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Abstract. The pressure-volume-temperature equations of state have been constructed by
combining experimental data and semiempirical estimations for a number of compounds recently
synthesized under extreme pressure-temperature conditions. The solids with various bonding
types were considered: covalent hard and superhard boron-rich and diamond-like compounds
(e.g. B6O, B13N2, BP, c-BC5, and nano-cBN), ionic semiconductors (e.g. Mg2C and Mg2C3),
as well as intercalation compounds (e.g. clathrates Na4Si24 and Na24+xSi136), and simple
substances (e.g. boron allotropes γ-B28 and t′-B52, and open-framework silicon allotrope o-
Si24 with quasi-direct bandgap). We also showed how the reliable p-V-T equations of state may
be constructed using different types of data available.

1. Introduction

Recently high pressure–high temperature (HPHT) large-volume synthesis allowed obtaining a
number of novel materials [1] for new challenging applications as superhard [2–6], advanced
electronic [7], photovoltaic [8] and thermoelectric [9, 10] materials, as well as superconductors
[11, 12]: (i) boron allotropes [13, 14] (orthorhombic γ-B28 [15–17], pseudo-cubic t′-B52 [18])
and boron-rich compounds (boron subnitride B13N2 [19, 20]), (ii) superhard compounds with
diamond structure (nanostructured cBN [21], non-stoichiometric c-BC5 [22, 23]); (iii) covalent
clathrates of new stoichiometries (Na4−xSi24 [8, 9] and Na24+xSi136 [9, 10]) and even (iv) new
unexpected semiconductors, like antifluorite Mg2C [24], dense Mg2C3 [25] and pure silicon
allotrope with quasi-direct bandgap, Si24 [8].

For understanding of phase transformations and chemical interactions in the corresponding
systems, one needs to explore the thermodynamics under HPHT conditions. And, although a
part of the lacking data can be replaced by fitted parameters of common models [26–28] or with
ab initio calculations [29], the reliable p-V-T equations of state (EOS) data are crucial for that.
In the present paper we describe the method of construction of such equations of state using
integrated form of the Anderson-Grüneisen equation [30, 31]. The method is efficient even in
the case of small number of experimental data [32] and may be easily combined with ab initio,
semiempirical and even empirical modeling.
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2. Theoretical background

In our previous works [32, 33] we have shown that the Anderson-Grüneisen equation [30, 31],
which takes into account the pressure dependence of thermal expansion through the volume
change, i.e.

α(p, T ) = α(0, T )

[

V (p, T )

V (0, T )

]δT

, (1)

can be integrated (under the assumption that δT is constant) to

V (p, T ) =
[

V (0, T )−δT + V (p, 300)−δT
− V (0, 300)−δT

]

−1/δT
, (2)

where thermal expansion (i.e. V (0,T ) at 0.1 MPa) and isothermal compression (i.e. V (p,300)
at 300 K) can be presented in any analytical form, e.g. polynomial

V (0, T ) = V0(1 + a(T − 300) + b(T − 300)2), (3)

and Vinet equation of state [34]

p(V, 300) = 3B0 (V /V0)
−2/3

[

1− (V /V0)
1/3

]

e1.5(B
′

0−1)[1−(V/V0)
1/3]. (4)

Finally, the set of parameters needed to describe an EOS in the form (2) is
V 0 = V (0,300) = M /ρ0, B0, B

′

0, a, b and δT (usually between 4 and 6). And the Gibbs
potential can be calculated as

G(p, T ) = G(0, T ) +

∫ p

0
V (π, T )dπ

= G(0, T ) +

∫ p

0

[

V (0, T )−δT + V (π, 300)−δT
− V (0, 300)−δT

]

−1/δT
dπ. (5)

Such form of the EOS (2) allows one easily approximate the V (p,T ) in the vicinity of a new
compound formation, which is often the principal domain of interest in the terms of HPHT
thermodynamics. Here the unit cell volume can be estimated in situ using x-ray diffraction
(300-K EOS may be measured on decompression).

In some other cases, the knowledge of phase equilibrium curves may allow evaluating the
HPHT EOS of unknown phase through the known one. For example, we succeeded to fit the
experimental melting curves (p-T coordinates) of α- and β-B2O3 and to find the parameters
determining the p-V-T EOS for liquid B2O3 (the results will be published elsewhere). The
melting was observed experimentally, while the bulk modulus and thermal expansion parameters
were adjusted so that the experimental curve fits the theoretical one.

3. EOS data and discussion

Table 1 shows the p-V-T EOS data available from the experiment or estimated using various
models (marked with an asterix in the table) for boron and boron-rich, diamond-like, Mg-C and
Na-Si compounds.

In the case of boron-rich solids the only unknown bulk modulus, that of pseudo-cubic t′-
B52 phase was estimated using the density data by the method described elsewhere for various
elastic characteristics of covalent and ionic materials [35–38] and previously justified for boron
allotropes [39]. At the same time, the thermal expansion parameters are known just for
B6O [40, 41]. For both dense allotropes, γ-B28 and t′-B52, we propose to take, in the first
approximation, values of β-B106 [42], while for boron subnitride B13N2 one can take a value
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Table 1. p-V-T equation of state data for compounds synthesized at high pressure. Units: ρ

in g/cm3; B0 in GPa; B ′

0 is dimensionless; a in 106 K−1; b in 109 K−2; δT is dimensionless.

Phase Parameters of EOS

Boron-rich solids γ-B28

[39, 43]
t′-B52

[18]
B6O
[32,33,44]
B13N2

[26, 45]

ρ0 = 2.544, B0 = 237, B ′

0 = 2.7,
a = 18*, b = 0* and δT = 5.5*
ρ0 = 2.493, B0 = 232*, B ′

0 = 2.7*,
a = 18*, b = 0* and δT = 5.5*
ρ0 = 2.601, B0 = 180, B ′

0 = 6,
a = 14*, b = 5* and δT = 6
ρ0 = 2.666, B0 = 200, B ′

0 = 4.0,
a = 14*, b = 5* and δT = 5.5*

Diamond-like phases Nano-cBN
[46,47]
c-BC5

[22]
BP
[48–50]

ρ0 = 3.615, B0 = 375, B ′

0 = 2.3,
a = 15*, b = 0* and δT = 5.5*
ρ0 = 3.267, B0 = 335, B ′

0 = 4.5,
a = 13*, b = 0* and δT = 5.5*
ρ0 = 2.966, B0 = 174, B ′

0 = 3.2,
a = 16.5, b = 0 and δT = 5.5*

Mg-C system Mg2C
[24,29]
β-Mg2C3

[25]

ρ0 = 2.503, B0 = 87, B ′

0 = 5.1,
a = 48, b = 7.1 and δT = 4.3
ρ0 = 2.580, B0 = 103, B ′

0 = 4.0,
a = 48*, b = 7.1* and δT = 5.5*

Na-Si system Na24+xSi136
[10]
Na4Si24
[9]
Si24
[8]

ρ0 = 2.318, B0 = 90*, B ′

0 = 4*,
a = 17, b = 0 and δT = 5.5*
ρ0 = 2.395, B0 = 90*, B ′

0 = 4*,
a = 17*, b = 0* and δT = 5.5*
ρ0 = 2.163, B0 = 90*, B ′

0 = 4*,
a = 12*, b = 0* and δT = 5.5*

of suboxide B6O having similar crystal structure. Except for B6O, the δT parameter—linking
300-K p-V data with 0.1-MPa thermal expansion data—was fixed to 5.5. Figure 1 shows that
the parameters well agree with experimental in situ observations for B13N2. Better fit may be
obtained with δT = B ′

0 = 4 (just like in the case of B6O, δT = B ′

0 = 6) or by adjusting the a
and b thermal expansion parameters, or even by suggestion of a pressure drop from 5 to 4 GPa.
So, the lack of experimental data does not allow making a choice, and so far we suggest a value
of δT = 5.5.

For diamond-like phases (nano-cBN, c-BC5 and BP), as well as for Mg-C compounds, all
bulk moduli were established experimentally. Only for BP the thermal expansion data at
0.1 MPa have been available in literature. In the case of Mg2C the a and b parameters were
established by fitting the p-V data at high temperature (around 1500 K) [29], while in other cases
they were estimated from the literature data (for nano-cBN—its conventional counterpart [46],
for c-BC5—the linear combination of diamond [51] and boron [42]). δTparameter was chosen
as 5.5 for all compounds except Mg2C. Figure 2 shows that the parameters well agree with
experimental in situ observations for c-BC5. Just like in the case of B13N2 discussed above, the
“ideal” match of an experimental point to the theoretical curve may be achieved, but it is not
clear which parameter should be used for such adjustment (e.g. a or pressure drop during the
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Figure 1. p-V-T equation of state of B13N2. Experimental points obtained at HASYLAB
(multianvil press MAX80, resistive heating).
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Figure 2. p-V-T equation of state of c-BC5. Experimental points obtained at ESRF (diamond
anvil cell, laser heating).

transformation).
In the case of clathrate compounds of the Na-Si system the situation with the data is the most

complicated. High-temperature data, especially, at low pressure can hardly be obtained, since
the compounds easily decompose. From another side, at high pressure these compounds often
have only narrow domains of stability. However, it has been established that elastic properties
mainly depend on the rigid silicon framework and are close to those of diamond silicon [52,53].
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For Na24+xSi136 and Na4Si24 the values of bulk moduli were fixed to that of Na24Si136, while for
open framework “high-pressure” clathrate silicon, to the values of Si136 [53,54]. The experimental
results on these compounds will be published elsewhere.

4. Conclusion

Finally, we have proposed a set of parameters that allow one to construct p-V-T equations
of state for a number of newly discovered high-pressure solids. The reported data give a
first approximation of the parameters for the construction of high-pressure phase diagrams
with participation of boron for new advanced materials, as well as for the Mg-C and Na-Si
systems, promising for production of unique semiconductive diamonds [55] and advanced silicon
for optoelectronic applications [8].

Acknowledgments

The EOS measurements using in situ x-ray diffraction were performed at ID06 & ID27 beamlines
at the European Synchrotron Radiation Facility (Grenoble, France) and at F2.1 & P02.2
beamlines at HASYLAB-DESY (Hamburg, Germany). We are grateful to W. Crichton, J.
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