shape constraint
and confidence map did not changed significantly the num-
ber of iterations and computation time over original 3WD.

7. Conclusion
In this paper a double-constrained version of RPCA is

proposed to improve the foreground detection in dynamic
scenes. The sparse component is constrained by shape and
confidence maps both extracted from spatial saliency maps.
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Figure 3. Visual results of SCM-RPCA over three scenes of MarDT data set. From left to right: (a) input frame, (b) saliency map with its
temporal median subtracted (due to the high saliency from the buildings around the river), (c) low-rank component, (d) sparse component,
(e) foreground mask, and (f) ground truth. The true positives (TP ) pixels are in white, true negatives (TN ) pixels in black, false positives
(FP ) pixels in red and false negatives (FN ) pixels in green.

The experimental results indicate a better enhancement of
the object foreground mask when compared with its direct
competitors. As shown in quality evaluation, the combina-
tion with confidence map and shape constraint can reduce
the amount of false positive pixels. In addition, our bench-
mark evaluation demonstrates that the proposed algorithm
have a slightly change in the number of iterations and com-
putation time compared to the original 3WD.

In the future work, we will investigate how spatio-
temporal saliency detectors can help the proposed approach
to improve the foreground detection. In this work, the con-
fidence map and shape constraint were built from the same
source, specifically by saliency maps. We will explore how
different sources can be used to built separately these con-
straints. Furthermore, we are interested in adapting the pro-
posed algorithm to perform the decomposition incremen-
tally as in Online RPCA [8]. MATLAB codes available at4.
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