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Abstract. Background subtraction (BS) is the art of separating mov-
ing objects from their background. The Background Modeling (BM) is
one of the main steps of the BS process. Several subspace learning (SL)
algorithms based on matrix and tensor tools have been used to perform
the BM of the scenes. However, several SL algorithms work on a batch
process increasing memory consumption when data size is very large.
Moreover, these algorithms are not suitable for streaming data when the
full size of the data is unknown. In this work, we propose an incremental
tensor subspace learning that uses only a small part of the entire data
and updates the low-rank model incrementally when new data arrive. In
addition, the multi-feature model allows us to build a robust low-rank
background model of the scene. Experimental results shows that the
proposed method achieves interesting results for background subtraction
task.

1 Introduction

The detection of moving objects is the basic low-level operations in video anal-
ysis. This basic operation (also called “background subtraction”or BS) consists
of separating the moving objects called “foreground”from the static information
called “background”. The background subtraction is a key step in many fields of
computer vision applications such as video surveillance to detect persons, vehi-
cles, animals, etc., human-computer interface, motion detection and multimedia
applications. Many BS methods have been developed over the last few years [3,
4, 24, 25] and the main resources can be found at the Background Subtraction
Web Site 4. Typically the BS process includes the following steps: a) background
model initialization, b) background model maintenance and c) foreground de-
tection. The Figure 1 shows the block diagram of the background subtraction
process described here.

In this paper, we show how to initialize and maintain the background model
by an incremental and multi-feature subspace learning approach, as well our

4 https://sites.google.com/site/backgroundsubtraction/Home
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Fig. 1. Block diagram of the background subtraction process.

foreground detection method. First, we start with the notation conventions and
related works. The remainder of the paper is organized as follows: Section 2
describes our incremental and multi-feature tensor subspace learning algorithm.
Section 3 present our foreground detection method. Finally, in Sections 4 and 5,
the experimental results are shown as well as conclusions.

1.1 Basic notations

This paper follows the notation conventions in multilinear and tensor algebra as
in [14, 10]. Scalars are denoted by lowercase letters, e.g., x; vectors are denoted
by lowercase boldface letters, e.g., x; matrices by uppercase boldface, e.g., X;
and tensors by calligraphic letters, e.g., X . In this paper, only real-valued data
are considered.

1.2 Related Works

In 1999, Oliver et al. [22] are the first authors to model the background by
Principal Component Analysis (PCA). Foreground detection is then achieved
by thresholding the difference between the generated background image and
the current image. PCA provides a robust model of the probability distribution
function of the background, but not of the moving objects while they do not have
a significant contribution to the model. Recent research on robust PCA [9, 8] can
be used to alleviate these limitations. For example, Candes et al. [8] proposed a
convex optimization to address the robust PCA problem. The observation matrix
is assumed represented as: M = L + S where L is a low-rank matrix and S is a
matrix that can be sparse or not. This decomposition can be obtained by named
as Principal Component Pursuit (PCP), min

L,S
||L||∗+λ||S||1, s.t. M = L+S, where

λ the weighting parameter (trade-off between rank and sparsity), ||L||∗ denotes
the nuclear norm of L (i.e. the sum of singular values of L) and ||S||1 the `1
norm of the matrix S (i.e. sum of matrix elements magnitude). The background
sequence is then modeled by a low-rank subspace that can gradually change
over time, while the moving foreground objects constitute the correlated sparse
outliers.



The different previous subspace learning methods consider the image as a
vector. So, the local spatial information is almost lost. Some authors use tensor
representation to solve this problem. Wang and Ahuja [28] propose a rank-R ten-
sor approximation which can capture spatiotemporal redundancies in the tensor
entries. He et al. [12] present a tensor subspace analysis algorithm called TSA
(Tensor Subspace Analysis), which detects the intrinsic local geometrical struc-
ture of the tensor space by learning a lower dimensional tensor subspace. Wang et
al. [29] give a convergent solution for general tensor-based subspace learning. Re-
cently, online tensor subspace learning approaches have been introduced. Sun et
al. [26] propose three tensor subspace learning methods: DTA (Dynamic Tensor
Analysis), STA (Streaming Tensor Analysis) and WTA (Window-based Tensor
Analysis). However, Li et al. [13] explains the above tensor analysis algorithms
cannot be applied to background modeling and object tracking directly. To solve
this problem, Li et al. [18, 17, 13] proposes a high-order tensor learning algorithm
called incremental rank-(R1,R2,R3) tensor based subspace learning. This online
algorithm builds a low-order tensor eigenspace model in which the mean and the
eigenbasis are updated adaptively. The authors model the background appear-
ance images as a 3-order tensor. Next, the tensor is subdivided into sub-tensors.
Then, the proposed incremental tensor subspace learning algorithm is applied
to effectively mine statistical properties of each sub-tensor. The experimental
result shows that the proposed approach is robust to appearance changes in
background modeling and object tracking. The method described above only
uses the gray-scale and color information. In some situations, only the pixels
intensities may be insufficient to perform a robust foreground detection. To deal
with this situation, an incremental and multi-feature tensor subspace learning
algorithm is presented in this paper.

2 Incremental and Multi-feature Tensor Subspace
Learning

First, basic concepts of tensor algebra are introduced. Then, the proposed method
is described.

2.1 Tensor Introduction

A tensor can be considered as a multidimensional or N-way array. As in [14,
20, 10], an Nth-order tensor is denoted as: X ∈ RI1×I2×...×IN , where In(n =
1, . . . , N). Each element in this tensor is addressed by x(i1,...,in), where 1 ≤ in ≤
IN . The order of a tensor is the number of dimensions, also know as ways or
modes [14]. By unfolding a tensor along a mode, a tensor’s unfolding matrix
corresponding to this mode is obtained. This operation is also known as mode-n
matricization5. For a Nth-order tensor X , its unfolding matrices are denoted by
X (1),X (2), . . . ,X (N). A more general review of tensor operations can be found
in Kolda and Bader [14].

5 Can be regarded as a generalization of the mathematical concept of vectorization.
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Fig. 2. Block diagram of the proposed approach. In the step (a), the last N frames
from a streaming video are stored in a sliding block or tensor At. Next, a feature
extraction process is done at step (b) and the tensor At is transformed in another
tensor Tt (step (c)) . In (d), an incremental higher-order singular value decomposition
(iHoSVD) is applied in the tensor Tt resulting in a low-rank tensor Lt. Finally, in the
step (e) a foreground detection method is applied for each new frame to segment the
moving objects.

2.2 Building Tensor Model

Differently from previous related works where tensor model is built directly from
the video data, i.e., each frontal slice of the tensor is a gray-scale image, in this
work our tensor model is built from the feature extraction process. First, the last
N frames from a streaming video data are stored in a tensor At ∈ RA1×A2×A3 ,
where t represents the tensor A at time t. A1 and A2 is the frame width and
frame height respectively, and A3 is the number of stored frames (i.e. A3 = 25
in the experiments). Subsequently the tensor At is transformed into a tensor
Tt ∈ RT1×T2×T3 after a feature extraction process, where T1 is the number of
pixels (i.e. A1 × A2), T2 the feature values’ for each frame (i.e. A3) and T3 the
number of features. In this work, 8 features are extracted: 1) red channel, 2)
green channel, 3) blue channel, 4) gray-scale, 5) local binary patterns (LBP), 6)
spatial gradients in horizontal direction, 7) spatial gradients in vertical direction,
and 8) spatial gradients magnitude. All frames’ resolution are resized to 160x120
(19200 pixels), so the dimension of our tensor model is Tt ∈ R19200×25×8. The
steps described here are shown in Figure 2 (a), (b) and (c). The steps (d) and
(e) will be described in the next sections.

2.3 Incremental Higher-order Singular Value Decomposition

Tensor decompositions have been widely studied and applied to many real-world
problems [14, 20, 10]. CANDECOMP/PARAFAC(CP)-decomposition6 and Tucker
decomposition are two widely-used low rank decompositions of tensors 7. Today,
the Tucker model is better known as the Higher-order SVD (HoSVD) from the
work of Lathauwer et al. [15]. The HoSVD is a generalization of the matrix SVD.

6 The CP model is a special case of the Tucker model, where the core tensor is super-
diagonal and the number of components in the factor matrices is the same [14].

7 Please refer to Grasedyck et al. [10] for a complete review of low-rank tensor ap-
proximation techniques.



The HoSVD of a tensor X involves the matrix SVDs of its unfolding matrices.
Let A ∈ Rm×n a matrix of full rank r = min(m,n), then its singular value
decomposition can be expressed as a sum of r rank one matrices: A = UΣVT ,
where U ∈ Rm×m and V ∈ Rn×n are orthonormal matrices containing the
eigenvectors of AAT and ATA, respectively (i.e. right and left singular vectors
of A), and Σ = diag(σ1, . . . , σr) is a diagonal matrix with the eigenvalues of A
in descending order. However, the matrix factorization step in SVD is computa-
tionally very expensive, especially for large matrices. Moreover, the entire data
may be not available for decomposition (i.e. streaming data when the full size
of the data is unknown). Businger (1970) [7], and Bunch and Nielsen (1978) [6]
are the first authors who have proposed to update SVD sequentially with the
arrival of more samples, i.e. appending/removing a row/column. Subsequently
various approaches [16, 5, 21, 23, 2] have been proposed to update the SVD more
efficiently and supporting new operations. Recently Baker et al. [1] has provided
a generic approach to performs a low-rank incremental SVD. The algorithm is
freely available in the IncPACK MATLAB package8.

In this work, we have used a modified version of the previous algorithm. The
original version supports only the updating operation. As described in Section
2.2 the tensor model Tt is updated dynamically. The last feature values are
appended (i.e. updating operation) and the old feature values are removed (i.e.
downdating operation) for each new frame. A simpler change would be to modify
the algorithm so that, instead of using a hard window, we have inserted an
exponential forgetting factor λ < 1 (λ = 1 no forgetting occurs), weighting new
columns preferentially over earlier columns. The forgetting factor is explained in
the work of Ross et al. [23].

The proposed iHoSVD is shown in Algorithm 1. It creates a low-rank ten-
sor model Lt with the dominant singular subspaces of the tensor model Tt. As

previous described in Section 2.1, T (n)
t denotes the mode-n unfolding matrix of

the tensor T at time t. r(n) and t(n) are the desired rank r and its thresholding
value of the mode-n unfolding matrix (i.e. r(1) = 1, r(2) = 8, r(3) = 2, and

t(1) = t(2) = t(3) = 0.01 in the experiments). U
(n)
t−1, Σ

(n)
t−1, and V

(n)
t−1 denotes the

previous SVD of the mode-n unfolding matrix of the tensor T at time t− 1.

3 Foreground Detection

The foreground detection consists in segmenting all foreground pixels of the
image to obtain the foreground components for each frame. As explained in
the previous sections, a low-rank model Lt is built from the tensor model Lt

incrementally. Then, for each new frame a weighted combination of similarity
measures is performed. This process has two stages: first a similarity function is
calculated, then a weighted combination is performed. Let Fn the feature’s set
extracted from the input frame and F′n the set of low-rank features reconstructed
from the low-rank model Lt, the similarity function S for each feature n at the

8 http://www.math.fsu.edu/∼cbaker/IncPACK/



Algorithm 1 Proposed iHoSVD algorithm.

function incrementalHoSVD(Tt, r(n), t(n))
St ← Tt
if t = 0 then . Performs the standard rank-r SVD

for i = 1 to n do
[U

(n)
t , Σ

(n)
t , V

(n)
t ]← SVD(T (n)

t , r(n), t(n))
end for

else . Performs the incremental rank-r SVD
for i = 1 to n do

[U
(n)
t , Σ

(n)
t , V

(n)
t ]← iSVD(T (n)

t , r(n), t(n), U
(n)
t−1, Σ

(n)
t−1, V

(n)
t−1)

end for
end if
St ← Tt×1 (U

(1)
t )T . . .×n (U

(n)
t )T . ×n denotes the n-mode tensor times matrix

return St, U
(1)
t , ..., U

(n)
t

end function

pixel (i, j) is computed as follows:

Sn(i, j) =


Fn(i,j)
F′

n(i,j)
if Fn(i, j) < F′n(i, j)

1 if Fn(i, j) = F′n(i, j)
F′

n(i,j)
Fn(i,j)

if Fn(i, j) > F′n(i, j)

where Fn(i, j) and F′n(i, j) are respectively the feature value of pixel (i, j) for the
feature n. Note that Sn(i, j) is between 0 and 1. Furthermore, Sn(i, j) is close
to one if Fn(i, j) and F′n(i, j) are very similar. Next, a weighted combination of
similarity measures is computed as follows:

W(i, j) =

K∑
n=1

wnSn(i, j)

where K is the total number of features and wn the set of weights for each
feature n (w1 = w2 = w3 = w6 = w7 = w8 = 0.125, w4 = 0.225, w5 = 0.025
in the experiments). The weights are chosen empirically to maximize the true
pixels and minimize the false pixels in the foreground detection. The foreground
mask is obtained by applying the following threshold function:

F(i, j) = f(W(i, j)) =

{
1 if W(i, j) < t

0 otherwise

where t is the threshold value (t = 0.5 in the experiments). In the next section
we shows the experimental results of the proposed method.

4 Experimental Results

In order to evaluate the performance of the proposed method for background
modeling and subtraction, the BMC data set proposed by Vacavant et al. [27]



Table 1. Visual comparison with real videos of the BMC data set.

Sequence Video “Wandering student”(frame #651)

Sequence Video “Traffic during windy day”(frame #140)

is selected. We have compared our method with GRASTA algorithm proposed
by He et al. [11] and BLWS algorithm proposed by Lin and Wei [19]. Tables 1
and 2 show the quantitative and the visual results (input image, ground-truth
and foreground detection, respectively) with synthetic and real video sequences
of the BMC data set. The quantitative results in Table 2 show that the pro-
posed method outperforms the previous methods, with the highest F-measure
average and best scores over all video sequences except in 212, 312, 412 and 512.
The visual results in Table 2 show the foreground detection for the frame #300
(Street) and frame #645 (Rotary), respectively. All experiments are performed
on a computer running Intel Core i7-3740qm 2.7GHz processor with 16Gb of
RAM. However, the proposed system requires aprox. 2min per frame for back-
ground subtraction, which > 95% of time is used for low-rank decomposition.
Further research consists to improve the speed of the incremental low-rank de-
composition for real-time applications. Matlab codes and experimental results
can be found in the iHoSVD homepage9.

5 Conclusion

In this paper, an incremental and multi-feature tensor subspace learning algo-
rithm is presented. The multi-feature tensor model allows us to build a robust
low-rank model of the background scene. Experimental results shows that the
proposed method achieves interesting results for background subtraction task.
However, additional features can be added, enabling a more robust model of
the background scene. In addition, the proposed foreground detection approach
can be changed to automatically selects the best features allowing an accurate
foreground detection. Further research consists to improve the speed of the incre-
mental low-rank decomposition for real-time applications. Additional supports
for dynamic backgrounds might be interesting for real and complex scenes.

9 https://sites.google.com/site/ihosvd/



Table 2. Quantitative and visual results with synthetic videos of the BMC data set.

Scenes Method Recall Precision F-measure Visual Results

Street

112
IHOSVD
GRASTA [11]
BLWS [19]

0.725
0.700
0.700

0.945
0.980
0.981

0.818
0.817
0.817

212
IHOSVD
GRASTA [11]
BLWS [19]

0.692
0.787
0.786

0.845
0.847
0.847

0.761
0.816
0.816

312
IHOSVD
GRASTA [11]
BLWS [19]

0.566
0.695
0.697

0.831
0.965
0.971

0.673
0.807
0.812

412
IHOSVD
GRASTA [11]
BLWS [19]

0.637
0.787
0.785

0.838
0.843
0.848

0.723
0.814
0.815

512
IHOSVD
GRASTA [11]
BLWS [19]

0.652
0.669
0.664

0.893
0.960
0.966

0.753
0.789
0.787

Rotary

122
IHOSVD
GRASTA [11]
BLWS [19]

0.748
0.680
0.663

0.956
0.902
0.921

0.839
0.776
0.771

222
IHOSVD
GRASTA [11]
BLWS [19]

0.649
0.637
0.633

0.913
0.548
0.560

0.759
0.589
0.594

322
IHOSVD
GRASTA [11]
BLWS [19]

0.555
0.619
0.603

0.927
0.530
0.538

0.694
0.571
0.569

422
IHOSVD
GRASTA [11]
BLWS [19]

0.548
0.623
0.620

0.942
0.778
0.775

0.693
0.692
0.689

522
IHOSVD
GRASTA [11]
BLWS [19]

0.677
0.791
0.793

0.932
0.714
0.711

0.784
0.751
0.750

Average
IHOSVD
GRASTA [11]
BLWS [19]

-
-
-

-
-
-

0.749
0.618
0.742
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