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Controlling the occupation time of an
exponential martingale

Stefan Ankirchner∗ Christophette Blanchet-Scalliet†

Monique Jeanblanc ‡

November 10, 2015

We consider the problem of maximizing the expected amount of time an
exponential martingale spends above a constant threshold up to a finite time
horizon. We assume that at any time the volatility of the martingale can be
chosen to take any value between σ1 and σ2, where 0 < σ1 < σ2. The optimal
control consists in choosing the minimal volatility σ1 when the process is
above the threshold, and the maximal volatility if it is below. We give a
rigorous proof using classical verification and provide integral formulas for
the maximal expected occupation time above the threshold.

Introduction

Let Xα be an exponential martingale with controlled dynamics dXα
t = αtX

α
t dWt, where

W is a one-dimensional Brownian motion. Consider the problem of maximizing the
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expected amount of time the process Xα spends above a positive constant threshold up
to a finite time horizon. Assume that one can choose as control any predictable process
α that takes values between two constants σ1 and σ2, where 0 < σ1 < σ2.

The optimal control is of bang-bang type and consists in choosing the minimal volatil-
ity σ1 when the process is above the threshold (winning region), and to choose the
maximal volatility σ2 when the process is below the threshold (loosing region). This is
intuitively plausible, because the volatility determines the speed of the diffusion process
and hence the exit time from the winning resp. loosing region. Choosing the maximal
speed in the loosing region minimizes the return time to the winning region, provided the
process does return; and choosing the minimal speed in the winning region maximizes
the return time to the loosing region.

The aim of the paper is to rigorously prove that the bang-bang control is optimal
and to quantify the expected time the optimally controlled martingale spends above the
threshold. To this end we compute the Laplace transform of the expected occupation
time above the threshold, considered as a function of time. We show that an inversion
integral formula applies for the density of the occupation time. This allows to show
smoothness of the candidate value function and to perform a classical verification.

The control problem considered here gathers in stylized form the situation of a man-
ager who can control the volatility of a firm’s value process. Suppose that the manager
gets bonus payments at a constant rate whenever the value process performs better than
a reference index. Thus the manager aims to maximize the expected time the value pro-
cess spends above the index. The optimal control affirms that such a bonus scheme
incentivizes the manager to choose risky strategies when the firm’s value is underper-
forming and to play safe in case if it performs well. Our quantitative results show that
the increase in the occupation time in the winning region can be considerable in the
short run (see Figure 1). We stress that, for maximizing the expected bonus, during
underperforming periods it is optimal to choose the maximal volatility, even if this does
not entail a higher drift.

The corresponding control problem within an arithmetic Brownian motion, i.e., the
case where dZt = σtdWt is the controlled process, has received some attention in the
literature. Consider the particular feedback control σ(z) = σ1 for z ≥ 0 and σ(z) = σ2

for z < 0. McNamara [7] analyzes for which terminal reward functions this feedback
control σ is optimal among all controls valued in [σ1, σ2]. In particular, his results imply
that σ maximizes the expected occupation time of the controlled Brownian motion above
zero, and that the maximal expected occupation time up to time T is given by σ2

σ1+σ2
T

(cf. Remark 8, [7]). Keilson and Wellner [6] compute the transition probability of the
optimally controlled process Z satisfying dZt = σ(Zt)dWt. Their approach relies on
the symmetry of transition probability, and, therefore, seems to be difficult to adapt to
the geometric case. Finally, Althöfer et al. [1] analyze the bang-bang control σ within
discrete-time random walk models. They use combinatorial methods to determine the
limiting probability for the processes to be in the winning region.
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1. Controlling the occupation time above the level 1

Let W be a Brownian motion on a probability space (Ω,F ,P) and denote by (Ft)t≥0

its augmented natural filtration. Let A be the set of (Ft)-progressively measurable
processes with values in [σ1, σ2], where 0 < σ1 < σ2. For α ∈ A and x > 0, let Xx,α be
the solution of the SDE

dXx,α
t = αtX

x,α
t dWt, Xx,α

0 = x.

Note that, due to 0 < α < σ2, Xα is a positive process. We denote by

K(t, x, α) =

∫ t

0

1{Xx,α
s ≥1}ds, t ∈ [0,∞],

the occupation time of Xx,α above 1 up to time t. We consider the problem of maximizing
the expected occupation time. To this end, we introduce the value function

v(t, x) = sup
α∈A

E[K(t, x, α)] = sup
α∈A

∫ t

0

P (Xx,α
s ≥ 1)ds, t ∈ [0,∞). (1)

We show that the strategy in A maximizing the occupation time above 1 up to any
finite time horizon t is a feedback control of bang-bang type. As usual, we say that a
strategy α is a feedback control if there exists a function α̂ : R+ → [σ1, σ2] such that
αt = α̂(Xx,α̂

t ), where Xx,α̂ is the solution of the SDE

dXt = α̂(Xt)XtdWt, X0 = x. (2)

One can show that for any measurable function α̂ with values in [σ1, σ2] and of bounded
variation on any compact interval the SDE (2) has a unique strong solution. Indeed,
observe that (Xt) solves (2) if and only if log(Xt) satisfies the SDE

dZt = α̂(eZt)dWt −
1

2
α̂(eZt)2dt, Z0 = log(x). (3)

The results in [8] guarantee pathwise uniqueness for the SDE (3). Together with weak
existence this further implies the existence of a strong solution of (3), and hence of (2)
(cf. Section 5.3, [5]).

For simplicity in the following we do not distinguish between the function α̂ and the
associated feedback control α.

We denote by η the feedback control that consists in choosing the lowest volatility if
the process X is greater than or equal to one, and the highest volatility if X is below
one. More precisely, let

η(x) =

{
σ1, x ≥ 1,
σ2, x < 1.

(4)

The aim of the paper is to prove that η maximizes the occupation time above 1 and
to compute the value function, i.e. the maximal expected occupation time. It turns

3



out to be difficult to determine the value function explicitly. Instead, we give a closed
form expression for L[v(·, x)](λ) =

∫∞
0
e−λtv(t, x)dt, the Laplace transform of the value

function considered as a function of t. The following theorem is our main result, the
proof of which is postponed to Section 4.

Theorem 1.1. The unique optimal control for problem (1) is given by the function η,
defined in (4). The Laplace transform of t 7→ v(t, x) satisfies

L[v(·, x)](λ) =


1
λ2
− 1

λ2
x

1
2
− 1

2σ1

√
σ2
1+8λ

1
σ2

√
σ2
2+8λ−1

1
σ1

√
σ2
1+8λ+ 1

σ2

√
σ2
2+8λ

if x ≥ 1,

1
λ2
x

1
2

+ 1
2σ2

√
σ2
1+8λ

1
σ1

√
σ2
1+8λ−1

1
σ1

√
σ2
1+8λ+ 1

σ2

√
σ2
2+8λ

if x < 1.
(5)

To give an intuition for why η is optimal, notice that one can interpret X as time-
changed geometric Brownian motion (GBM). The control α determines the time change,
and hence the distribution of the process’ occupation time above 1. By choosing the
strategy η, the occupation time is concentrated closer to the origin. We remark, however,
that the expected total occupation time E(K(∞, x, α)) does not depend on the control
values chosen when the process X is below 1 (see remark 2.2).

In the arithmetic case one can show that the strategy maximizing the expected occu-
pation time up to a time point T coincides with the control maximizing the probability
for X to be above 1 at T . In the geometric case, η does not maximize the probability
P (Xx,α

T ≥ 1) for a given time horizon T . The reason is that a high volatility entails Xx,α
t ,

in average, to attain the level 1 earlier, but also to converge faster to zero as t → ∞.
Therefore, for large time horizons T it is better to choose a small volatility, even when
the process is below 1.

In order to prove Theorem 1.1, we explicitly determine the Laplace transform in t of
the function Q, defined by

Q(t, x) := P (Xx,η
t ≥ 1). (6)

The Laplace transform can be identified with the value function of a control problem
with an infinite time horizon. This is shown in Section 2. In Section 3 we prove that the
function Q(t, ·) is twice continuously differentiable in x for x 6= 1, and once continuously
differentiable for x = 1. The regularity will allow us to use a verification argument for
proving that, for any t, the control η maximizes E(K(t, x, α)) among all α ∈ A (see
Section 4).

We close this section by explaining how one can use the Laplace transform (5) for
calculating the maximal expected occupation time. We do not know the Laplace inverse
of (5) explicitly. For x = 1, however, we obtain a simple integral inversion formula
for the function g(t) := Q(t, 1) (see Equation (15)). For arbitrary x > 0, the function
t 7→ Q(t, x) can be recovered as a convolution of g and the hitting time distribution of
the geometric Brownian motion. As a result, we obtain explicit integral formulas for
the maximal expected occupation time. The integrals can be evaluated numerically, and
hence we can use them for estimating the increase in the expected occupation time by
switching from a constant control to the optimal control η.
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Let us compare the optimal control with the constant control α̂ ≡ σ1. One can
show that limt↓0 g(t) = σ2/(σ1 + σ2), and limt↓0 P (X1,α̂

t ≥ 1) = 1/2. Therefore,
in the short run, η entails a considerably higher occupation time than α̂. In the long
run, however, P (X1,α̂

t ≥ 1) exceeds g(t), and a straightforward computation entails
E(K(∞, 1, η)) = E(K(∞, 1, α̂)) = 2/σ1. This shows that the advantage of η over α̂
vanishes as the time horizon converges to infinity. All these observations are illustrated
in Figure 1 for the values σ1 = 1 and σ2 = 2.
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Figure 1: The left-hand side depicts the graphs of g (solid line) and t 7→ P (X1,α̂
t ≥ 1)

(dashed line), with σ1 = 1 and σ2 = 2. The right-hand side shows the corre-
sponding expected occupation time. Note that for both strategies the values
converge to 2, the maximal expected occupation time up to infinity.

2. A control problem with infinite time horizon

For any control α ∈ A we consider the gain function

J(x, α;λ) =

∫ ∞
0

e−λtP (Xx,α
t ≥ 1)dt,

with λ > 0, and we define the associated value function by

V (λ, x) = sup
α∈A

J(x, α;λ). (7)

If there is no ambiguity, we shall write V (x) for V (λ, x). The HJB equation of the
control problem (7) is given by

−λV (x) + 1[1,∞)(x) +
1

2
x2 sup

u∈[σ1,σ2]

u2Vxx(x) = 0.

We start by heuristic arguments to derive the value function. Assume that η is optimal
and that the value function V satisfies the HJB equation. Then V is concave on [1,∞[
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and convex otherwise and is solution of the following equations

−λV (x) + 1 +
1

2
σ2

1x
2Vxx(x) = 0, x > 1, (8)

−λV (x) +
1

2
σ2

2x
2Vxx(x) = 0, x ∈ (0, 1). (9)

Notice that the function V (x) = 1/λ is a particular solution of (8) and V (x) = 0 is a
particular solution of (9). For i = 1, 2 let

γi =
1

2
− 1

2σi

√
σ2
i + 8λ, and βi =

1

2
+

1

2σi

√
σ2
i + 8λ.

Observe that xβ1 and xγ1 are linearly independent solutions of the homogeneous equation
associated to (8). Therefore, a solution of (8) has the form G1(x) = 1

λ
+A1x

β1 +B1x
γ1 .

Similarly, any solution of (9) must satisfy G2(x) = A2x
β2 + B2x

γ2 . Since the value
function V is bounded, we can match it with G1 only if A1 = 0, and with G2 only if
B2 = 0.

If V is continuously differentiable at x = 1, then it must hold true that 1
λ

+ B1 = A2

and γ1B1 = β2A2. This means

B1 = −1

λ

1 +
√

1 + 8λ
σ2
2√

1 + 8λ
σ2
1

+
√

1 + 8λ
σ2
2

and A2 =
1

λ

√
1 + 8λ

σ2
1
− 1√

1 + 8λ
σ2
1

+
√

1 + 8λ
σ2
2

.

Note that γi < 0 < 1 < βi. Our heuristic considerations indicate that the value function
V is equal to the function G defined by

G(x) =

{
1
λ

+B1x
γ1 , x ≥ 1,

A2x
β2 , x < 1;

(10)

(whenever we want to stress the dependence on λ we write G(λ, x)).
We next show, via classical verification, that indeed both functions coincide. Notice

that G ∈ C1(R+)∩C2(R+ \ {1}), but G is not twice continuously differentiable at x = 1.

Proposition 2.1. We have V (x) = G(x) and η is the unique optimal control for problem
(7).

Proof. Let α ∈ A be an arbitrary control and X = Xx,α the associated controlled
state process. The Itô formula for functions in C1 with absolutely continuous derivatives
implies (see Section 3.7 in [5])

e−λtG(Xt) = G(x) +

∫ t

0

e−λsG′(Xs)dXs +

∫ t

0

e−λs
(

1

2
X2
sα

2
sG
′′(Xs)− λG(Xs)

)
ds.

Observe that B1 < 0 < A2 and γ1 < 0 < 1 < β2, hence G is concave on (1,∞) and convex
on (0, 1). It follows that one has 1

2
α2
sX

2
sG
′′(Xs)−λG(Xs) ≤ −f(Xs), where f(x) = 1x≥1.
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By taking expectations, and localizing the local martingale part if necessary, we arrive
at

E[e−λtG(Xt)] ≤ G(x)− E
∫ t

0

e−λsf(Xs)ds. (11)

The function |G| being bounded by A2 + 1
λ
− B1, dominated convergence implies that

the left-hand side of (11) converges to zero as t → ∞. Moreover, the right-hand side
converges by monotone convergence. Therefore, G(x) ≥ E

∫∞
0
e−λsf(Xs)ds. Since α is

arbitrary, this entails G(x) ≥ V (x).
By choosing the strategy α = η, we obtain an equality in (11). This further implies

that J(x, η) = G(x), and hence G(x) ≤ V (x).
Finally, observe that η is the only control, up to null sets, for which we have equality

in (11). Hence η is the unique optimal control.

Remark 2.2. If λ = 0, then the value function (7) is still finite. A verification similar
to the one in the proof of Proposition 2.1 shows that the value function is given by

V (0, x) =

{
2
σ2
1
(1 + ln(x)), x ≥ 1,

2
σ2
1
x, x < 1.

In this case, however, η is not the only optimal control. Indeed, any control is optimal if
it is equal to σ1 whenever Xt ≥ 1. The values of the control when Xt < 1 determine the
speed of the process below the level 1, and hence the times at which the process attains
again the level 1. However, the total amount spent above 1 is only determined by the
process’ speed above 1, and it is maximal if the minimal speed σ1 is chosen.

Remark 2.3. A similar infinite time horizon problem within an arithmetic Brownian
model is considered in Example (7.6) in [10].

Recall that Q(t, x) = P (Xx,η
t ≥ 1). Proposition 2.1 immediately implies that λ 7→

G(λ, x) is the Laplace transform of t 7→ Q(t, x).

Corollary 2.4. The Laplace transform of Q(·, x) is given by

L[Q(·, x)](λ) = G(λ, x). (12)

Notice that the Laplace transform L[Q(·, x)](λ) is continuous in the parameter x,
for all x ∈ (0,∞). This does not directly imply that Q(t, x) is also continuous in x.
Indeed, the continuity of Laplace transforms in a parameter does not necessarily imply
that the original functions are also continuous w.r.t. the parameter (consider e.g. the
function family f(t, x) = 1[x,∞](t), t, x ∈ (0,∞)). Nevertheless, we have that Q(t, x) is
continuous in x, as is shown in Proposition 3.4 of the next section.

7



3. Properties of the occupation time density

In this section we first derive an integral expression for Q by using a Laplace inversion
of G for x = 1.

Let τ(x) = inf{s ≥ 0 : Xx,η
s = 1}. Up to τ(x) the process Xx,η is an exponential

martingale either with volatility σ1 or σ2. Thus the hitting time distribution can be
derived from the hitting time distribution of a standard GBM with constant volatility.
Let H(x, t) = P (τ(x) ≤ t), t ≥ 0, be the cumulative distribution function of τ(x). For
x ∈ (0, 1) we have

H(x, t) = Φ

(
1
σ2

ln(x)− σ2t/2√
t

)
+ xΦ

(
1
σ2

ln(x) + σ2t/2√
t

)
,

and for x > 1

H(x, t) = Φ

(
− 1
σ1

ln(x) + σ1t/2√
t

)
+ xΦ

(
− 1
σ1

ln(x)− σ1t/2√
t

)
,

(see Section 3.3 in [4]).
We now introduce g(t) := Q(t, 1) and c := σ2

σ1+σ2
. The Markov property of Xx,η implies

that, for any time t > 0 and for x < 1

Q(t, x) = E[1{τ(x)≤t}g(t− τ(x))] =

∫ t

0

g(t− u)H(x, du), (13)

and for x > 1,

Q(t, x) = E[1{τ(x)>t} + 1{τ(x)≤t}g(t− τ(x))] = 1−H(x, t) +

∫ t

0

g(t− u)H(x, du). (14)

Therefore, for computing Q it only remains to determine g. To do so, we introduce some

further definitions. Let D = {z ∈ C|Re(z) > −σ2
1

8
}, and let

F (z) =
1

z

√
1 + 8z

σ2
1
− 1√

1 + 8z
σ2
1

+
√

1 + 8z
σ2
2

.

Note that F is holomorphic on D, and that for β >
−σ2

1

8
we have limn→∞ sup{|F (z)| :

z ∈ C with Re(z) ≥ β, |z| ≥ n} = 0.

Lemma 3.1. The function g satisfies

g(t) = lim
n→∞

2

π

∫ n

0

Re(F (is)) cos(ts)ds (15)

for all t > 0.
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Proof. 1. Notice that Corollary 2.4 implies that the Laplace transform of g satisfies
L[g](λ) = F (λ), for λ > 0.

2. Note that the mapping R 3 t 7→ F (it) is square integrable. Indeed, the function
is bounded and, for |t| large enough, |F (z)| is bounded by C

|z| . Therefore, its inverse

Fourier transform is defined, and it is given by the L2(R)-limit

ĝ(t) = lim
n→∞

1

2π

∫ n

−n
F (is)eitsds, t ∈ R, (16)

(see e.g. Thm 9.13 in [11]). We next show that ĝ(t) = g(t), for t > 0. To this end let
ĝn(t) = 1

2π

∫ n
−n F (is)eitsds. Since ĝn converges to ĝ in L2(R), we have limn L[ĝn](λ) =

L[ĝ](λ), for all λ > 0. With Fubini’s theorem we obtain

L[ĝn](λ) =

∫ ∞
0

e−λtĝn(t)dt =
1

2π

∫ n

−n
F (is)

∫ ∞
0

e(is−λ)tdtds = − 1

2π

∫ n

−n

F (is)

is− λ
ds.

Let C be the line [−ni, ni] added by the right-hand side semicircle from ni to −ni. If

n is large enough, λ lies in the interior of C, and Cauchy’s formula implies
∫
C
F (z)
z−λ dz =

−2πiF (λ), where the contour integral is taken clockwise. One can show that the in-

tegral along the semicircle vanishes as n → ∞. Indeed, along the circle |F (z)
z−λ | ≤

sup|z|=R |F (z)| 1
R−λ , hence

∫
C
F (z)
z−λ dz ≤ π sup|z|=R |F (z)| goes to 0. Therefore, L[ĝ](λ) =

limn L[ĝn](λ) = F (λ). Since that Laplace transform is injective, this shows that ĝ(t) =
g(t), for t > 0.

3. One can show that the function ĝ is causal, i.e. it satisfies ĝ(t) = 0 for all t < 0 (see
Lemma A.1 in appendix). This implies that we can determine ĝ(t) from the real part of
its Fourier transform; more precisely, for t > 0 we have ĝ(t) = limn→∞

2
π

∫ n
0

Re(F (is)) cos(ts)ds
(see Section 2.2 in [9]) and hence (15).

We now proceed by showing that the function Q satisfies some smoothness properties
in x. We first prove that g is absolutely continuous. For this we define

Γ(z) = zF (z)− c

for all z ∈ D. Notice that Γ(−is) = Γ(is) for s ∈ R, and that Γ is holomorphic on
D. Moreover, Re(Γ(it)) and Im(Γ(it)) converge monotonically to zero as R 3 |t| → ∞.
Therefore, we can define for all t 6= 0

γ(t) = lim
n

1

2π

∫ n

−n
Γ(is)eitsds

= lim
n

1

π

∫ n

0

[Re(Γ(is)) cos(ts)− Im(Γ(is)) sin(ts)]ds.

Lemma 3.2. The function g satisfies g(t) = c+
∫ t

0
γ(s)ds, for all t > 0. Moreover, g is

non-increasing.
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Proof. We first show that g is absolutely continuous on (0,∞) and that γ is its derivative.
To this end let 0 < δ < T and γn(t) = 1

2π

∫ n
−n Γ(is)eitsds. Observe that∫ T

δ

γ(t)dt = lim
n

∫ T

δ

γn(t)dt = lim
n

1

2π

∫ n

−n

∫ T

δ

Γ(is)eistdtds = lim
n

1

2π

∫ n

−n

Γ(is)

is
(eisT − eisδ)ds.

Since Γ(is)
is

= F (is)− c
is

, we further obtain∫ T

δ

γ(s)ds = ĝ(T )− ĝ(δ)− lim
n

1

2π

∫ n

−n

c

is
(eisT − eisδ)ds

= g(T )− g(δ).

Since δ and T are arbitrary, this shows that g is absolutely continuous on (0,∞) with
g′ = γ.

Next let a < b < 0. With similar arguments as above we obtain
∫ b
a
γ(t)dt = 0.

Therefore, γ(t) = 0 for all t < 0. This further entails that γ(t) = γ(t) +γ(−t) and hence

γ(t) = lim
n

2

π

∫ n

0

Re(Γ(is)) cos(ts)ds = lim
n

2

π

∫ n

0

−Im(Γ(is)) sin(ts)ds, (17)

for t > 0. Observe that Im(Γ(is)) = Im(isF (is)) = Re(sF (is)). It is straightforward
to show that Re(sF (is)) ≥ 0. Together with Equation (17) this entails that γ is non-
positive. Consequently, g is non-increasing.

Since g is absolutely continuous, we can recover from its Laplace transform the right-
hand side limit at zero; more precisely, we have limλ→∞ λL[g](λ) = g(0+) (see e.g. [2]
or [3]). Observe that limλ→∞ λL[g](λ) = limλ→∞ λF (λ) = c. Consequently, we have
g(t) = c+

∫ t
0
γ(s)ds, for t > 0.

Corollary 3.3. The function γ is integrable on R+ and its Laplace transform satisfies
L[γ](λ) = λF (λ)− c, λ > 0.

Proof. By Lemma 3.2, g is decreasing and absolutely continuous; hence its derivative,
γ, is integrable. The second statement follows from standard properties of Laplace
transforms (see e.g. Section 1 in [2] or Theorem 8.1 in [3]).

Proposition 3.4. Q ∈ C0,2((0,∞)× (0,∞) \ {1}) ∩ C0,1((0,∞)× (0,∞)).

In Remark 4.1 below we show that at any point (t, 1) with t > 0, Q is not twice
continuously differentiable with respect to x.

Proof. Since H(x, u) is twice continuously differentiable in x 6= 1, Equations (13) and
(14) imply Q ∈ C0,2((0,∞)× (0,∞) \ {1}).

We next show that Q is once continuously differentiable w.r.t. x in every point (t, 1),
with t > 0. Differentiating (13) and applying the integration by parts formula yields,
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for x < 1,

Qx(t, x) =

∫ t

0

g(t− u)Hx(x, du) (18)

= cHx(x, t)−
∫ t

0

Hx(x, u)g(t− du) (19)

= cHx(x, t) +

∫ t

0

Hx(x, u)γ(t− u)du. (20)

Similarly, for x > 1 we have

Qx(t, x) = −Hx(x, t) +

∫ t

0

g(t− u)Hx(x, du)

= −Hx(x, t) + cHx(x, t)−
∫ t

0

Hx(x, u)g(t− du)

= −Hx(x, t) + cHx(x, t) +

∫ t

0

Hx(x, u)γ(t− u)du.

Now let h2(t) = limx↑1Hx(t, x) and h1(t) = limx↓1Hx(t, x). Notice that

h2(t) =
2

σ2

√
t
ϕ
(
σ2

√
t/2
)

+ Φ
(
σ2

√
t/2
)
,

h1(t) = − 2

σ1

√
t
ϕ
(
σ1

√
t/2
)

+ Φ
(
−σ1

√
t/2
)
.

By passing to the limit in Equation (20) we obtain

lim
x↑1

Qx(t, x) = ch2(t) +

∫ t

0

h2(u)γ(t− u)du. (21)

Similarly, we get

lim
x↓1

Qx(t, x) = −h1(t) + ch1(t) +

∫ t

0

h1(u)γ(t− u)du. (22)

One can show that

L[h1](λ) =
1

2λ
− 1

2λ

1

σ1

√
8λ+ σ2

1

L[h2](λ) =
1

2λ
+

1

2λ

1

σ2

√
8λ+ σ2

2.

Observe that L(γ) = −L[h1]+cL[h]
L(h)

= −c − L[h1]
L(h2)−L(h1)

. A straightforward computation

shows that the Laplace transform in t of the right-hand side of (22) is equal to the
Laplace transform of the right-hand side of (21). Since the Laplace transforms coincide,
it must hold true that limx↑1Qx(t, x) = limx↓1Qx(t, x).

11



4. Proof of Theorem 1.1

In this section we prove Theorem 1.1 via classical verification. To this end observe that
the HJB equation associated to problem (1) is given by

wt(t, x)− 1[1,∞)(x)− 1

2
x2 sup

u∈[1,2]

u2wxx(t, x) = 0, (23)

with initial condition w(0, x) = 1[1,∞)(x).

Proof of Theorem 1.1. Let w(t, x) =
∫ t

0
Q(s, x)ds. Lemma 3.4 implies that w ∈ C1,2((0,∞)×

(0,∞) \ {1}) ∩ C1,1((0,∞)× (0,∞)).
Since w(t, x) grows at most linearly in t, we can define the Laplace transform w̄(λ, x) =∫∞

0
e−λtw(t, x)dt. Notice that with Fubini’s theorem we obtain

w̄(λ, x) =

∫ ∞
0

Q(s, x)

∫ ∞
s

e−λtdtds =
1

λ
G(λ, x),

where G is defined by (10). For every λ ∈ (0,∞) the function G(λ, ·) solves the ODEs
(8) and (9). Therefore, w̄(λ, ·) satisfies

−λw̄(λ, x) +
1

λ
+

1

2
σ2

1x
2w̄xx(λ, x) = 0, x > 1, (24)

−λw̄(λ, x) +
1

2
σ2

2x
2w̄xx(λ, x) = 0, x ∈ (0, 1). (25)

Observe that L[wt(·, x)](λ) = λw̄(λ, x) and L[wxx(·, x)](λ) = w̄xx(λ, x). Since the
Laplace transform is injective, Equations (24) and (25) imply that w(t, ·) satisfies

−wt(t, x) + 1 +
1

2
σ2

1x
2wxx(t, x) = 0, x > 1, (26)

−wt(t, x) +
1

2
σ2

2x
2wxx(t, x) = 0, x ∈ (0, 1). (27)

Note that wt(t, x) ∈ [0, 1] for all (t, x) ∈ R+×R+. Thus, Equation (26) entails wxx(t, x) ≤
0 for x > 1, and Equation (27) yields wxx(t, x) ≥ 0 for x ∈ (0, 1). In other words, w(t, ·)
is concave on [1,∞) and convex on (0, 1). This further implies that w satisfies the HJB
equation (23) for all (t, x) ∈ R+ × R+ \ {1}.

The proof that w coincides with the value function v and that η is optimal follows
now from a standard verification argument. To this end notice that we can apply the
Itô formula to w, because the second derivative exists Lebesgue-a.e.

Finally, Equation (5) follows from Corollary 2.4.

Remark 4.1. Theorem 1.1 implies that the function Q is not twice continuously differ-
entiable in x, at any point (t, 1) with t > 0. Indeed, since w satisfies (26) and (27), we
have

lim
x↓1

wxx(t, x) =
2

σ2
1

(Q(t, 1)− 1), and lim
x↑1

wxx(t, x) =
2

σ2
2

Q(t, 1).

If wxx was continuous in (t, 1), then 2
σ2
1
(Q(t, 1) − 1) = 2

σ2
2
Q(t, 1). This would imply

Q(t, 1) =
σ2
2

σ2
2−σ2

1
> 1, which is not possible, since Q(t, 1) is a probability.

12



A. Appendix

We give here the proof that the function ĝ defined by (16) is causal. We remark that
the proof uses standard arguments that can be found e.g. in [2].

Lemma A.1. For t < 0, ĝ(t) = 0.

Proof. Let t < 0. Observe that the function z 7→ eztF (z) is holomorphic on D. Let CR
be the line [−Ri,Ri] added by the right-hand side semicircle ΓR from Ri to −Ri. Then∫

CR

eztF (z)dz = 0

To prove that ĝ is causal, it is enough to prove that limR→∞
∫

ΓR
eztF (z)dz = 0. On

ΓR, one has |ezt| = etR cos θ. Moreover, for all ε > 0, there exists R large enough such
that |F (z)| < ε, for z ∈ ΓR. Then∫

ΓR

eztF (z)dz ≤ 2Rε

∫ π
2

0

exp(Rt cos θ)dθ

As t < 0 and sin(θ) ≥ 2θ/π, for θ ∈ [0, π/2], we obtain∫ π
2

0

exp(Rt cos θ)dθ =

∫ π
2

0

exp(Rt sin θ)dθ ≤ π

2R|t|
(1− exp(Rt)),

and hence the result.
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