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Abstract—Elementary functions from the mathematical library
input and output floating-point numbers. However it is possible
to implement them purely using integer/fixed-point arithmetic.
This option was not attractive between 1985 and 2005, because
mainstream processor hardware supported 64-bit floating-point,
but only 32-bit integers. Besides, conversions between floating-
point and integer were costly. This has changed in recent years, in
particular with the generalization of native 64-bit integer support.
The purpose of this article is therefore to reevaluate the relevance
of computing floating-point functions in fixed-point. For this,
several variants of the double-precision logarithm function are
implemented and evaluated.

Formulating the problem as a fixed-point one is easy after
the range has been (classically) reduced. Then, 64-bit integers
provide slightly more accuracy than 53-bit mantissa, which helps
speed up the evaluation. Finally, multi-word arithmetic, critical
for accurate implementations, is much faster in fixed-point, and
natively supported by recent compilers. Novel techniques of
argument reduction and rounding test are introduced in this
context.

Thanks to all this, a purely integer implementation of the
correctly rounded double-precision logarithm outperforms the
previous state of the art, with the worst-case execution time
reduced by a factor 5. This work also introduces variants of
the logarithm that input a floating-point number and output the
result in fixed-point. These are shown to be both more accurate
and more efficient than the traditional floating-point functions
for some applications.

Index Terms—floating-point, fixed-point, elementary function,
logarithm, correct rounding

I. INTRODUCTION

Current processors essentially support two families of native
data-types: integer, and floating-point. In each family, several
variants are supported.

Integer sizes are typically 8 and 16 bits in low-power
controllers such as MSP430, and 8, 16 and 32 bits for
middle-range embedded processors such as the ARM family.
Workstation processors and high-end embedded ones have
recently added native 64-bit integer support, essentially to
address memories larger than 232 bytes (4Gb).

Floating-point was standardized in 1985 with two sizes, 32
and 64 bits. A 80-bit format is supported in the x86 and IA64
families. The 2008 revision of the IEEE-754 standard [1] has
added a 128-bit format, currently unsupported in hardware.

To compute on reals, floating-point numbers are the pre-
ferred format. The main reason for this is their ease of use,
but performance is another compelling reason: until recently,
native support for floating-point was more accurate (64-bit
versus 32). Therefore, to compute on precisions larger than 32
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Figure 1: Arithmetic capabilities of mainstream processors

bits, using floating-point was faster than using integers (Figure
1). Indeed, the floating-point units and memory subsytems
of workstations processors are designed to achieve maximum
floating-point performance on essential numerical kernels,
such as the vector product around which all linear algebra can
be built. At the time of writing this article, it remains true that a
high-end processor can achieve more floating-point operations
than integer operations per seconds [2]. This is mainly due
to the wide vector units (such as Intel’s AVX extensions) not
fully supporting 64-bit integer multiplication.

However, integer computations are inherently simpler than
floating point. For instance, integer addition takes one cycle
(actually it more or less defines the processor cycle). Con-
versely, floating-point addition involves exponent processing,
shifts and leading-zero counts: it typically requires 3 to 6
cycles.

Besides, integers may provide more accuracy in situations
where the range of the data is well framed: in such cases the
exponent is known, and its bits in a floating-point representa-
tion are therefore wasted.

One such situation is the the implementation of an elemen-
tary function from the standard mathematical library (libm).
There, the programmer has a very good understanding of the
ranges of all the intermediate data. Nevertheless, almost all the
current implementations of elementary function use internal
floating-point formats, probably because of the performance
gap shown in Figure 1. The objective of the present work
is to design an integer-only implementation of an elementary
function, and discuss the effort involved and the resulting
performance.

The logarithm was chosen for two reasons. The first is that
it is one of the easiest functions to implement, with a large
body of literature and open-source implementations to build
upon, and a reasonably simple range reduction. The second
was to study a floating-point-in, fixed-point-out variant that
will be motivated and detailed in Section VI.

A remarkable conclusion is that the implementation effort



is comparable or lower than for an equivalent floating-point
implementation. Once the proper tools are set up (reviewed
in Section II), reasoning on integers is actually easier than
reasoning on floating-point. Proving code is even easier.

A second remarkable conclusion is that the performance
is well on par with floating-point implementations for 64-bit
computations. Besides, as soon as intermediate computations
require double-word arithmetic, integers offer large speed-
ups over floating-point. This is the case for correctly-rounded
functions [3]: the present work demonstrates a worst-case
performance improvements by a factor 5 over the previous
state of the art. This worst-case time is even better than the
average time of the default GNU/Linux log function.

The remainder of this article is organized as follows. Sec-
tion II presents in more details fixed-point arithmetic, the art
of representing reals using integers. Section III introduces the
variants of the double-precision logarithm that are studied in
this work. Section IV presents the algorithm used, with a focus
on new techniques in the integer context. Section V presents
and analyses performance results. Section VI advocates, with
an application case study, a new interface to the 64-bit
logarithm, inputting a floating-point number but outputting a
fixed-point result. Section VII concludes.

II. FLOATING-POINT VERSUS FIXED-POINT ARITHMETIC

A. IEEE-754 floating-point

Floating-point numbers are commonly used in computer
science as an easy-to-use and accurate approximation for real
numbers. Binary floating-point computing was first introduced
in the Zuse Z2 electro-mechanical computer in the 1940s. A
sign bit s, an integer exponent e and a fraction f ∈ ±[1, 2[
are used to represent the number (−1)s · 2e · f .

In the beginning of the computer era, a lot of different
floating-point formats were used in various platforms. This
improved in 1985, with the adoption of the IEEE-754 Standard
for Floating-Point Arithmetic. This standard defined several
floating-point formats, the main ones being a 32-bit format
and a 64-bit format respectively called binary32 and binary64
in the following. More importantly, it also precisely defined
the behaviour of the basic operations on these formats. The
standard mandates that an operation must return floating-point
number uniquely defined as the exact result, rounded according
to a well-specified rounding mode. The 2008 revision of the
standard, among other things, included specifications of the
most used elementary functions, such as sin, tan, exp, log,
log10. . . However, correct rounding is only recommended for
them, due to its perceived high performance overhead. A
contribution of this article is to reduce this overhead.

B. Generalities on fixed-point arithmetic

In a fixed-point program, each variable is an integer scaled
by a constant exponent. This exponent is implicit: it is not
stored in the number itself, contrary to the exponent of a
floating-point number. Therefore, it has to be managed ex-
plicitely. For instance, to add two variables that have different
implicit exponents, an explicit shift must be inserted in the

program before the integer addition in order to align both
fixed points (see Figure 2). Thus, implementing an algorithm
in fixed point is more complex and error-prone than imple-
menting the same algorithm in floating point:
• It requires a good understanding of the orders of magni-

tude of all the variables, in order to decide where their
fixed point should be.

• There is no representation of infinities as in floating-point.
Possible overflows have to be predicted and explicitely
managed.

• Integer numbers may be signed (using two’s comple-
ment), or not.

• The cheapest rounding mode available is truncation
(which can be achieved by shifting right or or masking).
This corresponds to a rounding toward −∞, both for
signed and unsigned arithmetic. Rounding to the nearest
is achieved by ◦(x) = bx+1/2c at the cost of an addition.

• When multiplying two integers of the same size, the size
of the result is twice the size of the inputs. If the inputs
were fractional fixed-point numbers, the high part of the
product (which holds the most significant bits) is needed,
as illustrated by Figure 3.

0x0 . 00001234
+ 0x0 . 00567890
−−−−−−−−−−−−−−−
= 0x0 . 00568AC4

(a) Math. view

uint32_t a = 0x1234;
// exponent: -32

uint32_t b = 0x56781;
// exponent: -28

uint32_r r = a + (b << 4);
// exponent: -32

(b) Source code in C

Figure 2: Addition of two fixed-point numbers with different
implicit exponents.

uint32_t a = 0x12345678; // 0x0.12345678
uint32_t b = 0x9ABCDEF0; // 0x0.9ABCDEF0
uint64_t r = (uint64_t)a * b;

// = 0x0.0B00EA4E242D2080
uint32_t s = (r >> 32); // ˜ 0x0.0B00EA4E

Figure 3: Multiplication of two fixed-point numbers.

C. Support of high fixed-point precisions in current hardware
and compilers

A limited set of primitives are needed to efficiently im-
plement floating-point elementary functions in fixed-point:
addition and multiplication, boolean operations (to implement
bit masks, etc), but also leading zero count and shifts (to
convert between fixed-point and floating-point). Processor
instructions exist to perform most of these tasks. On the x84-
64 architecture [4], [5], they are available on 64 bits natively,
and can be chained efficiently to operate on 128-bit data. For
instance,
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Figure 4: The natural logarithm function

• a 128-bit addition can be performed in two instructions
operating on 64-bit data: an add, and an adc (add with
carry);

• the full multiplication (of two 64-bit values into a 128-bit
one) is done with the mulq assembler instruction;

• The lzcnt instruction performs leading zero count.

What is more, the integer datatypes __int128_t and
__uint128_t, while not belonging to standard C, are sup-
ported by most mainstream compilers (GCC, ICC, Clang). The
addition in C of two __int128_t will generate the sequence
of add and adc previously mentioned. A full multiplication
of two 64-bit integers can be achieved by casting operands to
the types __uint128_t and __uint128_t, similarly to
Figure 3. The generated code will only consist of one mulq
instruction. We define the macro fullmul for this (it inputs
two int64 and returns an int128), and we also define a macro
highmul (that returns the high 64 bits only).

Finally, instructions that are not exposed in the C syntax
(such as add-with-carry or leading-zero-count) can be accessed
thanks to intrinsics which are also de-facto standard. For exam-
ple, in GCC, ICC and CLang, 128-bit leading zero count can
be achieved with the builtin function __builtin_clzll.

To sum up, writing efficient code manipulating 64-bit and
128-bit fixed-precision numbers is possible in a de-facto
standard way.

III. VARIANTS OF THE LOG FUNCTION

The logarithm function, along with the exponential, it is
one of the most useful elementary functions. It is continuous
and monotonically increasing, and also has the following
mathematical property:

log (x · y) = log (x) + log (y) .

Its output range is much smaller than the input range: for
any binary64 x, |log (x)| < 210). Therefore, it is easy to define
fixed-point formats that capture the whole output range of a
logarithm function. Such formats have 11 bits to the left of
the fixed-point (including a sign bit).

Therefore, the core of our algorithm will first compute an
approximation of log(x) on such a format (with the fraction
size depending on the variant studied). It will then round this
approximation to the nearest floating-point number.

However, an option is also to skip this final rounding. Sec-
tion VI shows an application case study where this improves
both performance and accuracy.

A. Correctly rounded logarithm

Modern implementation of elementary functions are at
least faithful, i.e. they return one of the two floating-point
numbers surrounding the exact value log(x) [6], [7], [8]. To
achieve this, it is enough to compute an approximation with
a confidence interval smaller than the difference between two
consecutive floating-point numbers (Figure 5). This requires
to use an internal format of slightly higher precision than the
destination floating-point format.

Correct rounding is more difficult to achieve. In the cases
when the confidence interval includes a rounding boundary, the
correctly rounded value can not be decided (Figure 5, bottom).
To ensure correct rounding, one has to make sure that the exact
result y = f(x), which can be anywhere in the confidence
interval, is on the same side of the midpoint as the computed
approximation.

Ziv’s algorithm [9] (whose reference implementation forms
the core of the libm in the GNU/Linux standard library glibc)
recomputes in such cases the function with increasing accu-
racy, reducing the confidence interval until it is completely one
one side of the rounding boundary. As such recomputations
are rarely needed, this algorithm is fast in average. However
it may take a lot of time in the worst case, when the actual
solution is very close to a mid-point between two consecutive
floating-point numbers (Figure 5).

Lefèvre and Muller computed the worst-case precision
needed for certain functions (including the logarithm) [10].
This allowed the CRLibm implementation to evaluate the
function in two steps only: one quick phase, and one slower
phase that is always accurate enough for correct rounding.

B. Classical two-phase correctly-rounded logarithm

The present work uses the CRLibm two-phase approach:
• In the first (quick) phase, an approximation is computed

(in a 128-bit integer) with an absolute accuracy of 2−63.
This is enough to return correct rounding in most cases.
Otherwise, the second phase is lauched.

• The second (accurate) phase computes to an absolute
accuracy of 2−118 which, according to [10, p. 452] is
enough to ensure correct rounding for all floating-point
inputs.

C. Variants of the binary64 logarithm function

From this two-phase implementations, several variants can
be derived.
• A single-phase correctly-rounded, IEEE-754-2008 com-

pliant variant, essentially consisting of the accurate phase
only.

• A single-phase, accurate-faithful variant, essentially con-
sisting of the quick phase only. This version is currently
not implemented properly in this work, for reasons dis-
cussed in the sequel.
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Figure 5: Rounding to the nearest an accurate approximation.

• A floating-point in, fixed-point out log, outputting an
int64_t with an absolute accuracy of 2−52, essentially
consisting of the first phase without the final conversion
to floating-point.

• A floating-point in, fixed-point out log outputing an
int128_t with an absolute accuracy of 2−116, essen-
tially consisting of the second phase only without final
conversion to floating-point.

The last to functions will be justified by an application case
study in Section VI.

All these variants are actually simplifications of the two-
phase correctly rounded implementation, whose algorithm is
presented now.

IV. ALGORITHM AND IMPLEMENTATION

The algorithm can be decomposed into the following steps:

A. Filtering the special cases

The following special cases must be handled following the
IEE-754 standard [1].
• input is negative or zero
• input is ±∞
• input is NaN
• input is a subnormal number
One test (predicated false) is enough to detect all thoses

cases [11]. It correspond to the case where the bit sign is set,
or the exponent is either the min or max value it can take.

As this test is performed on the binary representation of
the input, the algorithm begins with a copy of the binary
representation of x into an int64_t variable.

On all these special cases, the function returns a special
value, except for subnormals: these are normalized and the
input exponent is initialized accordingly. Then the control
flow gets back to the main path, where a normal input is
decomposed into its fraction x = 1 + 2−52f52 ∈ [1; 2) and
exponent E.

B. Argument range reductions

The first range reduction simply decomposes the elements
of the input:

input = 2E × x
log(input) = E × log(2) + log(x)

When computing E × log(2) + log(x), there is a possible
catastrophic cancellation when x is close to 2 and E =-1, i.e.
when the input is very close to (but smaller than) 1. To avoid
it, most floating-point implementations [6], [3] first re-center
the fraction around 1, using a variant of the following test:
if x>1.4 then x=x/2 and E=E+1. We currently choose to
skip this classical recentering. This saves the cost of this test
itself, but also a few additional operations in the subsequent
range reductions, where round to nearest would be needed
instead of truncation. The trade-off is that the accurate phase
will be launched in case of a massive cancellation. This design
choice, initially motivated by simplicity, is a posteriori justi-
fied by the low overhead of the accurate phase in the present
implementation. However its relevance will be discussed in
the conclusion.

The constant log(2) can be stored to arbitrary accuracy as
several 64-bit chunks. This, as well as the computation of
E × log(2), will be detailed in Section IV-D.

Let us now address the computation of log(x) with x ∈
[1, 2). This interval can be further reduced by an algorithm due
to Tang [12]. The main idea is to read, from a table addressed
by the k most significant bits of x, two values: invx ≈ 1

x and
log(invx). Then if we compute y = invx · x, the logarithm
can be computed as log(x) = log(y)− log(invx).

The closer invx is to 1
x , the closer y will be to 1. Indeed,

if |invx − 1
x | ≤ ε then:

|y − 1| ≤ |invx · x− 1|

≤ |invx −
1

x
| · x

≤ ε · x
≤ 2 · ε

Since the range of y is much smaller than the range of x,
computing log(y) will be easier than computing log(x).

In detail, let x1 the value of x taking only in consideration
its k leading bits. The value stored is invx = d1/x1e, in
order to ensure y ≥ 1. This choice ensures that we can use
only unsigned arithmetic in the sequel. However, an alternative
using signed arithmetic should be tried in the near future.

It is desirable to compute y = invx · x exactly. In our case
this is easy for two reasons. Firstly x is a binary64 mantissa
(53 bits) and we work with 64-bit integers. Therefore, with a
value of invx on 11 bits, the product can be computed exactly

0 −6 −70

x 1. 52 bits
x1

invx 0. 18 bits

y 0 0...1. 64 bits

Figure 6: Tang’s argument reduction, here for k = 7.
The gray boxes are the values represented in the program.



0 −12 −76

x 1. 52 bits

x1

invx 0. 9 bits

y 0 0...1. 55 bits

y1

invy 0. 15 bits

z 0 0...1. 64 bits

Figure 7: Two iterations of Tang’s argument reduction.

Table size (bytes) degree 1st degree 2nd
39,936 3 5
12,288 3 6

4,032 4 7
2,240 4 8
2,016 4 9

900 5 10
594 6 12
298 7 14

Table I: A few Pareto points of the design space

in the low part of a 64-bit product. Secondly, the k leading bits
of y are known, as illustrated by Figure 6, so their overflow
in the high part of the product is harmless: for k = 7, it
is actually possible to approximate invx on 18 bits and still
compute y − 1 exactly in a 64-bit integer.

Thanks to this, it is possible to do this argument range
reduction twice. First, the 7 leading bits of x (excluding the
constant 1) are used as an index in a table that provides invx

and log(invx). Then, y − 1 has its 6 most significants bits
being zeros (more precisely y ∈ [0, 2−6.41504]). Its 7 next bits
are used as an index in a table that provides invy as well
as log(invz). Now z = invy × y is even closer to 1 than y:
z ∈ [1, 1 + 2−12.6747].

This argument reduction is depicted on Figure 7. With a
total of 28 table entries only, it achieves a similar reduction
as the single-step approach would with a 213-entry table. The
delay of the second table read is more than compensated by
the reduction in polynomial degree (from 7 to 4 in the quick
phase and from 13 to 7 in the accurate phase).

This is an old idea in a hardware context [13], [14], [15]. It
cannot be used efficiently to implement a binary64 log using
binary64 arithmetic, because the latter cannot hold z (nor z−1)
exactly. A contribution of this work is to show that this idea
is relevant when 64-bit integer arithmetic is used.

Table I shows that other trade-off between table size and
polynomial degree would be possible.

The proof of these three steps of argument reduction was
developed using Gappa [16]. We note t = z− 1, and we now
address the computation of log(1 + t).

uint64_t a4 = UINT64_C(0x0000000003ffc147);
uint64_t a3 = UINT64_C(0x0000005555553dc6);
uint64_t a2 = UINT64_C(0x0007fffffffffd57);
uint64_t a1 = UINT64_C(0xfffffffffffffffa);
uint64_t q =

a1-highmul(t,a2-highmul(t,a3-highmul(t,a4)));
uint128_t p = fullmul(t, q);

Figure 8: Shift-less polynomial evaluation

C. Polynomial approximation and evaluation

In each phase, the function log(1+ t) may be approximated
by a polynomial P (t) of small degree (4 in the quick phase, 7
in the accurate phase). Thanks to the Taylor formula log(1 +
t) ≈ t − t2/2 · · · , its constant coefficient can be forced to
0: P (t) = tQ(t). This polynomials is computed using the
fpminimax command of the Sollya tool [17]. At runtime, it
is evaluated using Horner’s method.

This Horner evaluation can be implemented with no run-
time shift, as shown on Figure 8. Instead, the approximation
polynomial was constrained to include all the shifts within the
coefficients themselves. More precisely, Sollya’s fpminimax
can be constrained to compute the optimal polynomial among
those which will avoid any shift. This lead to coefficients
with leading zeroes, which may seem a waste of coefficient
bits. However, we observed that this provided almost the same
accuracy as a polynomial where each coefficient is stored on
exactly 64 bits, in which case shifts are needed during the
evaluation. In other words, removing the shifts is for free in
terms of approximation accuracy.

In the quick phase, the evaluation of Q(t) is performed com-
pletely in 64-bit arithmetic (using the highmul primitive).
Only the final multiplication by t needs a full multiplication.
As t itself is exact, this last multiplication is exact, and the
128-bit result will therefore always hold almost 64 significant
bits after the leading non-zero bit.

In the accurate phase, all the coefficients ai of Q (except a7)
must be stored in 128-bit integers. However the evaluation
remains quite cheap, because t remains a 64-bit integer.
Specifically, Horner step i computes qi = ai+ t× qi−1 where
the qi and ai are 128-bit. This rectangular multiplication is
implemented as
q = ai - (fullmul(t,HI(q)) + highmul(t,LO(q)));

Again, there is no shift needed here.

D. Result reconstruction

Finally, the log will be evaluated as

log(input) = E log(2)− log(invx)− log(invy) + P (t) .

There, − log(invx) and − log(invy) are precomputed val-
ues. Thus, we can choose to decompose and align them the
way we want. The best is probably to align them to the format
we want for the results, so they can be added without shift
(Figure 9).

The value of E log(2) is computed by multiplying E
with slices of the binary writing of log(2). These slices are



chosen in such a way that the product will be aligned to the
format of the result: log(2) is decomposed into log(2)−1,−53,
log(2)−54,−118, log(2)−119,+∞.

The product of log(2)−1,−53 with E (a 11-bit number) fits
on a 64-bit integer: it requires only the low part of a 64-bit
multiplication, and will be aligned to the high word of the
result format (see figure 9).

The product of log(2)−54,−118 requires a fulmul (it needs
more than 64 bits), but the obtained 128-bit result is also
aligned. These two first terms are used in the quick phase.

Only 11 more bits of E log(2) are needed for the accurate
phase, but the corresponding term needs to be shifted to place.
This will be done only in the accurate phase.

The approximation P (t) of log(z) is finally added. Its
implicit exponent is fixed by the fact that we want t exact and
fitting on one int64: we therefore have to shift tQ(t) before
adding it.

One nice thing about fixed-point arithmetic is that this whole
summation process is exact, therefore associative. The order in
which it is written is not important, and this is a big difference
compared to floating-point, where one has to think carefully
about the parenthesing of such sums. In principle the compiler
also has more freedom to schedule it than in floating-point, but
it is not clear that this is exploited.

E. Rounding test

Floating-point-based correctly-rounded functions use a
multiplication-based test due to Ziv, but documented much
later [18]. Considering the previous summation, it is possible
here to use a much simpler test. Upper bounds of the errors of
each summand are added together to form an upperbound ε of
the distance between our final sum S and the actual value of
the logarithm. Then, at runtime, it is enough to check if S− ε
and S+ ε are rounded to two different floating-point numbers
or not, as seen in the figure 5.

Figure 9 show in grey the error terms we have to sum to
get ε. Most of this error summation is performed statically,
only the error on P (t) uses a dynamic shift, to benefit from
the fact that P (t) was evaluated with good relative error.

Since only sharp error bounds are added together, the value
ε is also sharp, and so is the test.

F. Accurate phase

For the last step, the previous sum (before the addition of the
polynomial) can be fully reused. The log(invx) and log(invy)
terms were already accurate to 2−118 The accurate phase
therefore only consists of adding the third part of E log(2),
and recomputing a more accurate tP (t) of degree 7 as already
explained in Section IV-C.

V. RESULTS AND ANALYSIS

A. Experimental protocol

The proposed correctly rounded implementation has been
proven in Gappa, tested against the hard to round cases dis-
tributed with CRLibm, and against large numbers of random
values. It passes all these tests.

0

11 −53 −117

−12 −42 −106 −141

E · log(2) 64

11+64

11 < 2−117

-log(invx) 128 < 2−118

-log(invy) 128 < 2−118

P (t) 128

< P (t) · 2−59

sum S 128

εP (t)

Figure 9: Solution reconstruction (error terms in darker gray)

The performance of this function is reported on two archi-
tectures: an Intel(R) Core(TM) i7-4600U CPU, and a Kalray
Bostan core. The latter is a 64-bit, 4-way VLIW core with
an FMA-based double-precision floating-point unit, several
arithmetic and logic units, and a single 32-bits multiplier (no
hardware 64-bits multiplier). A recent GCC is used in both
cases (version 4.9). Experiments with ICC and CLang show
no significant difference.

To mesure the performance of our function, we use standard
procedures based on hardware counters (rdtsc on the Core
i7, properly serialized). The functions are compiled with gcc
-O3 optimization. The test program is compiled with -O0
to avoid unwanted optimizations. It consists of three similar
loops that apply the function on an array of random data. the
first calls an (externally linked) empty function, to calibrate the
loop and function call overhead: all the timings are reported
without this overhead. The second loop times the average case
execution time of each function. The third calls the function
on an array of hard-to-round cases, thus timing the worst-case
execution time of the function.

The same test was run with three others implementations:

• glibc (resp newlib): the function of the GNU C standard
library distributed with the Linux system on the Core i7
and Bostan respectively. The glibc uses Ziv’ algorithm,
and is correctly rounded.

• cr-td: the function is the CRLibm variant that only uses
binary64.

• cr-de: a variant of CRLibm that uses the double extended
(80 bits, with a fraction on 64 bits) format available on
the x86 platform. Comparing to it hints to what depends
on having 64 bits instead of 53, and what depends on
having faster arithmetic.

Table II presents some parameters of these implementation.
It is worth to mention that the proposed implementation has
the smallest memory consumption. The glibc is not a two-
phase algorithm. It also uses a degree 3 polynomial for the
case |x− 1| < 0.03 (see file u_log.c in the glibc sources).



glibc crlibm-td crlibm-de cr-FixP
degree pol. 1 3/8 6 7 4
degree pol. 2 20 12 14 7
tables size 13 Kb 8192 bytes 6144 bytes 4032 bytes
% accurate phase N/A 1.5 0.4 4.4

Table II: Implementation parameters of the correctly rounded
implementations.

B. Timings of correctly rounded implementations

Table III compares the speed of the available correctly
rounded implementations on the Core i7 processor. For an
absolute reference, it also shows what is probably the best
available faithful scalar implementation of the logarithm for
this processor: it is distributed in the Math Kernel Li-
brary (MKL) with Intel’s own compiler icc. To obtain
this measure, the same test was compiled with icc -O0
-fp-model precise -lm. This processor-specific imple-
mentation, written by Intel experts, probably uses tricks such
as exploiting the hardware reciprocal approximation instead
of a table of inverse [7], or the FMA available in recent AVX
extensions [5].

The main results are the following.
• The average time is on par with the best state of the art:
crlibm-de, that uses 80-bit floating-point and larger
tables. It is within a factor two of the absolute reference,
MKL, which is not correctly rounded.

• The worst-case time has been improved by a factor 5,
and is now within a factor two of the average time.

Table IV compares these timings (broken down in their
different steps) on two processors. What is interesting here
is that the Bostan performance is respectable, although it only
has 32-bit multiplication support.

In Table II, the proposed cr-FixP implementation is the
worst on one metric: the percentage of calls to the accurate
phase. This is essentially due to the cancellation problem for
values slightly smaller than 1 – the random generator used is
actually biased towards this case. It would be a bad design
choice to always lauch the accurate phase for such central
values if the accurate phase was very slow. However, with
an accurate phase within a factor two of the quick one, it

cycles MKL glibc crlibm cr-de cr-FixP
avg time 25 90 69 46 49
max time 25 11,554 642 410 79

Table III: Average and max runing time (in processor cycles)
of correctly rounded implementations on Intel Core i7. Italic
denotes lack of correct rounding.

cycles Core i5 Bostan
System glibc newlib

90 105
quick phase alone 42 94
accurate phase alone 74 181
both phases (avg time) 49 121
both phases (max time) 79 225

Table IV: Running times of each step

becomes a sensible design choice. We initially felt that this
choice allowed us to save a few cycles in the quick phase.
This feeling can only be confirmed by the design and test
of an implementation including the classical recentering and
more signed arithmetic. What is already clear is that the
polynomial evaluation schemes we already use will provide
the required relative accuracy in this case. Therefore, when
this implementation is available, running its first step only will
provide a faithful result, which is not the case of the current
implementation.

VI. FLOATING-POINT IN, FIXED-POINT OUT VARIANT

Finally, Table V shows the performance of the variant that
returns a 64-bit signed integer approximating 252 log(x). This
variant performs the final summation completely in int64.
Therefore it requires even less tables. Moreover, a polynomial
of degree 3 is enough to achieve absolute accuracy of 2−59

which is largely enough in this context. With all this, and
with the removal of the final conversion to a binary64 floating-
point number, this function offers performance on par with the
MKL.

However, the main impact of offering this variant may be in
applications that compute sums of logs. An archetype of this
class of applications is a DNA sequence alignment algorithm
known as TKF91 [19]. It is a dynamic programming algorithm
that determines an alignment as a path within a 2D array. The
borders of an array are initialized with log-likelihoods, then
the array is filled using recurrence formulae that involve only
max and + operations.

All current implementations of this algorithm use a floating-
point array. With the proposed logFix64, an int64 array can be
used instead. This should lead to an implementation of TKF91
that is both faster and more accurate:

• faster, not only because logFix64 is faster, but also
because the core computation can now use int64 addition
and max: both are 1-cycle, vectorizable operations;

• more accurate, because larger initialization logs impose
an absolute error that can be up to 2−42, whereas log-
Fix64 will have a constant absolute error of 2−52.

• more accurate, also because the computation of all the
additions inside the array become exact operations: they
still accumulate the errors due to the initialization logs,
but they do not add rounding errors themselves, as
floating-point additions do.

output absolute table Core i5 Bostan
format accuracy size cycles cycles
Fix64 2−52 2304 24 66
Fix128 2−116 4032 60 179

double (libm) 2−42 90 105

Table V: Performance of floating-point in, fixed-point out
functions. Fix64 is the code of the first step only, without
the conversion to float. Fix128 is the code of the second step
only, without the conversion to float.



A quantitative evaluation of these benefits on TKF91 is in
progress. Of course, applications that compute exponentials
of sums could similarly benefit from a fixed-point in, floating-
point out exponential. The same also holds for the base-2 and
base-10 variants of these functions.

VII. CONCLUSION AND FUTURE WORK

This work studies the implementation of the correctly
rounded logarithm using integer operations. The main idea is
to use, instead of binary64 (double-precision), the fast 64-bit
integer arithmetic that is nowadays mainstream.

The main result is to improve the worst-case time of a
correctly-rounded implementation by a factor 5 with respects
to the state of the art, using smaller tables. This new worst
case time is better than the average time of the default glibc
log of Linux systems. It is also within a factor 4 of the best
achievable faithful implementation (the MKL).

We believe that this promising result can be generalized
in the following claim: as soon as double-word arithmetic
is heavily needed in the implementation of an elementary
function (and this is always the case for correctly rounded
versions), integer arithmetic becomes very relevant, essentially
because 128-bit addition is a 2-cycle operation.

Another claim is that working in fixed point is not a problem
in this context: efficient elementary function algorithms always
reduce their arguments to a small domain. This second claim,
however, requires other experiments, with other functions,
to support it. For instance, the Payne and Hanek argument
reduction for trigonometric functions is a fixed-point algorithm
that provides a fixed-point reduced argument.

The main limitation of this work is probably that it can
currently not be vectorized: vector units do not currently offer
the necessary multiplication operations. It is not unreasonable
to expect that they could be added in the future. If this happens,
running the accurate phase alone will provide a branchless
implementation that we can expect to be within a factor 3 of
the faithful vector version. The inherent test in current two-
phase correct-rounding approaches is a roadblock for their
vectorization, and this solution would remove it completely.

Implementing a function using floating point requires acute
floating-point expertise, in particular a mastering of the range
and accuracy of all intermediate variables. Considering this,
we are also inclined to claim that an integer implementation
is in many ways simpler, for instance when one has to add
many terms. Still, this is another claim that requires more
experiments, because the logarithm was chosen as probably
the simplest from this point of view.

A last claim of this article is that floating-point-in, fixed-
point out variants of logarithms would make sense in some
applications, both from a performance and from an accuracy
point of view. This work provides such a variant. It will be
interesting to study if this idea may be generalized to other
functions.

Several new techniques have been developed in this article.
The more generally useful are the rounding test, and the

shift-less polynomial evaluation. A new two-step argument
reduction is specific to the logarithm.

Some short-term questions remain, the main one being the
possibility to achieve high relative accuracy around 1 without
degrading the performance of the quick phase. Work has begun
to integrate this code the Metalibm framework [20], which will
make such experiments easier.

Another observation is that the published table-maker’s
dilemma worst-case data is not in an ideal format for a fixed-
point implementation: it is currently only given in relative
terms on a large range of exponents.

The best-of-class faithful implementation on Intel proces-
sors, MKL, still uses floating point. We have shown that the
same performance can be achieved using integers only, but
then there is an integer/floating-point conversions overhead
that cannot be avoided. In this case, maybe the optimal two-
phase correctly rounded implementations should use floating-
point in the quick phase, and integers in the accurate phase.
This will add new challenges, such as sharing the tables
between the phases.
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