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Introduction

Throughout this paper, we are working over an algebraically closed field k of characteristic 0.

1.1. Let a be a finite dimensional algebraic Lie algebra, a * its dual space and S(a) the symmetric algebra of a. Then if {x 1 , x 2 , . . . , x n } is a basis of a, S(a) identifies with k[x 1 , x 2 , . . . , x n ], the polynomial algebra with generators x 1 , . . . , x n , and with the algebra of polynomials on a * . For any two polynomials f, g in S(a) we define the Poisson bracket of f and g by the formula :

{f, g} = n i=1 n j=1 ∂f ∂x i ∂g ∂x j [x i , x j ],
where [ , ] is the Lie bracket of a. For any two elements x, y ∈ a we have that {x, y} = [x, y] and each g → {g, f } is a derivation of the associative algebra S(a) for fixed f ∈ S(a).

We denote by ad the adjoint action of a on itself defined by its Lie bracket. Clearly, Y (a) ⊂ Sy(a) and this inclusion is in general strict. We will say that S(a) has no proper semi-invariants when equality holds. It is the case for instance when a is a truncated (bi)parabolic subalgebra of a semisimple Lie algebra, [5, lemme 2.5].

The Poisson centre Y (a) -and in particular whether or not it is a polynomial algebra -has been studied in several cases, for example in the case where a is semisimple, or a centralizer of a nilpotent element of a semisimple Lie algebra [START_REF] Panyushev | On symmetric invariants of centralisers in reductive Lie algebras[END_REF], or a (truncated) (bi)parabolic subalgebra of a semisimple Lie algebra [START_REF] Fauquant-Millet | Semi-centre de l'algèbre enveloppante d'une sous-algèbre parabolique d'une algèbre de Lie semi-simple[END_REF][START_REF] Fauquant-Millet | La somme des faux degrés -un mystère en théorie des invariants[END_REF][START_REF] Joseph | On semi -invariants and index for biparabolic (seaweed) algebras I[END_REF][START_REF] Joseph | On semi -invariants and index for biparabolic (seaweed) algebras II[END_REF].

1.3.

Recall that a acts via the coadjoint action on a * and denote this action still by ad. Set ind a = min ξ∈a * {codim (ad a) ξ} and call an element ξ in a * regular if codim (ad a) ξ = ind a. Denote by a * reg the set of regular elements of a * .

1.4. Assume that Y (a) is a polynomial algebra in := ind a generators. Let {f 1 , f 2 , . . . , f } be a set of homogeneous generators in Y (a) and let deg f i denote the degree of f i for all i, 1 ≤ i ≤ .

In [START_REF] Joseph | Maximal Poisson commutative subalgebras for truncated parabolic subalgebras of maximal index in sl n[END_REF] an adapted pair for a was defined as a pair (h, y) ∈ a × a * such that : (i) h is an ad-semisimple element, y is regular and (ad h) y = -y.

(ii) Let V be an ad h-stable subspace of a * such that (ad a) y ⊕ V = a * . The ad heigenvalues m i , 1 ≤ i ≤ , of an ad h-stable basis of V are all non-negative and satisfy :

ind a i=1 deg f i = ind a i=1
(m i + 1).

1.5. Recall the Slice Theorem [14, Thm 6], which obtains from the analysis of Kostant [16, Thm 5, Thm 7]:

Theorem. Assume that Y (a) is polynomial in ind a generators and let (h, y) be an adapted pair for a in the sense of 1.4. Then :

(1) The map Y (a) -→ R[y + V ] defined by restriction of functions is an isomorphism of algebras, where R[y + V ] denotes the algebra of regular functions on y + V . (2) One has m i + 1 = deg f i , for all i, 1 ≤ i ≤ ind a, up to a permutation of indices.

A linear subvariety y + V satisfying (1) of the above theorem is called a Weierstrass section [START_REF] Fauquant-Millet | Adapted pairs and Weierstrass sections[END_REF] or an algebraic slice [13, 7.6]. When a = g is a finite dimensional semisimple Lie algebra, it is well-known that the Poisson centre Y (g) is polynomial in ind g = rk g generators (for an exposition see [2, 7.3.8]). The above theorem is known as the Kostant Slice Theorem. In this case V = g x , the centralizer of x in g, where {x, h, y} is a principal sl 2 -triple with [h, x] = x, [h, y] = -y and [x, y] = h.

Let G be the adjoint group of g. The affine space y + g x is called a slice for the coadjoint action of g [13, 7.3] since every G -orbit in G(y + g x ) meets transversally y + g x at exactly one point and G(y + g x ) = g * where G(y + g x ) is the Zariski closure of G(y + g x ). Moreover in that particular case, G(y + g x ) = g * reg . (Note that in general, A(y + V ) is a proper subset of a * reg , where A is the adjoint group of a).

1.6. In [START_REF] Joseph | Polynomiality of invariants, unimodularity and adapted pairs[END_REF], under further assumptions on a, namely that a is unimodular and that its fundamental semi-invariant is an invariant, the authors showed that condition (i) of the definition of an adapted pair implies condition (ii) and actually (2) of the Theorem 1.5. Furthermore, as a consequence of [3, Thm. 1.11 (i)], any Lie algebra a such that S(a) has no proper semi-invariants is unimodular. Thus a truncated parabolic subalgebra a of a semisimple Lie algebra g is unimodular and its fundamental semi-invariant is an invariant. Since in this work we are interested precisely in truncated parabolic algebras, we will reformulate the definition of an adapted pair and the Slice Theorem, following [START_REF] Joseph | Polynomiality of invariants, unimodularity and adapted pairs[END_REF].

Definition. An adapted pair for a is a pair (h, y) ∈ a × a * such that h is an adsemisimple element, y is regular and (ad h) y = -y.

Then Theorem 1.5 becomes :

Theorem. [15, Corollary 2.3] Let a be a finite dimensional unimodular Lie algebra whose fundamental semi-invariant is an invariant (for example a is a truncated parabolic) and suppose that a admits an adapted pair (h, y). Let V be a subspace of a * such that (ad a) y ⊕ V = a * and let m i , 

1 ≤ i ≤ := ind a be the ad h-eigenvalues of an ad h-stable basis of V . If Y (a) is polynomial in generators, then ( 
m i + 1, 1 ≤ i ≤ .
If moreover S(a) has no proper semi-invariants then, after [6, Lemma 3.2] the Weierstrass section y + V is a slice for the coadjoint action of a, in the sense of 1.5. 1.7. Suppose that we have constructed an adapted pair (h, y) for a and retain the notations and hypotheses of Theorem 1.6. By the above, if Y (a) is polynomial, the degrees of a set of generators are {m i + 1 | 1 ≤ i ≤ }. This fact gives us indications for the polynomiality or non-polynomiality of Y (a). If for example m i < 0 for some i, or if we can choose different complements V, V on which ad h has different set of eigenvalues we conclude that Y (a) is not polynomial. For the truncated parabolic subalgebras we know by [START_REF] Fauquant-Millet | Semi-centre de l'algèbre enveloppante d'une sous-algèbre parabolique d'une algèbre de Lie semi-simple[END_REF] that Y (a) is included, up to a double gradation which respects the degrees, in a polynomial algebra whose degrees of generators are known, hence we have some information about the possible degrees of invariants. If this information is contradicted by the set {m i | 1 ≤ i ≤ } again we may conclude that Y (a) is not polynomial. In any case, the existence of an adapted pair restricts us to searching for invariants having a defined set of degrees.

1.8. When a is a truncated parabolic subalgebra of a semisimple Lie algebra g, we know in many cases that Y (a) is polynomial; for example, by [START_REF] Fauquant-Millet | Semi-centre de l'algèbre enveloppante d'une sous-algèbre parabolique d'une algèbre de Lie semi-simple[END_REF] this is always true when g has only components of type A or C and by [START_REF] Panyushev | On symmetric invariants of centralisers in reductive Lie algebras[END_REF], this is also the case when the truncated parabolic is the centralizer of the highest root vector and g is simple not of type E 8 . We will construct an adapted pair for all maximal parabolic subalgebras where we know (by the criterion of [START_REF] Fauquant-Millet | Semi-centre de l'algèbre enveloppante d'une sous-algèbre parabolique d'une algèbre de Lie semi-simple[END_REF], also given in Theorem 2.2.3) that the Poisson centre is polynomial. (This was done already in [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF], in the case of the centralizer.)

Acknowledgements. We thank A. Joseph for suggesting this problem to us and in general for introducing us to truncated parabolic subalgebras and adapted pairs many years ago.

2.

The truncated parabolic subalgebra and the centre of its symmetric algebra 2.1. Truncated parabolic subalgebras of g.

2.

1.1. Let g be a finite dimensional semisimple Lie algebra, h a fixed Cartan subalgebra of g, ∆ the root system of g with respect to h and π a chosen set of simple roots. We will adopt the labeling of [1, Planches I-IX] for the simple roots in π.

Let ∆ + (resp. ∆ -) denote the set of positive (resp. negative) roots. One has that ∆ -= -∆ + and ∆ = ∆ + ∆ -. For any α ∈ ∆, let g α denote the corresponding root space of g.

Then g = n ⊕ h ⊕ n -, where n = α∈∆ + g α and n -= α∈∆ - g α . For all α ∈ π, denote by α ∨ the corresponding coroot. One has that h = α∈π k α ∨ .
2.1.2. For any subset π of π, we will denote by ∆ π the set of roots generated by π . We also denote by ∆ + π , ∆ - π the sets of positive and negative roots in ∆ π respectively. One defines the standard parabolic subalgebra p π to be the algebra

p π = n ⊕ h ⊕ n - π where n - π = α∈∆ - π g α . Its opposed algebra then is p - π = n -⊕ h ⊕ n π , with n π defined
similarly. The dual algebra p * π identifies with p - π via the Killing isomorphism ϕ. 2.1.3. For any parabolic subalgebra p π of a simple Lie algebra g such that π π, the Poisson centre of S(p π ) reduces to scalars [8, 7.9]. In [START_REF] Fauquant-Millet | Semi-centre de l'algèbre enveloppante d'une sous-algèbre parabolique d'une algèbre de Lie semi-simple[END_REF] and [START_REF] Fauquant-Millet | La somme des faux degrés -un mystère en théorie des invariants[END_REF], the authors study the Poisson semicentre Sy(p π ) of S(p π ). Since p π is algebraic there exists a canonical truncation p π ,E of p π such that Sy(p π ) = Y (p π ,E ) = Sy(p π ,E ) [5, 2.4, 2.5, B.2]. In [5, Section 5] p π ,E has been described explicitly. It has the form

p π ,E = n ⊕ h E ⊕ n - π ,
where h E is a truncation of h; it is called the truncated Cartan subalgebra. Its description involves some combinatorics of the Dynkin diagram of g, which we describe below.

2.1.4. Define an involution j on π by j = -w 0 , where w 0 denotes the longest element in the Weyl group of ∆. Extend the involution i = -w 0 of π , where w 0 denotes the longest element in the Weyl group of ∆ π , on π \ π as follows. For all α ∈ π \ π , if j(α) ∈ π \ π set i(α) = j(α). If now j(α) ∈ π let r be the smallest integer such that j(ij) r (α) / ∈ π and set i(α) = j(ij) r (α). Let ij denote the group generated by the element ij and E the set of ij -orbits in π.

Set E 1 := {Γ ∈ E | jΓ = Γ} and E 2 := {Γ ∈ E | jΓ = Γ}. One has E = E 1 E 2 .
Notice that an orbit Γ in E is also an i, j (the group generated by i and j) -orbit if and only if Γ ∈ E 2 . The index of p π ,E is equal to the number of the ij -orbits in π, that is ind p π ,E = Card E [8, 7.14].

2.1.5. Denote by the standard length function on the Coxeter group i, j and let { α } α∈π be the set of fundamental weights of g (sometimes we write { i } α i ∈π ). For all Γ ∈ E which does not lie entirely in π , define h Γ = s∈ i, j (-1) (s) ϕ -1 ( sα ) for a choice of α ∈ Γ. For simplicity, we will write h Γ = s∈ i, j (-1) (s) sα . Denote by E 1 the subset of E 1 of orbits which meet π \ π . Define p π to be the derived subalgebra of p π ,

p π = [p π , p π ]. Set h = p π h and h E = h + Γ∈E 1 k h Γ . It turns out that the latter sum is direct. Then p π ,E is the algebra p π ,E = n ⊕ h E ⊕ n - π .
2.1.6. When j = id, which is true in all cases outside type A n , D 2n+1 and E 6 , one has that ij = i, j = i , E 1 = ∅ and E = E 2 . The involution i extends on π \ π by the identity. It then follows that for Γ ∈ E either Γ ⊂ π \ π or Γ ⊂ π . In the former case, Γ is a singleton. Moreover h E = h . 2.1.7. For a truncated maximal parabolic p π ,E associated to π = π \ {α s }, one has always i(α s ) = α s , even when j = id. Thus E 1 = ∅ and then h E = h . 2.2. The Poisson centre of p π ,E . As we already said, the algebra Sy(p π ) = Y (p π ,E ) has been studied in [START_REF] Fauquant-Millet | Semi-centre de l'algèbre enveloppante d'une sous-algèbre parabolique d'une algèbre de Lie semi-simple[END_REF], [START_REF] Fauquant-Millet | La somme des faux degrés -un mystère en théorie des invariants[END_REF]. More precisely, there have been found certain upper and lower bounds for Sy(p π ); when these bounds coincide, the algebra Sy(p π ) is polynomial in ind p π ,E generators. In this case, the weights and the degrees of a set of homogeneous generators have been computed explicitly. In this section, we will briefly describe the criterion of [START_REF] Fauquant-Millet | Semi-centre de l'algèbre enveloppante d'une sous-algèbre parabolique d'une algèbre de Lie semi-simple[END_REF], which implies the polynomiality of Y (p π ,E ). We first need some further background, namely the notion of the Kostant cascade.

2.2.1.

(See also [7, 2.2]). Let g be as in section 2.1.1 and set III] for every simple Lie algebra g. The set β π of strongly orthogonal positive roots for a simple Lie algebra g, which may be also found in [7, Tables I andII], is given for the reader's convenience in Table I where the indexation of the simple roots is as in [1, Planches I-IX].

D = {λ ∈ h * R | (λ, α) ≥ 0, ∀α ∈ π} where h * R is the real subspace of h * generated by π. Given λ ∈ D, define ∆ ± λ = {α ∈ ∆ ± | (λ, α) = 0}, ∆ λ = ∆ + λ ∪ ∆ - λ . Let ∆ = i ∆ i be
If the initial root system ∆ is irreducible of type A, C, E 6 , F 4 , G 2 , the subsystems are also irreducible and hence the Kostant cascade K and the set β π are totally ordered. Thus in these cases, the elements β K , K ∈ K, may be simply indexed by N, and are denoted by β i , 1 ≤ i ≤ card(K). We understand β i < β j if and only if i < j.

In other types, the order ≤ on K is not a total order. For the elements β K , K ∈ K, we use the notations β i , β i , for type B n or D 2n+1 , or β i , β i and β i for type D 2n , E 7 or E 8 with order relation β i < β j if and only if i < j, and β i < β i , β i .

For any rational number r ∈ Q denote by [r] the integer such that, r -1 < [r] ≤ r.

Type The set β π of strongly orthogonal positive roots

A n β i = α i + • • • + α n+1-i ; 1 ≤ i ≤ [(n + 1)/2] with βn+1 2 = α n+1 2 if n is odd B n β i = α 2i-1 + 2α 2i + • • • + 2α n ; 1 ≤ i ≤ [(n + 1)/2] with βn+1 2 = α n if n is odd β i = α 2i -1 ; 1 ≤ i ≤ [n/2] C n β i = 2α i + • • • + 2α n-1 + α n ; 1 ≤ i ≤ n, with β n = α n D n β i = α 2i-1 + 2α 2i + • • • + 2α n-2 + α n-1 + α n ; 1 ≤ i ≤ [n/2] -1 β i = α 2i -1 ; 1 ≤ i ≤ [n/2] -1 and βn-1 2 = α n-2 + α n-1 + α n if n is odd, β n 2 = α n if n is even β ( n-2 2 ) = α n-1 if n is even E 6 β 1 = α 1 + 2α 2 + 2α 3 + 3α 4 + 2α 5 + α 6 β 2 = α 1 + α 3 + α 4 + α 5 + α 6 β 3 = α 3 + α 4 + α 5 β 4 = α 4 E 7 β 1 = 2α 1 + 2α 2 + 3α 3 + 4α 4 + 3α 5 + 2α 6 + α 7 β 2 = α 2 + α 3 + 2α 4 + 2α 5 + 2α 6 + α 7 β 3 = α 2 + α 3 + 2α 4 + α 5 β 4 = α 3 β 2 = α 7 , β 3 = α 5 , β 3 = α 2 E 8 β 1 = 2α 1 + 3α 2 + 4α 3 + 6α 4 + 5α 5 + 4α 6 + 3α 7 + 2α 8 β 2 = 2α 1 + 2α 2 + 3α 3 + 4α 4 + 3α 5 + 2α 6 + α 7 β 3 = α 2 + α 3 + 2α 4 + 2α 5 + 2α 6 + α 7 β 4 = α 2 + α 3 + 2α 4 + α 5 β 5 = α 3 β 3 = α 7 , β 4 = α 5 , β 4 = α 2 F 4 β 1 = 2α 1 + 3α 2 + 4α 3 + 2α 4 β 2 = α 2 + 2α 3 + 2α 4 β 3 = α 2 + 2α 3 β 4 = α 2 G 2 β 1 = 3α 1 + 2α 2 β 2 = α 1 Table I
2.2.2. We will slightly digress in order to introduce the sets H β K , K ∈ K and some of their properties that will be useful in the sequel. For A ⊂ ∆, denote by

-A = {α ∈ ∆ | -α ∈ A}. For all K ∈ K set H β K = {γ ∈ ∆ K | (γ, β K ) > 0} and H -β K = -H β K . By [7, Lemma 2.2],
we have the following :

(1) In this case, Sy(b) is a polynomial algebra in rk g generators [START_REF] Joseph | A preparation theorem for the prime spectrum of a semisimple Lie algebra[END_REF]. The generators of the free semigroup B π may be found in [7, Tables I andII] and in [START_REF] Fauquant-Millet | Semi-centre de l'algèbre enveloppante d'une sous-algèbre parabolique d'une algèbre de Lie semi-simple[END_REF]Table].

H β K = ∆ + K \ (∆ + K ) β K . (2) ∆ + = L∈K H β L and ∆ -= L∈K H -β L . (3) If α ∈ H β K \ {β K }, then β K -α ∈ H β K \ {β K }. (4) Given α, α ∈ H β K , if α + α ∈ ∆, then α + α = β K . (5) If α ∈ H β K , α ∈ H β L are such that α + α ∈ ∆, then K ≤ L (resp. L ≤ K) and α + α ∈ H β K (resp. α + α ∈ H β L ). In particular, if α + α = β K , then K = L and α, α ∈ H β K \ {β K }. (6) |H β K ∩ π| = 1 if ∆ K is not of type A and 2 if it is. In fact, H β i ∩ π =    {α i , α n+1-i }, in type A. {α 2i }, in type BD. {α i }, in type C. 2.2.3. Recall that { α } α∈π is
Set for all Γ ∈ E :

ε Γ = 1/2, if Γ = jΓ, α∈Γ α ∈ B π , α∈Γ∩π α ∈ B π , 1, otherwise. Theorem. [4, Thm. 7.3]. If ε Γ = 1 for all Γ ∈ E, then the algebra Y (p π ,E ) is polynomial in |E| = ind p π ,E generators. In particular, when g is simple of type A or C, then ε Γ = 1, for all Γ ∈ E.
Remarks.

(1) The bounds for Sy(p π ) that we mentioned in the beginning of 2.2 coincide precisely when ε Γ = 1 for all Γ ∈ E. (2) Examples where the bounds do not coincide but Y (p π , E ) is still polynomial are known (see for instance [START_REF] Joseph | A preparation theorem for the prime spectrum of a semisimple Lie algebra[END_REF] for the Borel case or [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF] for the centralizer of the highest root vector, which is a particular truncated parabolic algebra). (3) In [START_REF] Yakimova | A counterexample to Premet's and Joseph's conjectures[END_REF] there has been found an example where Y (p π ,E ) is not polynomial. This is the case of the maximal parabolic subalgebra of g of type E 8 with π = π \ {α 8 } (in the Bourbaki notation [1, Planche VII]). In this case, p π ,E = g x β , where β is the unique highest root of g and x β ∈ g β \ {0}.

The construction of an adapted pair

Recall the definition of an adapted pair of Section 1.6. In [START_REF] Joseph | Slices for biparabolic coadjoint actions in type A[END_REF], an adapted pair is constructed for all truncated (bi)parabolic subalgebras of sl n . In the following sections we will construct an adapted pair -whenever possible -for all maximal truncated parabolic subalgebras in the remaining types when the bounds of [START_REF] Fauquant-Millet | Semi-centre de l'algèbre enveloppante d'une sous-algèbre parabolique d'une algèbre de Lie semi-simple[END_REF] coincide. By a maximal parabolic we mean that π = π \ {α s }.

Remark. The reason that we restrict ourselves to the maximal parabolic case unlike the case of sl n where an adapted pair has been constructed for all parabolic subalgebras is that for sl n the truncated Cartan subalgebra is never too small. By contrast, when j = id and so h E = h , the truncated Cartan subalgebra may be very small or even {0} in the case of the truncated Borel. We will see in Section and then the coadjoint action is computed through commutation in g mod h ⊥ E ⊕ m -. 3.1. Heisenberg sets. For A ⊂ ∆, set g A := α∈A g α , which is a subspace of g and a Lie subalgebra of g if A is additively closed in ∆.

Definition. For any γ ∈ ∆, a subset Γ γ of ∆ is called a Heisenberg set of centre γ if γ ∈ Γ γ and for all α ∈ Γ γ \{γ}, there exists a unique α ∈ Γ γ such that α+α = γ.

Remark. For a fixed γ, there exist several Heisenberg sets Γ γ of centre γ. All of them are included in a maximal one, namely the set of all decompositions of γ into the sum of two roots in ∆. (Note that an ij -orbit in π was also denoted by Γ; we will be very careful not to have any confusion). 3) and actually it is the maximal Heisenberg set of centre β K , which is included in ∆ + . Moreover, by 2.2.2 (4), g H β K is a Heisenberg Lie algebra of centre g β K . For an arbitrary Γ γ it is no longer true that g Γγ is a Heisenberg Lie algebra or even a Lie subalgebra of g; however, inspired by this example, we called the sets Γ γ Heisenberg sets.

Example. Recall the sets

H β K , K ∈ K defined in 2.2.2. One has that H β K is a Heisenberg set of centre β K by 2.2.2 (
If Γ γ is a Heisenberg set of centre γ, then -Γ γ = Γ -γ is a Heisenberg set of centre -γ. We set Γ 0 γ := Γ γ \ {γ}. Similarly, we define H 0 β K .

3.2.

The following lemma can be found in [START_REF] Joseph | Slices for biparabolic coadjoint actions in type A[END_REF]Lemma 8.5]:

Lemma. Let Γ ± be subsets of ∆ ± and suppose there exist subsets S ± of Γ ± such that Γ ± = γ∈S ± Γ γ , where Γ γ is a Heisenberg set of centre γ, for all γ ∈ S ± . Set

S = S + S -and O ± = γ∈S ± Γ 0 γ . Set also o = γ∈S g -Γ 0 γ = g -O + ⊕ g -O -.
Assume further that the elements of S are linearly independent and that if α, β ∈ O ± are such that α

+ β = γ, for some γ ∈ S ± , then α, β ∈ Γ 0 γ . Set f = γ∈S a γ x γ ,
where a γ are non-zero scalars for all γ ∈ S. Then the bilinear form

Φ f : g × g → k defined by Φ f (x, x ) = K(f, [x, x ]
) for all x, x ∈ g, where K is the Killing form on g, is non-degenerate on o × o.

When S + = β π + , S -= -β π -for two subsets π + , π -⊂ π and Γ γ = H γ for all γ ∈ S, the above result follows from [19, Remarque 3.9].

Lemma.

Suppose π ⊂ π is a subset of π and let p π ,E be the corresponding truncated parabolic subalgebra. Let S + , T + ⊂ ∆ + and S -, T -⊂ ∆ - π be such that the following conditions hold :

(1) For all γ ∈ S ± there exist Heisenberg sets Γ γ of centre γ such that,

Γ + := ∆ + \ T + = γ∈S + Γ γ , and 
Γ -:= ∆ - π \ T -= γ∈S - Γ γ . Set O ± = γ∈S ± Γ 0 γ .
(

) If α, β ∈ O ± are such that α + β = γ for some γ ∈ S ± then α, β ∈ Γ 0 γ . ( 2 
) Set S = S + S -. Then S| h E is a basis of h * E . (4) Set T = T + T -. Then |T | = ind p π ,E . 3 
Then the element y := γ∈S x γ is regular and

g T := α∈T g α is a complement of the ad p - π ,E -orbit of y in p π ,E , that is (ad p - π ,E ) y ⊕ g T = p π ,E .
Proof. The proof is similar to that of [START_REF] Joseph | Slices for biparabolic coadjoint actions in type A[END_REF]Theorem 8.6]. We will give it for completeness. Retain the notations of Lemma 

E = (ad g -S ) y + o * ⊕ g S ⊕ g T . Hence p π , E = h E ⊕ o * ⊕ g S ⊕ g T ⊂ (ad p - π , E ) y + g T .
Finally, condition (4) forces the latter sum to be direct, since dim g T = ind p π ,E ≤ codim(ad p - π ,E ) y.

3.4.

The corollary below follows from Theorem 1.6 and Lemma 3.3 :

Corollary. Suppose that the hypotheses of the previous lemma hold for p π ,E and define h ∈ h E by setting α(h) = -1 for all α ∈ S. Then (h, y) is an adapted pair for p π ,E . If, in addition, Y (p π ,E ) is polynomial in ind p π ,E generators, then y + g T is a slice for the coadjoint action of p - π ,E .

3.4.1.

In the following sections we construct an adapted pair for maximal parabolic subalgebras for which Y (p π ,E ) is known to be polynomial, that is when Theorem 2.2.3 applies. By the above, it is enough to choose, when possible, two subsets S, T of ∆ + ∆ - π which satisfy the conditions of Lemma 3.3. As we will see, in most cases, we choose sets S + , T + , with T + ⊂ π such that S + T + = β π and S -, T -, with T -⊂ -π such that S -T -= -β π . Then for all β ∈ S, we take Γ β = H β , as defined in 2.2.2. By the easy observation that if β ∈ π, then H β = {β}, we conclude that with these choices condition (1) of Lemma 3.3 is satisfied by 2.2.2 (2). Moreover, condition (2) follows by 2.2.2 [START_REF] Fauquant-Millet | La somme des faux degrés -un mystère en théorie des invariants[END_REF]. Hence in these cases, it only remains to verify conditions (3) and (4).

As adapted pairs were already constructed for all truncated biparabolic subalgebras of sl n [START_REF] Joseph | Slices for biparabolic coadjoint actions in type A[END_REF], we will not consider this case.

Type B

Let g be simple of type B n (n ≥ 2) and π = π \ {α s }, for some 1 ≤ s ≤ n. The truncated parabolic p π ,E is then equal to p π ,E = n ⊕ h ⊕ n - π , where recall that h is the Cartan subalgebra of the derived algebra of p π . Its Levi factor l π is the product of two simple Lie algebras, one of type A s-1 and the other of type B n-s . In particular, if s = 1 one has that l π = so 2n-1 and if s = n, l π = sl n .

4.1. Orbits. Since w 0 = -id one has that j = id and i is as follows :

i(α t ) = α s-t , 1 ≤ t ≤ s -1 α t , s ≤ t ≤ n Hence the ij -orbits of π are Γ t = {α t , α s-t }, 1 ≤ t ≤ [ s 2 ] and Γ t = {α t }, s ≤ t ≤ n. Then | E |= [ s 2 ] + n -s + 1. By Theorem 2.2.3, if s is odd, Y (p π E ) is polynomial, since ε Γ = 1 for all Γ ∈ E.
If s is even the theory of [START_REF] Fauquant-Millet | Semi-centre de l'algèbre enveloppante d'une sous-algèbre parabolique d'une algèbre de Lie semi-simple[END_REF] does not guarantee us that Y (p π ,E ) is polynomial. However, when s = 2, then p π ,E equals the centralizer of the nilpotent element corresponding to a non-zero highest root vector x β 1 , that is p π ,E = g x β 1 , and by [START_REF] Panyushev | On symmetric invariants of centralisers in reductive Lie algebras[END_REF] Y (p π ,E ) is polynomial. Moreover, in this case an adapted pair was constructed in [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF].

Below, we will construct an adapted pair when s is odd and will give the adapted pair of [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF] for s = 2.

Construction of an adapted pair.

Here we assume that π = π \ {α s } with s odd. Note that in this case ind p π ,E =| E |= n -s-1 2 . 4.2.1. The sets S and T . Recall the maximal set β π of strongly orthogonal roots we introduced in section 2.2.1 and in particular Table I. Denote by β 0 π the set

β 0 π = β π \ (β π ∩ π).
The subset π is a union of two connected components, π 1 of type A s-1 and π 2 of type B n-s . One has that

β π 1 = {β i := α i + α i+1 + • • • + α s-i | 1 ≤ i ≤ s-1 2 }. In particular, since s is odd β 0 π 1 = β π 1 . Also, β 0 π 2 = {β i := α s+2i-1 + 2α s+2i + . . . + 2α n | 1 ≤ i ≤ [ n-s 2 ]} and β π 2 ∩ π 2 = {α s-1+2i | 1 ≤ i ≤ [ n+1-s 2 ]}.
For S we choose S = S + S -, where S + = β 0 π and S -= (-β π 1 ) ∪ (-β 0 π 2

). For T we choose T = T + T -where T + = β π ∩ π and T -= -(β π 2 ∩ π 2 ).

4.2.2.

Choice of Heisenberg sets. For all β ∈ S we take Γ β = H β , as defined in 2.2.2. Notice that S + T + = β π and S -T -= -β π . By 3.4.1, conditions (1) and (2) of Lemma 3.3 are satisfied. Condition (4) is also satisfied, since | T |= n -s-1 2 = ind p π , E . It remains to verify condition (3).

Lemma. For the above choice of S, one has that

S| h E is a basis for h * E . Proof. Let S = {s j | 1 ≤ j ≤ n -1} and take for a basis of h E the set {α ∨ i | 1 ≤ i ≤ n, i = s}. It is enough to show that the determinant of the matrix (α ∨ i (s j )) i, j is non-zero.
First of all notice that for all i, with 1

≤ i ≤ [n/2], β i = c i 2i -2i-2
, where c n/2 = 2 when n is even and c i = 1 otherwise. (Here we have set 0 = 0.) Similarly, 

β i = d i s+2i -s+2i-2 ,
= d [ n-s 2 ] det F . Finally, F = -(α ∨ 2i-1 (β j )) and each of the α 2i-1 , 1 ≤ i ≤ s-1 2
, lies in exactly one H β j by 2.2.2 [START_REF] Fauquant-Millet | Adapted pairs and Weierstrass sections[END_REF]. Recall that

{β i | 1 ≤ i ≤ s-1
2 } is the set β π 1 of strongly orthogonal roots of π 1 , which is of type A s-1 . In particular, they are totally ordered by the order defined in 2.2.1. With the notations of 2.2.1,

∆ + i+1 = ∆ + β i and ∆ + i+1 ⊂ ∆ + i for all i, with 1 ≤ i ≤ s-1
2 (where we set ∆

+ 1 = ∆ + π 1
). Moreover, by 2.2.2 (1) and the above,

H β i ⊂ ∆ + β i-1 = ∆ + i . Let α t j ∈ H β j , with {α t j | 1 ≤ j ≤ s-1 2 } = {α 2i-1 | 1 ≤ i ≤ s-1 2 }.
Then up to a sign, det F = det (α ∨ t i (β j )) and the latter is an upper triangular matrix with 1 on the diagonal. In particular, det F = 0. 4.2.4. Now take π = π \ {α 2 }; as we already said, an adapted pair has been constructed in [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF].

The sets S and T are given in [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF]Tables] for B n , n ≥ 3 as follows:

S = {α 2 , α 3 , . . . , α n-1 , α 1 + α 2 + . . . + α n } and T = {α i + 2(α i+1 + . . . + α n ), 1 ≤ i ≤ n -1, -α 1 }.

Type D

As expected, type D is almost identical with B. We will give the details for completeness.

Let g be simple of type D n (n ≥ 4) and π = π \ {α s } for some 1 ≤ s ≤ n. If 1 ≤ s ≤ n -3, then the Levi factor l π of the truncated parabolic subalgebra p π , E is the product of two simple Lie algebras, one of type A s-1 and another of type D n-s (in particular, if s = 1, l π is a simple Lie algebra of type D n-1 ).

If s = n -2, then the Levi factor l π is the product of three simple Lie algebras, of types A n-3 , A 1 and A 1 .

Finally, if s = n -1 or s = n, then l π is a simple Lie algebra of type A n-1 .

5.1. Orbits. Recall that j = id if n is even and, if n is odd, j is the involution of π that interchanges α n-1 and α n and fixes the rest of the simple roots. By Theorem 2.2.

3 one can show that Y (p π , E ) is polynomial (that is ε Γ = 1 for all Γ ∈ E) if
s is odd or s = n -1 and s is even. Since the cases s = n, n -1 are symmetric, we may consider that s is odd. Note that then n, n -s have different parity.

We will compute the ij -orbits in π when s is odd. Assume first that 1 ≤ s ≤ n -2. The ij -orbits of π are Γ t = {α t , α s-t },

1 ≤ t ≤ s-1 2 , Γ t = {α t }, s ≤ t ≤ n -2 and Γ n-1 = {α n-1 , α n }. Then |E| = n -s+1 2 . Assume that s = n and is odd. The ij -orbits in π are Γ t = {α t , α n-t }, 2 ≤ t ≤ n-1 2 and Γ 1 = {α 1 , α n-1 , α n }. Then |E| = n-1 2 .
In [START_REF] Panyushev | On symmetric invariants of centralisers in reductive Lie algebras[END_REF], the authors show that for s = 2, Y (p π ,E ) is also polynomial; an adapted pair is constructed in [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF] in this case -we give it at the end of this section. I) and β 0 π as defined in 4.2.1. Note in particular that

|β 0 π | = n-1 2 if n odd and |β 0 π | = n 2 -1 if n even and that n, n -s have different parity. Set β 0 π = {β i | 1 ≤ i ≤ n-1 2 } if n is odd and β 0 π = {β i | 1 ≤ i ≤ n 2 -1} if n is even. Then, in the former case, we have β 0 π 2 = {β i | 1 ≤ i ≤ n-s
2 -1} and in the latter

β 0 π 2 = {β i | 1 ≤ i ≤ n-s-1 2 }.
The roots β i are given by the formulae of Table I 

for type D by shifting i → s + i. Also β π 1 = β 0 π 1 = {β i | 1 ≤ i ≤ s-1
2 }, where the β i are given by the formulae of Table I for Type A by setting n = s -1.

Set now S + = β 0 π if n is odd and

S + = β 0 π {α n } if n is even. Set also S -= (-β 0 π 1 ) (-β 0 π 2 ) if n is even and S -= (-β 0 π 1 ) (-β 0 π 2 ) {-α n } if n is odd. Set T + = β π ∩ π if n is odd and T + = (β π ∩ π) \ {α n } if n is even. Set also T -= -(β π 2 ∩ π 2 ) \ {-α n } if n is odd and T -= -(β π 2 ∩ π 2 ) if n is even. Take T = T + T -. In both cases, |T | = n -s+1 2 = ind p π ,E . Assume now that s = n and is odd. Then π is of type A n-1 . Let {β i | 1 ≤ i ≤ n-1
2 } be the elements in β π as noted in Table I andβ 

π = {β i := α i + . . . + α n-i | 1 ≤ i ≤ n-1 2 }. We choose S + = {β i | 1 ≤ i ≤ n-1 2 } = β 0 π , S -= -β π and S = S + S -. For T ± we choose T + = β π ∩ π = {α 2i-1 , 1 ≤ i ≤ n-1 2 }, T -= ∅ and T = T + . Then | T |= n-1 2 =| E |= ind p π , E .

5.2.3.

Finally take π = π \ {α 2 }, and n ≥ 4, which is the case when the truncated parabolic subalgebra coincides with the centralizer of the highest root vector. An adapted pair has been constructed in [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF]. The sets S and T are given in [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF]Tables] for D n , n ≥ 4 as follows:

S = {α 2 , α 3 , . . . , α n-2 , α 1 + α 2 + . . . + α n-1 , α 1 + α 2 + . . . + α n-2 + α n }
and

T = {α i + 2α i+1 + . . . + 2α n-2 + α n-1 + α n , 1 ≤ i ≤ n -2, α n , -α 1 }.

Type C

Let g be a simple Lie algebra of type C n (n ≥ 3) and π = π \{α s }, with 1 ≤ s ≤ n. Then π = π 1 ∪ π 2 , where π 1 is of type A s-1 and π 2 is of type C n-s . The Levi factor l π of the truncated parabolic p π , E is the product l π = sl s × sp 2(n-s) . By Theorem 2.2. 3,Y (p π ,E ) is polynomial in ind p π ,E generators for all s, with 1 ≤ s ≤ n.

6.1. Orbits. The involutions of the Dynkin diagram j and i are given by j = id and :

i(α t ) = α s-t , 1 ≤ t ≤ s -1. α t , s ≤ t ≤ n.
Hence the ij = i -orbits of the Dynkin diagram are 

Γ t = {α t , α s-t }, 1 ≤ t ≤ [s/2]. {α t }, s ≤ t ≤ n.
S ∪ T = β π ∪ (-β π ).
In type C n such a choice would not work; notice in particular that

β π 2 ⊂ β π . Recall that β 0 π 1 denotes the set β π 1 \ (β π 1 ∩ π 1 )
. Denote by β i the elements in β π , and β i the elements in

β π 1 . For all i with 1 ≤ i ≤ n -1 set γ i = β i -α i .
We will distinguish the following two cases : (i) If s is odd, we choose

S + = {γ 2i-1 ; 1 ≤ i ≤ [n/2]}, S -= {-γ 2j ; (s + 1)/2 ≤ j ≤ [(n -1)/2]} ∪ (-β π 1 )
and

T + = {β 2i-1 ; 1 ≤ i ≤ [(n + 1)/2]}, T -= {-β 2j ; (s + 1)/2 ≤ j ≤ [n/2]}.
(ii) If s is even set t := [s/4] and choose

S + = {γ 2i-1 ; 1 ≤ i ≤ t, β 2t+1 , γ 2j ; t + 1 ≤ j ≤ [(n -1)/2]}, S -= {-γ 2j-1 ; s/2 + 1 ≤ j ≤ [n/2]} ∪ (-β 0 π 1 ) and 
T + = {β 2i-1 ; 1 ≤ i ≤ t, β 2j ; t + 1 ≤ j ≤ [n/2]}, T -= {-β 2j-1 ; s/2 + 1 ≤ j ≤ [(n + 1)/2], -β s/2 }.
6.2.2. Choice of Heisenberg sets. Set S = S + S -. For every γ ∈ S, we will define a Heisenberg set of centre γ, Γ γ .

For all γ ∈ S ∩(β π ∪(-β π )), we set Γ γ = H γ . For the rest of the roots in S, namely the γ i , (resp.

-γ i ) we define Γ γ i := H 0 β i H β i+1 (resp. Γ -γ i = H 0 -β i H -β i+1 = -Γ γ i ).
It is better to view these sets schematically, using certain (shifted) Young tableaux that we define right below. These diagrams were used in [START_REF] Shi | The number of -sign types[END_REF] for a different purpose.

We display the positive roots in a shifted diagram T (C n ) of shape (2n -1, 2n -3, . . . , 1), that is we assign to each box (i, j) of T (C n ) the positive root t i, j , where :

t i, j = α i + • • • + 2(α j + • • • + α n-1 ) + α n , i ≤ j ≤ n -1. α i + • • • + α 2n-j , n ≤ j ≤ 2n -i.
For example, the diagram for C 3 is :

2α 1 + 2α 2 + α 3 α 1 + 2α 2 + α 3 α 1 + α 2 + α 3 α 1 + α 2 α 1 2α 2 + α 3 α 2 + α 3 α 2 α 3
Notice that for all i, with 1 ≤ i ≤ n, the i -th line of T (C n ) is the Heisenberg set H β i , with the centre β i lying on the (i, i) box, i.e. H β i = {t i, j | i ≤ j ≤ 2n -i} and t i, i = β i . The right corners of the diagram correspond to the simple roots.

One has that

γ i = β i -α i = t i, i+1 for all i, with 1 ≤ i ≤ n -1. Then Γ γ i is the set Γ γ i = {t , m | ∈ {i, i + 1}, m ≥ i + 1}. We will show that it is a Heisenberg set of centre t i, i+1 . Then of course, Γ -γ i = -Γ γ i will be a Heisenberg set of centre -γ i . Lemma. Let Γ γ i be the set Γ γ i = {t , m | ∈ {i, i + 1}, m ≥ i + 1}. For all j, with i + 1 ≤ j ≤ 2n -i -1, one has : t i+1, j + t i, 2n+1-j = t i, i+1 .
In particular, Γ γ i is a Heisenberg set of centre t i, i+1 (= γ i ).

Proof. For j ≤ n -1 one has :

t i+1, j + t i, 2n+1-j = α i+1 + • • • + 2(α j + • • • + α n-1 ) + α n + α i + • • • + α j-1 = α i + 2(α i+1 + • • • + α n-1 ) + α n = t i, i+1 .
For j = n we have :

t i+1, n + t i, n+1 = (α i+1 + • • • + α n ) + (α i + • • • + α n-1 ) = t i, i+1
.

The cases j = n + 1 and j ≥ n + 2 follow by similar calculations. We conclude that for every t ∈ Γ γ i \ {γ i }, there exists a (unique) t ∈ Γ γ i \ {γ i }, such that t + t = γ i and Γ γ i is a Heisenberg set.

6.2.3. Decomposition into Heisenberg sets. We will show that the sets Γ ± :=

γ∈S ± Γ γ defined in the previous section complement T ± in ∆ + (resp. ∆ - π ), i.e. ∆ + = Γ + T + , ∆ - π = Γ -T -.
This easily follows by the decomposition in 2.2.2 (2). Indeed, take for example the case s odd. Then

Γ + = [n/2] i=1 (H 0 β 2i-1 H β 2i ). Clearly, a complement of this in ∆ + is T + .
Similarly,

Γ -=   (s-1)/2 i=1 H -β i     [(n-1)/2] i=(s+1)/2 (H 0 -β 2i H -β 2i+1 )   .
Again, a complement of this set in ∆ - π is T -. The case s even follows similarly. 6.2.4. We will show that condition (2) of Lemma 3.3 holds.

Set

O ± = γ∈S ± Γ 0 γ .
Lemma. If any two roots α, β ∈ O ± satisfy α + β = γ, for some γ ∈ S ± then α, β ∈ Γ 0 γ . Proof. We will prove the statement for O + . Suppose that α + β = γ and γ ∈ S + . Since Γ γ is a Heisenberg set, it is enough to show that α ∈ Γ 0 γ (or β ∈ Γ 0 γ ). Notice that the elements of S + are all of the form γ i or β i ∈ β π . In the latter case, lemma follows by 2.2.2 [START_REF] Fauquant-Millet | La somme des faux degrés -un mystère en théorie des invariants[END_REF].

Let us suppose that γ = γ i = β i -α i . Then γ ∈ H 0 β i and again by 2.2.2 (5), α ∈ H β i (or β ∈ H β i ). Let us assume the former holds. Since all roots γ, α, β are positive, we have γ > α (here > denotes the usual partial order of the root lattice). Since both γ, α are in

H β i and γ ∈ H 0 β i , one has that α ∈ H 0 β i . But H 0 β i ⊂ Γ γ , hence α ∈ Γ γ and then α ∈ Γ 0 γ .
6.2.5. Lemma. One has that S| h E is a basis for h * E .

Proof. We take for a basis of h E the set

{α ∨ i | 1 ≤ i ≤ n, i = s}. We need to show that if S = {s j | 1 ≤ j ≤ n -1} one has that det (α ∨ i (s j )) i,j = 0.
We may order the s j ∈ S and the α ∨ i ∈ h * E in a way such that the matrix (α ∨ i (s j )) i,j is upper triangular with diagonal elements non-zero. First notice that γ i = i+1i-1 , for all i, with 1 ≤ i ≤ n -1, where we have set 0 = 0.

Assume that s is odd.

By rearranging the rows, we may write the matrix (α ∨ i (s j )) i,j as

A B 0 C by taking A to be the [n/2] × [n/2] matrix A = (α ∨ 2i (γ 2j-1 )) [n/2]
i, j=1 . Then A is upper triangular and has 1 on the diagonal, hence det A = 1 and det(α ∨ i (s j )) i, j = det C. Similarly, we may write

C as C = D 0 0 F , with D the [(n -s)/2] × [(n -s)/2] matrix D = -(α ∨ s+2i (γ s+1+2(j-1) )) [(n-s)/2] i,j=1
. Then det D = (-1)

[(n-s)/2] , hence det C = det F up to a sign. Finally, F = -α ∨ 2i-1 (β j ) (s-1)/2 i, j=1
. By 2.2.2 (6), one observes that each of the simple roots α 2i-1 , 1 ≤ i ≤ (s -1)/2 lies in exactly one H β j . A similar argument as in the end of the proof of Lemma 4.2.3 allows us to conclude that det F = 0.

Assume that s is even and note that β 2t+1 = 2 2t+1 -2 2t . We may again write the matrix as A B 0 C by taking A to be the t × t matrix A = (α ∨ 2i (γ 2j-1 )) t i, j=1 . Then A is upper triangular and has 1 on the diagonal, hence det A = 1 and det(α ∨ i (s j )) i, j = det C . Similarly, we may write C as C = D E 0 F , with

D the matrix D = (α ∨ 2i-1 (γ 2j-2 )) [(n+1)/2] i, j=t+1
, where here we have set γ 2t := β 2t+1 . Then det D = 2 hence det C = 2 det F . Finally, by reasoning as before, we obtain det F = 0. 6.2.6. Finally, one may observe that in both cases, the set T has cardinality equal to

|T | = ind p π ,E = n -s + 1 + [ s 2 ]
. We conclude that all conditions of Lemma 3.3 are satisfied.

Type E 6

Let g be of type E 6 and let π = π \ {α s }, for 1 ≤ s ≤ 6, p π ,E the corresponding truncated parabolic subalgebra. The involution j on π is given as follows:

j(α 1 ) = α 6 , j(α 2 ) = α 2 , j(α 3 ) = α 5 , j(α 4 ) = α 4 .
By Theorem 2.2.3 Y (p π ,E ) is a polynomial algebra for s = 3, 4, 5. By [START_REF] Panyushev | On symmetric invariants of centralisers in reductive Lie algebras[END_REF], Y (p π ,E ) is polynomial for s = 2 -an adapted pair has been constructed in this case in [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF]. In the sections below, we construct an adapted pair for all p π ,E , for s = 3, 4, 5 and we give the construction of [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF] for s = 2, for the sake of completeness. Note that cases s = 3 and s = 5 are symmetric, thus it is enough to consider one of them -we treat case s = 3 in Section 7.2.

Recall that we are using the notations of [ 

i(α 1 ) = α 1 , i(α 2 ) = α 6 , i(α 3 ) = α 3 , i(α 4 ) = α 5 .
The ij -orbits in π are the {α 1 , α 2 , α 6 }, {α 3 , α 4 , α 5 }. In particular, ind p π ,E = 2.

7.2.1.

Recall the set of strongly orthogonal roots β π and Table I. For S ± we choose

S + = β 0 π = {β 1 , β 2 , β 3 } and S -= -β π 2 = {-β 1 := -(α 2 + α 4 + α 5 + α 6 ), -β 2 := -(α 4 + α 5 )}. For T ± we choose T + = β π ∩ π = {β 4 = α 4 } and T -= -β π 1 = {-α 1 }.
One has |T | = ind p π ,E , thus condition (4) of Lemma 3.3 holds.

For every γ ∈ S = S + S -, we choose the Heisenberg set of centre γ, Γ γ = H γ . Note that S + T + = β π and S -T -= -β π . Then by 3.4.1, conditions (1) and (2) of Lemma 3.3 are satisfied. Finally, an easy computation of the determinant det (α ∨ i (s j )), with 1 ≤ i ≤ 6, i = 3 and S = {s j | 1 ≤ j ≤ 5} settles condition (3).

7.3. Finally, let π = π \ {α 4 }. Then π has three connected components, π 1 = {α 1 , α 3 }, π 2 = {α 5 , α 6 } both of type A 2 and π 3 = {α 2 } of type A 1 . The involution i is given by i(α 1 ) = α 3 , i(α 2 ) = α 2 , i(α 5 ) = α 6 , i(α 4 ) = α 4 . Hence there are four ij -orbits in π, namely {α 1 , α 5 }, {α 3 , α 6 }, {α 2 }, {α 4 }. Remark. Recall Section 2.2.1. Note that ∆ β 1 = ∆ \ (H β 1 -H β 1 ) is a root system of type A 5 . The choice of {11110, 01111, -11000, -00011} coincides with the choice of S for π of type A 5 and π is equal to π without its third root as constructed in [START_REF] Joseph | Slices for biparabolic coadjoint actions in type A[END_REF]. 

1 = α ∨ 1 , h 2 = α ∨ 2 , h 3 = α ∨ 3 , h 4 = α ∨ 5 , h 5 = α ∨ 6 . Then det (h i (s j )) = 0 1 -1 -1 0 1 -1 -1 0 0 0 0 1 -1 0 0 1 0 0 -1 0 -1 1 0 -1 = 3 = 0.
We conclude that S| h E is a basis for h * . Hence all conditions of Lemma 3.3 are satisfied.

Type E 7

Let g be of type E 7 and let π = π \ {α s }, for 1 ≤ s ≤ 7, p π ,E the associated parabolic. By Theorem 2.2.3 Y (p π ,E ) is a polynomial algebra for s = 2, 5. By [START_REF] Panyushev | On symmetric invariants of centralisers in reductive Lie algebras[END_REF], Y (p π ,E ) is polynomial for s = 1 -an adapted pair has been constructed in this case in [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF]. In the sections below, we construct an adapted pair for all p π ,E , for s = 2, 5 and we give the construction of [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF] for s = 1.

Again we are using the notations of [1, Planches I-IX] and we denote by acdef g b the root aα 1 + bα 2 + cα 3 + dα 4 + eα 5 + f α 6 + gα 7 . As before, if b = 0, we simply write acdef g instead of acdef g 0 .

Recall that j = id.

8.1. Take π = π \ {α 1 }. By [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF] one may choose 

S = -α 2 , -α 4 , -α 6 , 112111 
i(α 1 ) = α 7 , i(α 3 ) = α 6 , i(α 4 ) = α 5 , i(α 2 ) = α 2 .
The ij -orbits are {α 1 , α 7 }, {α 2 }, {α 3 , α 6 }, {α 4 , α 5 }, hence ind p π ,E = 4. 2) of Lemma 3.3 hold for these choices. Finally, S| h E is a basis for h * E , by an easy calculation of the determinant.

8.3. Now let π = π\{α 5 }. Then π has two connected components, π 1 = {α 1 , α 2 , α 3 , α 4 } of type A 4 and π 2 = {α 6 , α 7 } of type A 2 . We have that i is the involution given by i

(α 1 ) = α 2 , i(α 3 ) = α 4 , i(α 5 ) = α 5 , i(α 6 ) = α 7 .
Hence there are four ij -orbits in π, namely the {α 1 , α 2 }, {α 3 , α 4 }, {α 5 }, {α 6 , α 7 }.

One has that β

π 1 = {β 1 = α 1 +α 2 +α 3 +α 4 , β 2 = α 3 +α 4 } and β π 2 = {β 1 = α 6 + α 7 }. For S ± we choose S + = β 0 π = {β 1 , β 2 , β 3 } and S -= (-β π 1 ) (-β π 2 ) = -β π . For T ± we choose T = T + = β π ∩ π = {α 2 , α 3 , α 5 , α 7 }. We have |T | = 4 = |E|.
Again S + T + = β π and S -= -β π . By taking Γ γ = H γ for all γ ∈ S, conditions (1)-(4) of Lemma 3.3 follow as in the previous case.

Type E 8

Let g be of type E 8 and let π = π \ {α s }, for 1 ≤ s ≤ 8. By Theorem 2.2.3, Y (p π ,E ) is a polynomial algebra for s = 3. By [START_REF] Yakimova | A counterexample to Premet's and Joseph's conjectures[END_REF], Y (p π ,E ) is not polynomial for s = 8. Below, we construct an adapted pair for p π ,E , for s = 3. 9.1. Let π = π \ {α 3 } -it has two connected components, π 1 = {α 1 } of type A 1 and π 2 = {α 2 , α 4 , α 5 , α 6 , α 7 , α 8 } of type A 6 . Then j = id and i is the involution that fixes α 1 and α 3 and interchanges α 2 and α 8 , α 4 and α 7 , α 5 and α 6 . Thus there are five ij -orbits in π, namely {α 1 }, {α 3 }, {α 2 , α 8 }, {α 4 , α 7 }, {α 5 , α 6 }. One has that ind p π ,E = 5. 9.1.1. For S ± we choose

S + = β 0 π = {β 1 , β 2 , β 3 , β 4 } and S -= -β π 2 = {-β 1 , -β 2 , -β 3 }. For T ± we choose T + = β π ∩ π = {α 2 , α 3 , α 5 , α 7 } and T -= -β π 1 = {-α 1 }.
In particular, |T | = 5 = ind p π ,E . We take Γ γ = H γ for all γ ∈ S and we conclude as in type E 7 .

Type F 4

Let g be of type F 4 , π = π \ {α s }, where 1 ≤ s ≤ 4, p π ,E the corresponding truncated parabolic. Recall that we are using the labeling of [1, Planche VIII]. In particular, we denote by abcd the root aα 1 + bα 2 + cα 3 + dα 4 . Recall also the set of strongly orthogonal roots of g listed in Table I

, β π = {β 1 = 2342, β 2 = 0122, β 3 = 0120, β 4 = 0100}.
By Theorem 2.2.3, Y (p π ,E ) is polynomial for s = 2, 3, 4. This is still true for s = 1 by [START_REF] Panyushev | On symmetric invariants of centralisers in reductive Lie algebras[END_REF]; moreover, in this case, an adapted pair has been constructed in [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF]. For the sake of completeness, we give the construction of [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF] in Section 10.1 below. We construct an adapted pair for s = 2, 4. However, we show with the help of a computer that adapted pairs do not exist for s = 3. Indeed, in this case Y (p - π ,E ) is a polynomial algebra on three generators of degrees 3, 4 and 10. If (h, y = s∈S x s ) is an adapted pair for p π ,E , then |S| = 3, h(s) = -1 for all s ∈ S and 2, 3, 9 are the eigenvalues of h on a complement of (ad p - π ,E ) y. For any h = λα ∨ 1 + µα ∨ 2 + να ∨ 4 ∈ h E , its eigenvalues on the 28 root vectors of p π ,E are functions on λ, µ, ν and may be computed by hand. We computed all h having {-1, -1, -1, 2, 3, 9} among their eigenvalues on p π ,E . Then by setting S to be the set of the three eigenvectors of eigenvalue -1, we showed that y fails to be regular, and so adapted pairs do not exist.

Recall that j = id. Remark. Notice that ∆ \ (H β 1 -H β 1 ) (which is equal to ∆ β 1 with the notation of 2.2.1) is a root system of type C 3 (with highest root 0122). The choice of the roots β 2 -α 4 and -(α 3 + α 4 ) coincides with the choice of S for π of type C 3 and π is equal to π without the last root. Lemma. One has that S| h E is a basis for h * E . Proof. Let s 1 = β 1 , s 2 = β 2 -α 4 , s 3 = -β be the elements of S and take {h 1 = α ∨ 1 , h 2 = α ∨ 3 , h 3 = α ∨ 4 } a basis of h E . It is sufficient to check that the determinant of (h i (s j )) i,j is non zero. Indeed, one checks that det (h i (s j )) = 1 -1 0 0 1 -1 0 0 -1 = -1 = 0. 

Type G 2

Let g be of type G 2 with π = {α, β} a set of simple roots and α short. Then Y (p π ,E ) is polynomial for both maximal truncated parabolics of g. 11.1. Let π = {α}. An adapted pair has been constructed in [START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF]. The choices for S and T are {α + β} and {3α + 2β, 3α + β} respectively. 

1. 2 .

 2 Denote by Y (a) the Poisson centre of S(a), that is the space : Y (a) = {f ∈ S(a) | ∀ g ∈ S(a), {f, g} = 0}. Note that Y (a) = S(a) a := {f ∈ S(a) | ∀ x ∈ a, {x, f } = 0} and that Y (a) is a subalgebra of S(a). We denote by Sy(a) the Poisson semicentre of S(a), Sy(a) := {f ∈ S(a) | ∀ x ∈ a, {x, f } ∈ k f }; it is also a subalgebra of S(a).

1 ) 2 )

 12 The map Y (a) -→ R[y + V ] defined by restriction of functions is an isomorphism of algebras. (The degrees of a set of homogeneous generators of Y (a) are the

  the set of fundamental weights of g and j = -w 0 is the Dynkin diagram involution. Let P + (π) := α∈π N α denote the set of dominant weights of g and set B π := P + (π) ∩ Nβ π . Define P + (π ), B π accordingly. Then B π is the set of weights of the Poisson semicentre Sy(b), where b = n ⊕ h is the Borel subalgebra.

with dn-s 2 = 2

 22 if n is odd and d i = 1 otherwise. Then up to a sign we have: det (α ∨ i (s j )) = detA B 0 C , where A = (α ∨ 2i (β i )) is an upper triangular matrix with c i , 1 ≤ i ≤ [n/2] on the diagonal. Then up to a sign det (α ∨ i (s j )) = c [n/2] det C. On the other hand C = D 0 0 F , where D = (α ∨ s+2i (β j )) is an upper triangular matrix with d i on the diagonal, hence det D

5. 2 . 5 . 2 . 1 .

 2521 Construction of an adapted pair. The sets S and T . Assume first that 1 ≤ s ≤ n 2 and s is odd. Denote by π 1 the connected component of π of type A s-1 and by π 2 the connected component of π of type D n-s . Recall the sets β π of strongly orthogonal positive roots (see Table

5. 2 . 2 .

 22 Choice of Heisenberg sets. For each β ∈ S, set Γ β = H β with the notation of 2.2.2. As in type B, we have that S + T + = β π and S -T -= -β π . Then conditions (1) and (2) of Lemma 3.3 are immediate, condition (4) is verified above. Finally, condition (3) also follows by arguments similar to the proof of Lemma 4.2.3.

7. 3 . 1 .

 31 We choose for S ± the sets S + = {β 1 , 11110, 01111}, S -= -β 0 π = {-β 1 := -(α 1 +α 3 ), -β 1 := -(α 5 +α 6 )} and for T ± the sets T + = {β 2 , β 4 , α 6 }, T -= {-α 2 }. In particular |T | = 4 = |E|.

7. 3 . 2 .

 32 For γ ∈ β π (-β π ) we set Γ γ = H γ . For the rest of the elements of S, namely 11110 and 01111 we choose Γ 11110 = {10000, 11000, 11100, 01110, 00110, 00010, 11110} and Γ 01111 = {01000, 01100, 00111, 00011, 01111}. They are clearly Heisenberg sets of centres 11110 and 01111 respectively. Conditions (1) and (2) of Lemma 3.3 are easily checked by hand. 7.3.3. Set s 1 = β 1 , s 2 = 11110, s 3 = 01111, s 4 = -β 1 , s 5 = -β 1 and h

8. 2 . 1 .

 21 For S ± we chooseS + = β 0 π = {β 1 , β 2 , β 3 } and S -= -β π = {-β 1 , -β 2 , -β 3 }and for T ± we choose T = T + = β π ∩ π = {α 7 , α 2 , α 3 , α 5 }. One has |T | = 4 = ind p π ,E . Then S + T + = β π and S -= -β π . 8.2.2. For γ ∈ S we take Γ γ = H γ ; by 3.4.1 condition (1) and (

10. 1 . 2 . 2 . 1 .

 1221 Let π = {α 2 , α 3 , α 4 }. Then by[START_REF] Joseph | Compatible adapted pairs and a common slice theorem for some centralizers[END_REF], we may choose S = {-0010, 1121, 1220} and T = {2342, 1222, 0122, 0111}.10.Let π = {α 1 , α 3 , α 4 }, so that the Levi factor of p π ,E is the product l π = sl 2 × sl 3 . Equivalently, π consists of two connected components, namely π 1 = {α 1 } of type A 1 and π 2 = {α 3 , α 4 } of type A 2 . We then have three ij = i -orbits in π, namely Γ1 = {α 1 }, Γ 2 = {α 2 }, Γ 3 = {α 3 , α 4 }. Hence ind p π ,E = 3.One has thatβ π = β π 1 β π 2 , with β π 1 = {β := α 1 }, β π 2 = {β := α 3 + α 4 }.10.We choose for S the set S = {β 1 , β 2 -α 4 = β 3 + α 4 Notice that |T | = 3 = ind p π ,E , hence condition (4) of Lemma 3.3 holds.

10. 2 . 3 .

 23 It remains to verify condition (3) of Lemma 3.3.

10. 3 . 2 H β 3 .

 323 Let π = {α 1 , α 2 , α 3 }, so that the Levi factor of p π , E is of type B 3 . Then i = id, hence the ij -orbits of the Dynkin diagram are the singletons, {α i }, 1 ≤ i ≤ 4 and so ind p π ,E = 4.10.3.1. We choose S = {β 1 , β 2 -α 4 = β 3 + α 4Notice that |T | = 4 = ind p π ,E , hence condition (4) of Lemma 3.3 holds.10.3.2. We set Γ β 1 = H β 1 , Γ -β 1 = -H β 1 and Γ β 2 -α 4 = H 0 β It is clear that Γ β 1 Γ β 2 -α 4 (resp. -Γ β 1 ) complements T + (resp. T -) in ∆ + (resp. ∆ - π ). Moreover, as before, these are Heisenberg sets, thus condition (1) of Lemma 3.3 is satisfied. Condition (2) follows as in 6.2.4. Finally, condition (3) follows by an easy computation as in 10.2.3.

11. 2 .

 2 Let π = {β}. Take S = {β 1 = 3α + 2β} and T = {α, -β} and Γ β 1 = H β 1 . It is immediate to verify conditions (1)-(4) of Lemma 3.3.

  a decomposition of ∆ to irreducible root systems. Let β i be the unique highest root in ∆ i . Then β i ∈ D for all i, (∆ i ) β i is a root system and it decomposes into a union of irreducible root systems (∆ i ) β i = ij with β ij the highest root of ∆ ij . This procedure defines a subset K of N * ∪ N * 2 ∪ • • • and a maximal set β π = {β K } K∈K of strongly orthogonal positive roots. The set K can be endowed with a partial order ≤ as follows : for all K, L ∈ K we say that K ≤ L if and only if L = K or L = {K, n 1 , n 2 , . . . , n s }, with n i ∈ N

j

∆ * for all i, 1 ≤ i ≤ s and s ≥ 1. The set K -called the Kostant cascade -is described in

[START_REF] Joseph | A preparation theorem for the prime spectrum of a semisimple Lie algebra[END_REF] Table 

  [START_REF] Joseph | Parabolic actions in type A and their eigenslices[END_REF], that even for maximal truncated parabolics with Poisson centre polynomial, adapted pairs may not exist.It is convenient from now on to replace p π ,E with its opposed algebra p -

	π ,E . Identify
	(p -π ,E )

* with p π ,E through the Killing form. Then p - π ,E acts on p π ,E via the coadjoint action. If h ⊥ E is the orthogonal complement of h E in h with respect to the Killing form, then we can identify (p - π ,E ) * with g/(h ⊥ E ⊕ m -), where m -is the nilradical of p - π ,E

  3.2. Note that g O + ⊕ g O -identifies with o * via the Killing isomorphism. Condition (1) implies the equalities p π , E = h E ⊕o * ⊕g S ⊕g T and p - π , E = h E ⊕ o ⊕ g -S ⊕ g -T . Conditions (2) and (3) and the expansion of y imply by Lemma 3.2 that Φ y is non-degenerate on o × o. Then o * ⊂ (ad o) y ⊂ (ad p - π , E ) y. Condition (3) implies that g S = (ad h E ) y and that h

  1, Planches I-IX] and in particular we denote by acdef b the root aα 1 + bα 2 + cα 3 + dα 4 + eα 5 + f α 6 . If b = 0, we simply Let π = π \ {α 3 }. Then π has two connected components π 1 = {α 1 } of type A 1 and π 2 = {α 2 , α 4 , α 5 , α 6 } of type A 4 . The involution i is defined on π by

	write acdef instead of	acdef 0	.				
	7.1. Let π = π \ {α 2 }. By [12], we may choose
	S = -α 3 , -α 5 ,	01210 1	,	11110 1	,	01111 1
	and						
	T = 11111, 11110, 01100,	12221 1	,	11211 1	,	12321 2	.
	7.2.						

  Let π = π \ {α 2 } -then π is of type A 6 . One has that i is the involution defined by

								1	,	112210 1	,	122110 1	
	and														
	T =	012221 1	,	012210 1	,	123321 2	,	012100 1	,	123221 1	,	122211 1	,	234321 2	.
	8.2.														

  10.2.2. Set Γ β 1 = H β 1 , Γ β 2 -α 4 = H 0 β 2 H β 3 and Γ -β = -H β .These are Heisenberg sets (for Γ β 2 -α 4 see Lemma 6.2.2 -one may as well check by hand since the cardinality of this set is only 7). Their union is disjoint since the H β , β ∈ β π , -H β , β ∈ β π are disjoint. Finally, by comparison of Γ ± := γ∈S ± Γ γ and 2.2.2 (2), the complement of Γ ± in ∆ + (resp. ∆ - π ) is T ± and then condition (1) of Lemma 3.3 is satisfied. On the other hand, condition (2) follows as in Lemma 6.2.4.
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