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Background subtraction (BS) is the art of separating moving objects from their background. The Background Modeling (BM) is one of the main steps of the BS process. Several subspace learning (SL) algorithms based on matrix and tensor tools have been used to perform the BM of the scenes. However, several SL algorithms work on a batch process increasing memory consumption when data size is very large. Moreover, these algorithms are not suitable for streaming data when the full size of the data is unknown. In this work, we propose an incremental tensor subspace learning that uses only a small part of the entire data and updates the low-rank model incrementally when new data arrive. In addition, the multi-feature model allows us to build a robust low-rank background model of the scene. Experimental results shows that the proposed method achieves interesting results for background subtraction task.

Introduction

The detection of moving objects is the basic low-level operations in video analysis. This basic operation (also called "background subtraction"or BS) consists of separating the moving objects called "foreground"from the static information called "background". The background subtraction is a key step in many fields of computer vision applications such as video surveillance to detect persons, vehicles, animals, etc., human-computer interface, motion detection and multimedia applications. Many BS methods have been developed over the last few years [START_REF] Bouwmans | Traditional and recent approaches in background modeling for foreground detection: An overview[END_REF][START_REF] Bouwmans | Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance[END_REF][START_REF] Shah | Video background modeling: Recent approaches, issues and our solutions[END_REF][START_REF] Shimada | Case-based background modeling: associative background database towards low-cost and high-performance change detection[END_REF] and the main resources can be found at the Background Subtraction Web Site 4 . Typically the BS process includes the following steps: a) background model initialization, b) background model maintenance and c) foreground detection. The Figure 1 shows the block diagram of the background subtraction process described here.

In this paper, we show how to initialize and maintain the background model by an incremental and multi-feature subspace learning approach, as well our foreground detection method. First, we start with the notation conventions and related works. The remainder of the paper is organized as follows: Section 2 describes our incremental and multi-feature tensor subspace learning algorithm. Section 3 present our foreground detection method. Finally, in Sections 4 and 5, the experimental results are shown as well as conclusions.

Basic notations

This paper follows the notation conventions in multilinear and tensor algebra as in [START_REF] Kolda | Tensor decompositions and applications[END_REF][START_REF] Grasedyck | A literature survey of low-rank tensor approximation techniques[END_REF]. Scalars are denoted by lowercase letters, e.g., x; vectors are denoted by lowercase boldface letters, e.g., x; matrices by uppercase boldface, e.g., X; and tensors by calligraphic letters, e.g., X . In this paper, only real-valued data are considered.

Related Works

In 1999, Oliver et al. [START_REF] Oliver | A bayesian computer vision system for modeling human interactions[END_REF] are the first authors to model the background by Principal Component Analysis (PCA). Foreground detection is then achieved by thresholding the difference between the generated background image and the current image. PCA provides a robust model of the probability distribution function of the background, but not of the moving objects while they do not have a significant contribution to the model. Recent research on robust PCA [START_REF] La | A framework for robust subspace learning[END_REF][START_REF] Candes | Robust principal component analysis?[END_REF] can be used to alleviate these limitations. For example, Candes et al. [START_REF] Candes | Robust principal component analysis?[END_REF] proposed a convex optimization to address the robust PCA problem. The observation matrix is assumed represented as: M = L + S where L is a low-rank matrix and S is a matrix that can be sparse or not. This decomposition can be obtained by named as Principal Component Pursuit (PCP), min The different previous subspace learning methods consider the image as a vector. So, the local spatial information is almost lost. Some authors use tensor representation to solve this problem. Wang and Ahuja [START_REF] Wang | Rank-r approximation of tensors using image-as-matrix representation[END_REF] propose a rank-R tensor approximation which can capture spatiotemporal redundancies in the tensor entries. He et al. [START_REF] He | Tensor subspace analysis[END_REF] present a tensor subspace analysis algorithm called TSA (Tensor Subspace Analysis), which detects the intrinsic local geometrical structure of the tensor space by learning a lower dimensional tensor subspace. Wang et al. [START_REF] Wang | A convergent solution to tensor subspace learning[END_REF] give a convergent solution for general tensor-based subspace learning. Recently, online tensor subspace learning approaches have been introduced. Sun et al. [START_REF] Sun | Incremental Tensor Analysis: Theory and applications[END_REF] propose three tensor subspace learning methods: DTA (Dynamic Tensor Analysis), STA (Streaming Tensor Analysis) and WTA (Window-based Tensor Analysis). However, Li et al. [START_REF] Hu | Incremental tensor subspace learning and its applications toforeground segmentation and tracking[END_REF] explains the above tensor analysis algorithms cannot be applied to background modeling and object tracking directly. To solve this problem, Li et al. [START_REF] Li | Robust visual tracking based on incremental tensor subspace learning[END_REF][START_REF] Li | Robust foreground segmentation based on two effective background models[END_REF][START_REF] Hu | Incremental tensor subspace learning and its applications toforeground segmentation and tracking[END_REF] proposes a high-order tensor learning algorithm called incremental rank-(R1,R2,R3) tensor based subspace learning. This online algorithm builds a low-order tensor eigenspace model in which the mean and the eigenbasis are updated adaptively. The authors model the background appearance images as a 3-order tensor. Next, the tensor is subdivided into sub-tensors. Then, the proposed incremental tensor subspace learning algorithm is applied to effectively mine statistical properties of each sub-tensor. The experimental result shows that the proposed approach is robust to appearance changes in background modeling and object tracking. The method described above only uses the gray-scale and color information. In some situations, only the pixels intensities may be insufficient to perform a robust foreground detection. To deal with this situation, an incremental and multi-feature tensor subspace learning algorithm is presented in this paper.

Incremental and Multi-feature Tensor Subspace Learning

First, basic concepts of tensor algebra are introduced. Then, the proposed method is described.

Tensor Introduction

A tensor can be considered as a multidimensional or N-way array. As in [START_REF] Kolda | Tensor decompositions and applications[END_REF][START_REF] Lu | A survey of multilinear subspace learning for tensor data[END_REF][START_REF] Grasedyck | A literature survey of low-rank tensor approximation techniques[END_REF], an Nth-order tensor is denoted as: X ∈ R I1×I2×...×I N , where I n (n = 1, . . . , N ). Each element in this tensor is addressed by x (i1,...,in) , where 1 ≤ i n ≤ I N . The order of a tensor is the number of dimensions, also know as ways or modes [START_REF] Kolda | Tensor decompositions and applications[END_REF]. By unfolding a tensor along a mode, a tensor's unfolding matrix corresponding to this mode is obtained. This operation is also known as mode-n matricization 5 . For a Nth-order tensor X , its unfolding matrices are denoted by X (1) , X (2) , . . . , X (N ) . A more general review of tensor operations can be found in Kolda and Bader [START_REF] Kolda | Tensor decompositions and applications[END_REF].

5 Can be regarded as a generalization of the mathematical concept of vectorization. . In (d), an incremental higher-order singular value decomposition (iHoSVD) is applied in the tensor Tt resulting in a low-rank tensor Lt. Finally, in the step (e) a foreground detection method is applied for each new frame to segment the moving objects.

Building Tensor Model

Differently from previous related works where tensor model is built directly from the video data, i.e., each frontal slice of the tensor is a gray-scale image, in this work our tensor model is built from the feature extraction process. First, the last N frames from a streaming video data are stored in a tensor A t ∈ R A1×A2×A3 , where t represents the tensor A at time t. A 1 and A 2 is the frame width and frame height respectively, and A 3 is the number of stored frames (i.e. A 3 = 25 in the experiments). Subsequently the tensor A t is transformed into a tensor T t ∈ R T1×T2×T3 after a feature extraction process, where T 1 is the number of pixels (i.e. A 1 × A 2 ), T 2 the feature values' for each frame (i.e. A 3 ) and T 3 the number of features. In this work, 8 features are extracted: 1) red channel, 2) green channel, 3) blue channel, 4) gray-scale, 5) local binary patterns (LBP), 6) spatial gradients in horizontal direction, 7) spatial gradients in vertical direction, and 8) spatial gradients magnitude. All frames' resolution are resized to 160x120 (19200 pixels), so the dimension of our tensor model is T t ∈ R 19200×25×8 . The steps described here are shown in Figure 2 (a), (b) and (c). The steps (d) and (e) will be described in the next sections.

Incremental Higher-order Singular Value Decomposition

Tensor decompositions have been widely studied and applied to many real-world problems [START_REF] Kolda | Tensor decompositions and applications[END_REF][START_REF] Lu | A survey of multilinear subspace learning for tensor data[END_REF][START_REF] Grasedyck | A literature survey of low-rank tensor approximation techniques[END_REF]. CANDECOMP/PARAFAC(CP)-decomposition 6 and Tucker decomposition are two widely-used low rank decompositions of tensors 7 . Today, the Tucker model is better known as the Higher-order SVD (HoSVD) from the work of Lathauwer et al. [START_REF] Lathauwer | A multilinear singular value decomposition[END_REF]. The HoSVD is a generalization of the matrix SVD.

The HoSVD of a tensor X involves the matrix SVDs of its unfolding matrices. Let A ∈ R m×n a matrix of full rank r = min(m, n), then its singular value decomposition can be expressed as a sum of r rank one matrices: A = UΣV T , where U ∈ R m×m and V ∈ R n×n are orthonormal matrices containing the eigenvectors of AA T and A T A, respectively (i.e. right and left singular vectors of A), and Σ = diag(σ 1 , . . . , σ r ) is a diagonal matrix with the eigenvalues of A in descending order. However, the matrix factorization step in SVD is computationally very expensive, especially for large matrices. Moreover, the entire data may be not available for decomposition (i.e. streaming data when the full size of the data is unknown). Businger (1970) [START_REF] Businger | Updating a singular value decomposition[END_REF], and Bunch and Nielsen (1978) [START_REF] Bunch | Updating the singular value decomposition[END_REF] are the first authors who have proposed to update SVD sequentially with the arrival of more samples, i.e. appending/removing a row/column. Subsequently various approaches [START_REF] Levy | Sequential karhunen-loeve basis extraction and its application to images[END_REF][START_REF] Brand | Fast low-rank modifications of the thin singular value decomposition[END_REF][START_REF] Melenchn | Efficiently downdating, composing and splitting singular value decompositions preserving the mean information[END_REF][START_REF] Ross | Incremental learning for robust visual tracking[END_REF][START_REF] Balzano | On GROUSE and incremental SVD[END_REF] have been proposed to update the SVD more efficiently and supporting new operations. Recently Baker et al. [START_REF] Baker | Low-rank incremental methods for computing dominant singular subspaces[END_REF] has provided a generic approach to performs a low-rank incremental SVD. The algorithm is freely available in the IncPACK MATLAB package 8 . In this work, we have used a modified version of the previous algorithm. The original version supports only the updating operation. As described in Section 2.2 the tensor model T t is updated dynamically. The last feature values are appended (i.e. updating operation) and the old feature values are removed (i.e. downdating operation) for each new frame. A simpler change would be to modify the algorithm so that, instead of using a hard window, we have inserted an exponential forgetting factor λ < 1 (λ = 1 no forgetting occurs), weighting new columns preferentially over earlier columns. The forgetting factor is explained in the work of Ross et al. [START_REF] Ross | Incremental learning for robust visual tracking[END_REF].

The proposed iHoSVD is shown in Algorithm 1. It creates a low-rank tensor model L t with the dominant singular subspaces of the tensor model T t . As previous described in Section 2.1, T (n) t denotes the mode-n unfolding matrix of the tensor T at time t. r (n) and t (n) are the desired rank r and its thresholding value of the mode-n unfolding matrix (i.e. r (1) = 1, r (2) = 8, r (3) = 2, and

t (1) = t (2) = t (3) = 0.01 in the experiments). U (n) t-1 , Σ (n) t-1 , and V (n)
t-1 denotes the previous SVD of the mode-n unfolding matrix of the tensor T at time t -1.

Foreground Detection

The foreground detection consists in segmenting all foreground pixels of the image to obtain the foreground components for each frame. As explained in the previous sections, a low-rank model L t is built from the tensor model L t incrementally. Then, for each new frame a weighted combination of similarity measures is performed. This process has two stages: first a similarity function is calculated, then a weighted combination is performed. Let F n the feature's set extracted from the input frame and F n the set of low-rank features reconstructed from the low-rank model L t , the similarity function S for each feature n at the Algorithm 1 Proposed iHoSVD algorithm.

function incrementalHoSVD(Tt, r (n) , t (n) ) St ← Tt if t = 0 then Performs the standard rank-r SVD for i = 1 to n do [U (n) t , Σ (n) t , V (n) t ] ← SVD(T (n) t , r (n) , t (n) ) end for else
Performs the incremental rank-r SVD

for i = 1 to n do [U (n) t , Σ (n) t , V (n) t ] ← iSVD(T (n) t , r (n) , t (n) , U (n) t-1 , Σ (n) t-1 , V (n) t-1 ) end for end if St ← Tt ×1 (U (1) t ) T . . . ×n (U (n) t ) T ×n denotes the n-mode tensor times matrix return St, U (1) 
t , ..., U (n) t end function pixel (i, j) is computed as follows:

S n (i, j) =      Fn(i,j) F n (i,j) if F n (i, j) < F n (i, j) 1 if F n (i, j) = F n (i, j) F n (i,j) Fn(i,j) if F n (i, j) > F n (i, j)
where F n (i, j) and F n (i, j) are respectively the feature value of pixel (i, j) for the feature n. Note that S n (i, j) is between 0 and 1. Furthermore, S n (i, j) is close to one if F n (i, j) and F n (i, j) are very similar. Next, a weighted combination of similarity measures is computed as follows:

W(i, j) = K n=1 w n S n (i, j)
where K is the total number of features and w n the set of weights for each feature n (w 1 = w 2 = w 3 = w 6 = w 7 = w 8 = 0.125, w 4 = 0.225, w 5 = 0.025 in the experiments). The weights are chosen empirically to maximize the true pixels and minimize the false pixels in the foreground detection. The foreground mask is obtained by applying the following threshold function:

F(i, j) = f (W(i, j)) = 1 if W(i, j) < t 0 otherwise
where t is the threshold value (t = 0.5 in the experiments). In the next section we shows the experimental results of the proposed method.

Experimental Results

In order to evaluate the performance of the proposed method for background modeling and subtraction, the BMC data set proposed by Vacavant et al. [START_REF] Vacavant | A benchmark dataset for foreground/background extraction[END_REF] Table 1. Visual comparison with real videos of the BMC data set.

Sequence Video "Wandering student"(frame #651)

Sequence Video "Traffic during windy day"(frame #140)

is selected. We have compared our method with GRASTA algorithm proposed by He et al. [START_REF] He | Online robust subspace tracking from partial information[END_REF] and BLWS algorithm proposed by Lin and Wei [START_REF] Lin | A block lanczos with warm start technique for accelerating nuclear norm minimization algorithms[END_REF]. Tables 1 and2 show the quantitative and the visual results (input image, ground-truth and foreground detection, respectively) with synthetic and real video sequences of the BMC data set. The quantitative results in Table 2 show that the proposed method outperforms the previous methods, with the highest F-measure average and best scores over all video sequences except in 212, 312, 412 and 512.

The visual results in Table 2 show the foreground detection for the frame #300 (Street) and frame #645 (Rotary), respectively. All experiments are performed on a computer running Intel Core i7-3740qm 2.7GHz processor with 16Gb of RAM. However, the proposed system requires aprox. 2min per frame for background subtraction, which > 95% of time is used for low-rank decomposition. Further research consists to improve the speed of the incremental low-rank decomposition for real-time applications. Matlab codes and experimental results can be found in the iHoSVD homepage 9 .

Conclusion

In this paper, an incremental and multi-feature tensor subspace learning algorithm is presented. The multi-feature tensor model allows us to build a robust low-rank model of the background scene. Experimental results shows that the proposed method achieves interesting results for background subtraction task. However, additional features can be added, enabling a more robust model of the background scene. In addition, the proposed foreground detection approach can be changed to automatically selects the best features allowing an accurate foreground detection. Further research consists to improve the speed of the incremental low-rank decomposition for real-time applications. Additional supports for dynamic backgrounds might be interesting for real and complex scenes. 

Fig. 1 .

 1 Fig. 1. Block diagram of the background subtraction process.

Fig. 2 .

 2 Fig.2. Block diagram of the proposed approach. In the step (a), the last N frames from a streaming video are stored in a sliding block or tensor At. Next, a feature extraction process is done at step (b) and the tensor At is transformed in another tensor Tt (step (c)) . In (d), an incremental higher-order singular value decomposition (iHoSVD) is applied in the tensor Tt resulting in a low-rank tensor Lt. Finally, in the step (e) a foreground detection method is applied for each new frame to segment the moving objects.

Table 2 .

 2 Quantitative and visual results with synthetic videos of the BMC data set.

	Scenes Method Recall Precision F-measure	Visual Results
	Street				
		IHOSVD	0.725	0.945	0.818
	112	GRASTA [11]	0.700	0.980	0.817
		BLWS [19]	0.700	0.981	0.817
		IHOSVD	0.692	0.845	0.761
	212	GRASTA [11]	0.787	0.847	0.816
		BLWS [19]	0.786	0.847	0.816
		IHOSVD	0.566	0.831	0.673
	312	GRASTA [11]	0.695	0.965	0.807
		BLWS [19]	0.697	0.971	0.812
		IHOSVD	0.637	0.838	0.723
	412	GRASTA [11]	0.787	0.843	0.814
		BLWS [19]	0.785	0.848	0.815
		IHOSVD	0.652	0.893	0.753
	512	GRASTA [11]	0.669	0.960	0.789
		BLWS [19]	0.664	0.966	0.787
	Rotary				
		IHOSVD	0.748	0.956	0.839
	122	GRASTA [11]	0.680	0.902	0.776
		BLWS [19]	0.663	0.921	0.771
		IHOSVD	0.649	0.913	0.759
	222	GRASTA [11]	0.637	0.548	0.589
		BLWS [19]	0.633	0.560	0.594
		IHOSVD	0.555	0.927	0.694
	322	GRASTA [11]	0.619	0.530	0.571
		BLWS [19]	0.603	0.538	0.569
		IHOSVD	0.548	0.942	0.693
	422	GRASTA [11]	0.623	0.778	0.692
		BLWS [19]	0.620	0.775	0.689
		IHOSVD	0.677	0.932	0.784
	522	GRASTA [11]	0.791	0.714	0.751
		BLWS [19]	0.793	0.711	0.750
	Average			
		IHOSVD	-	-	0.749
		GRASTA [11]	-	-	0.618
		BLWS [19]	-	-	0.742

The CP model is a special case of the Tucker model, where the core tensor is superdiagonal and the number of components in the factor matrices is the same[START_REF] Kolda | Tensor decompositions and applications[END_REF].

[START_REF] Businger | Updating a singular value decomposition[END_REF] Please refer to Grasedyck et al.[START_REF] Grasedyck | A literature survey of low-rank tensor approximation techniques[END_REF] for a complete review of low-rank tensor approximation techniques.

https://sites.google.com/site/ihosvd/
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