Controlling the occupation time of an exponential martingale - Archive ouverte HAL Access content directly
Journal Articles Applied Mathematics and Optimization Year : 2017

Controlling the occupation time of an exponential martingale

Abstract

We consider the problem of maximizing the expected amount of time an exponential martingale spends above a constant threshold up to a finite time horizon. We assume that at any time the volatility of the martingale can be chosen to take any value between σ 1 and σ 2 , where 0 < σ 1 < σ 2. The optimal control consists in choosing the minimal volatility σ 1 when the process is above the threshold, and the maximal volatility if it is below. We give a rigorous proof using classical verification and provide integral formulas for the maximal expected occupation time above the threshold.
Fichier principal
Vignette du fichier
TwoVolasresubmittedversion.pdf (277.88 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01227899 , version 1 (12-11-2015)
hal-01227899 , version 2 (08-04-2016)

Identifiers

Cite

Stefan Ankirchner, Christophette Blanchet-Scalliet, Monique Jeanblanc. Controlling the occupation time of an exponential martingale. Applied Mathematics and Optimization, 2017, 76 (2), pp.415-428. ⟨10.1007/s00245-016-9356-2⟩. ⟨hal-01227899v2⟩
592 View
528 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More