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INTRODUCTION

The background subtraction (BS) is one of the main steps in many computer vision applications, such as object tracking, behavior understanding and activity recognition [START_REF] Pietikäinen | Computer vision using local binary patterns[END_REF]. The BS process consists basically of: a) background model initialization, b) background model maintenance and c) foreground detection. Many BS methods have been developed during the last few years (Bouwmans, 2014;[START_REF] Sobral | A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos[END_REF][START_REF] Shah | Video background modeling: Recent approaches, issues and our solutions[END_REF], and the main resources can be found at the Background Subtraction Web Site 1 .

The BS needs to face several challenging situations such as illumination changes, dynamic backgrounds, bad weather, camera jitter, noise and shadows. Several feature extraction methods have been developed to deal with these situations. Color features are the most widely used, but they present several limitations when illumination changes, shadows and camouflage occurences are present. A variety of local texture descriptors recently have attracted great attention for background modeling, especially the Local Binary Pattern (LBP) because it is simple and fast to compute. Figure 1 (top) shows how a (center) pixel is encoded by a series of bits, accordingly to the relative gray levels of its circular neighboring pixels. It shows great invariance to monotonic illumination changes, do not require many parameters to be set, and have a high discriminative power. However, the original LBP descriptor in [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF] is not efficient for background modeling because of its sensitivity to noise, see Figure 1 (bottom) where a little change of the central value greatly affects the resulting code. The LBP feature of an image consists in building a histogram based on the codes of all the pixels within the image. As it only adopts first-order gradient information between the center pixel and its neighbors, see [START_REF] Xue | Hybrid center-symmetric local pattern for dynamic background subtraction[END_REF], the produced histogram can be rather long. A large number of local texture descriptors based on LBP [START_REF] Richards | Local binary patterns: New variants and applications[END_REF] have been proposed so far for background modeling. In order to be more robust to noise or illumination changes, most of them are unfortunately either very time-consuming or produce a long feature histogram.

In this paper, we propose to extend the variant by [START_REF] Heikkilä | Description of interest regions with local binary patterns[END_REF] by introducing a new neighboring pixels comparison strategy that allows the descriptor to be less sensitive to noisy pixels and to produce a short histogram, while preserving robustness to illumination changes and slightly gaining in time consumption when compared to its direct competitors.

The rest of this paper is organized as follows. Section 2 provides quite an exhaustive overview of LBPbased descriptors. The new descriptor that we propose is described in Section 3. Comparative results obtained on both synthetic and real videos are given in Section 4. Finally, concluding remarks and some perspectives are drawn in Section 5. 

Descriptor

Robust to noise

Robust to illumination changes

Uses color information

Uses temporal information

Histogram size with 8 neighbors Original LBP [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF] • 256 Modified LBP [START_REF] Heikkilä | A texturebased method for modeling the background and detecting moving objects[END_REF] • • 256 CS-LBP [START_REF] Heikkilä | Description of interest regions with local binary patterns[END_REF] • 16 STLBP [START_REF] Shimada | Hybrid background model using spatial-temporal lbp[END_REF] • • 256 εLBP Wang and Pan (2010) • 256 Adaptive εLBP (Wang et al., 2010) • 256 SCS-LBP [START_REF] Xue | Dynamic background subtraction based on spatial extended center-symmetric local binary pattern[END_REF] • • 16 SILTP [START_REF] Liao | Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes[END_REF] • 256 CS-LDP [START_REF] Xue | Hybrid center-symmetric local pattern for dynamic background subtraction[END_REF] • 16 SCBP [START_REF] Xue | Hybrid center-symmetric local pattern for dynamic background subtraction[END_REF] • 64 OCLBP [START_REF] Lee | Hierarchical on-line boosting based background subtraction[END_REF] • 1536 Uniform LBP [START_REF] Yuan | A new background subtraction method using texture and color information[END_REF] • 59 SALBP [START_REF] Noh | A new framework for background subtraction using multiple cues[END_REF] • 128 SLBP-AM [START_REF] Yin | Dynamic background subtraction based on appearance and motion pattern[END_REF] 

RELATED WORK

One of the first descriptors based on the LBP for background modeling can be found in [START_REF] Heikkilä | A texturebased method for modeling the background and detecting moving objects[END_REF]. It improves the original LBP in image areas where the gray values of the neighboring pixels are very close to the center pixel one, e.g. sky, grass, etc. [START_REF] Shimada | Hybrid background model using spatial-temporal lbp[END_REF] propose a Spatial-Temporal Local Binary Pattern (STLBP) which is robust to short-term illumination changes by using some temporal information. Two variants of LBP, called εLBP and Adaptive εLBP, are developed in (Wang and Pan, 2010;Wang et al., 2010). They are fast to compute and less sensitive to the illumination variation or some color similarity between foreground and background. [START_REF] Heikkilä | Description of interest regions with local binary patterns[END_REF] [START_REF] Xue | Hybrid center-symmetric local pattern for dynamic background subtraction[END_REF]. It extracts more detailed local information while preserving the same feature lengths than the CS-LBP, but with a slightly lower precision than the original LBP. [START_REF] Zhou | Dynamic background subtraction using spatial-color binary patterns[END_REF] develop a Spatial-Color Binary Pattern (SCBP) that fuse color and texture information. The SCBP outperforms LBP and SCS-LBP for background subtraction tasks. In [START_REF] Lee | Hierarchical on-line boosting based background subtraction[END_REF], the authors propose an Opponent Color Local Binary Pattern (OCLBP) that uses color and texture information. The OCLBP extracts several pixel's pieces of information, but the length of the produced histogram makes it useless for some applications. An Uniform LBP Patterns with a new thresholding method can be found in [START_REF] Yuan | A new background subtraction method using texture and color information[END_REF]. It appears to be tolerant to the interference of the sampling noise. [START_REF] Yin | Dynamic background subtraction based on appearance and motion pattern[END_REF] propose a Stereo LBP on Appearance and Motion (SLBP-AM) which uses information from a set of frames of three different planes. This texture descriptor is not only robust to slight noise, but it also adapts quickly to the large-scale and sudden light changes. A Local Binary Similarity Patterns (LBSP) descriptor is developed in (Bilodeau et al., 2013). Based on absolute absolute differences, it applies on small areas and is calculated inside one image and between two images. This allows LBSP to capture both texture and intensity changes. [START_REF] Noh | A new framework for background subtraction using multiple cues[END_REF] propose to improve the SILTP [START_REF] Liao | Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes[END_REF] thanks to a codebook method. The derived descriptor gain in robustness when segmenting moving objects from dynamic and complex backgrounds. [START_REF] Wu | Real-time background subtraction-based video surveillance of people by integrating local texture patterns[END_REF] extend SILTP by introducing a novel Center Symmetric Scale Invariant Local Ternary Patterns (CS-SILTP) descriptor which explores spatial and temporal rela-tionships within the neighborhood. The LBP descriptors present a significant drawback as it ignores the intensity information. Because of this, there could be a wrong pixel comparison result when intensity values of pixels differ drastically, but their LBP values are identical. To overcome this drawback, [START_REF] Vishnyakov | Fast moving objects detection using ilbp background model[END_REF] propose an intensity LBP (iLBP) to build a fast background model is proposed in [START_REF] Vishnyakov | Fast moving objects detection using ilbp background model[END_REF]. It is defined as a collection of LBP descriptor values and intensity values of the image. The main characteristics of all the above reviewed LBP variants, including those we will compare our new descriptor to, are summarized in Table 1. Let a pixel at a certain location, considered as the center pixel c = (x c , y c ) of a local neighborhood composed of P equally spaced pixels on a circle of radius R. The LBP operator applied to c can be expressed as:

THE XCS-LBP DESCRIPTOR

LBP P,R (c) = P-1 ∑ i=0 s (g i -g c ) 2 i (1)
where g c is the gray value of the center pixel c and g i is the gray value of each neighboring pixel, and s is a thresholding function defined as:

s(x) = 1 if x ≥ 0 0 otherwise. (2)
From (1), it is easy to show that the number of binary terms to be summed is ∑ P-1 i=0 2 i = 2 P -1, so that the length of the resulting histogram (including the bin-0 location) is 2 P . The underlying idea of CS-LBP in [START_REF] Heikkilä | Description of interest regions with local binary patterns[END_REF] is to compare the gray levels of pairs of pixels in centered symmetric directions instead of comparing the central pixel to its neighbors. Assuming an even number P of neighboring pixels, the CS-LBP operator is given by:

CS -LBP P,R (c) = (P/2)-1 ∑ i=0 s(g i -g i+(P/2) ) 2 i (3)
where g i and g i+(P/2) are the gray values of centersymmetric pairs of pixels, and s is the thresholding function defined as:

s(x) = 1 if x > T 0 otherwise (4)
where T is a user-defined threshold. Since the gray levels are normalized in [0,1], the authors recommend to use of a small value. We will set it to 0.01 in the experiments presented in Section 4. By construction, the length of the histogram resulting from the CS-LBP descriptor falls down to 1 + ∑ P/2-1 i=0

2 i = 2 P/2 . For BS, the CS-LBP encodes the two images to be compared as texture-based images with a lower quantization that slightly favors robustness.

We propose to extend the CS-LBP operator by comparing the gray values of pairs of centersymmetric pixels so that the produced histogram are short as well, but considering the central pixel also. This combination makes the resulting descriptor less sensitive to noise for the BS application. The new LBP variant, called XCS-LBP (eXtended CS-LBP), expresses as:

XCS -LBP P,R (c) = (P/2)-1 ∑ i=0 s (g 1 (i, c) + g 2 (i, c)) 2 i (5)
where the threshold function s, which is used to determine the types of local pattern transition, is defined as a characteristic function:

s(x 1 + x 2 ) = 1 if (x 1 + x 2 ) ≥ 0 0 otherwise. ( 6 
)
and where g 1 (i, c) and g 2 (i, c) are defined by:

g 1 (i, c) = (g i -g i+(P/2) ) + g c g 2 (i, c) = (g i -g c ) (g i+(P/2) -g c ) (7)
with the same notation conventions than in equations ( 1) and (3). It is worth noting that the threshold function does not need a user-defined threshold value, contrary to CS-LBP. The computation of the original LBP for a neighborhood of size P = 8 is illustrated in Figure 2 and the computation of the proposed XCS-LBP is shown in Figure 3 in order to make the comparison more understandable for the reader. Note the respective code lengths of 8 and 4 that lead to respective image compressions.

The proposed XCS-LBP produces a shorter histogram than LBP, as short as CS-LBP, but it extracts more image details than CS-LBP because (i) it takes into account the gray value of the central pixel, and (ii) it relies on a new strategy for neighboring pixels comparison. Since it is also more robust to noisy images than both LBP and CS-LBP, the proposed descriptor appears to more efficient for background modeling and subtraction.

EXPERIMENTAL RESULTS

Several experiments were conducted to illustrate both the qualitative and quantitative performances of the proposed descriptor XCS-LBP. We use datasets from the BMC (Background Models Challenge) which comprises synthetic and real videos of outdoor situations (urban scenes) acquired with a static camera, under different weather variations such as: wind, sun or rain [START_REF] Vacavant | A benchmark dataset for outdoor foreground/background extraction[END_REF]. We compare XCS-LBP with three other texture descriptors among the reviewed ones, namely:

• original LBP [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF],

• CS-LBP [START_REF] Heikkilä | Description of interest regions with local binary patterns[END_REF] and [START_REF] Xue | Hybrid center-symmetric local pattern for dynamic background subtraction[END_REF].

• CS-LDP
We choose these two last descriptors on fair comparison purpose. Indeed, among those who rely on the same construction principle, i.e. Center Symmetric (CS), they are the only ones that use neither color nor temporal information, see Table 1. For all descriptors, the neighborhood size is empirically selected so that P = 8 and R = 1, and we evaluate the performance with two popular background subtraction methods, see (Bouwmans, 2014): • Adaptive Background Learning (ABL) and

• Gaussian Mixture Models (GMM).
First, we present results of background subtraction on individual frames of five different scenes from two video sequences: Rotary (frame #1140) and Street (frame #301). Figures 4 and5 show the foreground detection results using the ABL and the GMM methods, respectively. Our descriptor clearly appears to be less sensitive to the background subtraction method, whereas the three others are very useless in detecting the moving objects when using the ABL method, unless a strong post-processing procedure.

Next, we give quantitative results on the same data. We use three classical measures based on the numbers of true positive T P pixels (correctly detected foreground pixels), false positive FP pixels (background pixels detected as foreground ones), false negative pixels FN (foreground pixels detected as background ones), and true negative pixels (correctly detected background pixels):

• Recall = T P T P + FN ,

• Precision = T P T P + FP , and

• F -score = 2 × Recall × Precision Recall + Precision .
Tables 2 and3 shows the scores of the different descriptors obtained on the Rotary and Street entire scenes when using the ABL and the GMM method, respectively. Best scores are in bold. The proposed XCS-LBP gives the highest value for each score on almost all scenes, except for scene 312,412], for which CS-LBP and CS-LDP has achieved the best Recall using ABL, and scene Street-112 for which LBP gives the best Recall using GMM.

Note that both CS-LBP and CS-LDP gives lower scores (Precision and F-score) than LBP for some scenes, while our XCS-LBP descriptor takes always the advantage on the others, as shown by the average scores reported at the bottom of each Table .  Finally, we evaluate the proposed descriptor on nine long duration (about one hour) real outdoor video scenes from BMC. Each video sequence shows different challenging situations of real world: moving trees, casted shadows, the presence of a continuous car flow near to the surveillance zone, general climatic conditions (sunny, rainy and snowy conditions), fast light changes and the presence of big objects. The scores obtained using the ABL and the GMM methods are given in Table 4 and5, respectively. Once again, our descriptor achieved the best scores on almost always scenes, even when using the simple ABL method whereas it dramatically compromises the other descriptors. The average scores reported at the bottom of each Table show that our XCS-LBP outperforms the original LBP and both the similar construction-based CS-LBP and CS-LDP descriptors, the latter one being less performant than the LBP using GMM method. We use Matlab R2013a on a MacBook Pro (OS X 10.9.4) equipped with 2.2 GHz Intel Core i7 and 8 GB -1333 MHz DDR3.

We collected the elapsed CPU times needed to segment the foregrounds using the ABL and the GMM methods, averaged over the nine real videos of BMC. Since the reference is the (fastest) LBP descriptor, the times are divided by LBP ones. Table 6 reports the resulting ratios for the compared CS de-scriptors. Our XCS-LBP shows slightly better time performance than both CS-LBP and CS-LDP. It is also tolerant to illumination changes as LBP and CS-LBP are whereas CS-LDP is not, and robust to noise as CS-LDP is whereas LBP and CS-LBP are not. We compared the XCS-LBP to the original LBP and to its two direct competitors on both synthetic and real videos of the Background Modeling Challenge (BMC) using two popular background subtraction methods. The experimental results show that the proposed descriptor qualitatively and quantitatively outperforms the mentioned descriptors, making it a serious candidate for the background substation task in computer vision applications. Future works will explore how to extend the proposed descriptor to include temporal relationships between neighboring pixels for dynamic texture classification or human action recognition. 
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 1 Figure 1: Examples of LBP encoding
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 2 Figure 2: The LBP descriptor.
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 34 Figure 3: The XCS-LBP descriptor. Rotary (frame #1140) -scenes 122, 222, 322, 422 and 522 Street (frame #301) -scenes 112, 212, 312, 412 and 512 (a)

Figure 5 :

 5 Figure 5: Background subtraction results using the GMM method on synthetic scenes -(a) original frame, (b) ground truth, (c) LBP, (d) CS-LBP, (e) CS-LDP and (f) proposed XCS-LBP.

Table 1 :

 1 Comparison of LBP and variants. 

Table 2 :

 2 Performance of the different descriptors on synthetic videos of the BMC using the ABL method.

	Scenes Descriptor Recall Precision F-score
		LBP	0.682	0.564	0.618
	Rotary	CS-LBP	0.832	0.520	0.640
	122	CS-LDP	0.809	0.523	0.635
		XCS-LBP	0.850	0.784	0.816
		LBP	0.611	0.505	0.553
	Rotary	CS-LBP	0.673	0.504	0.577
	222	CS-LDP	0.753	0.510	0.608
		XCS-LBP	0.852	0.782	0.815
		LBP	0.603	0.505	0.550
	Rotary	CS-LBP	0.647	0.504	0.566
	322	CS-LDP	0.733	0.507	0.600
		XCS-LBP	0.829	0.793	0.810
		LBP	0.573	0.502	0.535
	Rotary	CS-LBP	0.609	0.503	0.550
	422	CS-LDP	0.733	0.508	0.600
		XCS-LBP	0.751	0.780	0.765
		LBP	0.610	0.505	0.553
	Rotary	CS-LBP	0.663	0.504	0.573
	522	CS-LDP	0.745	0.509	0.605
		XCS-LBP	0.852	0.732	0.787
		LBP	0.702	0.530	0.604
	Street	CS-LBP	0.839	0.512	0.636
	112	CS-LDP	0.826	0.525	0.642
		XCS-LBP	0.803	0.793	0.798
		LBP	0.636	0.504	0.562
	Street	CS-LBP	0.716	0.503	0.591
	212	CS-LDP	0.798	0.513	0.624
		XCS-LBP	0.808	0.790	0.799
		LBP	0.627	0.504	0.558
	Street	CS-LBP	0.699	0.503	0.585
	312	CS-LDP	0.801	0.511	0.624
		XCS-LBP	0.800	0.796	0.798
		LBP	0.580	0.501	0.558
	Street	CS-LBP	0.599	0.501	0.546
	412	CS-LDP	0.754	0.507	0.607
		XCS-LBP	0.748	0.781	0.764
		LBP	0.628	0.503	0.559
	Street	CS-LBP	0.677	0.503	0.577
	512	CS-LDP	0.771	0.508	0.612
		XCS-LBP	0.800	0.575	0.669
		LBP	0.625	0.512	0.565
	Average	CS-LBP	0.695	0.506	0.584
	scores	CS-LDP	0.772	0.512	0.616
		XCS-LBP	0.809	0.761	0.782
	5 CONCLUSION		
	In this paper, a new texture descriptor for back-
	ground modeling is proposed. It combines the
	strengths of the original Local Binary Pattern (LBP)
	and the Center-Symmetric (CS) LBPs. Thus, the

Table 3 :

 3 Performance of the different descriptors on synthetic videos of the BMC using the GMM method.

	Scenes Descriptor Recall Precision F-score
		LBP	0.817	0.701	0.755
	Rotary	CS-LBP	0.830	0.705	0.763
	122	CS-LDP	0.819	0.677	0.741
		XCS-LBP	0.831	0.800	0.815
		LBP	0.636	0.653	0.644
	Rotary	CS-LBP	0.741	0.687	0.713
	222	CS-LDP	0.651	0.616	0.633
		XCS-LBP	0.825	0.794	0.809
		LBP	0.661	0.646	0.653
	Rotary	CS-LBP	0.741	0.656	0.696
	322	CS-LDP	0.674	0.613	0.642
		XCS-LBP	0.821	0.767	0.793
		LBP	0.611	0.585	0.598
	Rotary	CS-LBP	0.673	0.575	0.620
	422	CS-LDP	0.611	0.548	0.578
		XCS-LBP	0.748	0.702	0.724
		LBP	0.636	0.627	0.631
	Rotary	CS-LBP	0.743	0.672	0.706
	522	CS-LDP	0.605	0.650	0.627
		XCS-LBP	0.825	0.760	0.791
		LBP	0.940	0.674	0.785
	Street	CS-LBP	0.924	0.675	0.780
	112	CS-LDP	0.938	0.656	0.772
		XCS-LBP	0.844	0.755	0.808
		LBP	0.676	0.642	0.659
	Street	CS-LBP	0.752	0.658	0.702
	212	CS-LDP	0.694	0.577	0.630
		XCS-LBP	0.833	0.760	0.795
		LBP	0.684	0.633	0.657
	Street	CS-LBP	0.742	0.627	0.680
	312	CS-LDP	0.729	0.581	0.647
		XCS-LBP	0.821	0.713	0.763
		LBP	0.619	0.566	0.591
	Street	CS-LBP	0.705	0.567	0.628
	412	CS-LDP	0.659	0.539	0.593
		XCS-LBP	0.751	0.619	0.679
		LBP	0.662	0.566	0.610
	Street	CS-LBP	0.727	0.568	0.638
	512	CS-LDP	0.689	0.551	0.612
		XCS-LBP	0.828	0.629	0.715
		LBP	0.694	0.629	0.658
	Average	CS-LBP	0.758	0.639	0.693
	scores	CS-LDP	0.707	0.601	0.648
		XCS-LBP	0.813	0.730	0.769
	new variant XCS-LBP (eXtended CS-LBP) produces
	a shorter histogram than LBP, by its CS-construction.

Table 4 :

 4 Performance of the different descriptors on realworld videos of the BMC using the ABL method

	Videos	Descriptor Recall Precision F-score
	Boring	LBP	0.555	0.512	0.533
	parking,	CS-LBP	0.663	0.539	0.595
	active	CS-LDP	0.712	0.556	0.624
	bkbg	XCS-LBP	0.673	0.628	0.650